Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with Echis carinatus Venom
- 作者: Mehrabi M.1, Bitaraf F.2, Vahedi H.3, Alizadeh M.4, Bernkop-Schnürch A.5, Kancha M.6
-
隶属关系:
- Department of Medical Nanotechnology, School of Medicine,, Shahroud University of Medical Sciences
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Science
- Department of Gastroenterology, School of Medicine,, Shahroud University of Medical Sciences
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences
- Department of Pharmaceutical Technology,, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine
- Student Research Committee, School of Medicine,, Shahroud University of Medical Sciences
- 期: 卷 24, 编号 7 (2024)
- 页面: 533-543
- 栏目: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644267
- DOI: https://doi.org/10.2174/0118715206279731231129105221
- ID: 644267
如何引用文章
全文:
详细
Aims and Background:Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.).
Objective:Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects
Methods:In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay.
Results:The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells.
Conclusion:It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.
作者简介
Mohsen Mehrabi
Department of Medical Nanotechnology, School of Medicine,, Shahroud University of Medical Sciences
编辑信件的主要联系方式.
Email: info@benthamscience.net
Fatemeh Bitaraf
Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Science
Email: info@benthamscience.net
Hamid Vahedi
Department of Gastroenterology, School of Medicine,, Shahroud University of Medical Sciences
Email: info@benthamscience.net
Morteza Alizadeh
Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences
Email: info@benthamscience.net
Andreas Bernkop-Schnürch
Department of Pharmaceutical Technology,, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine
Email: info@benthamscience.net
Maral Kancha
Student Research Committee, School of Medicine,, Shahroud University of Medical Sciences
Email: info@benthamscience.net
参考
- Kisaki, C.Y.; Arcos, S.S.S.; Montoni, F.; da Silva Santos, W.; Calacina, H.M.; Lima, I.F.; Cajado-Carvalho, D.; Ferro, E.S.; Nishiyama-Jr, M.Y.; Iwai, L.K. Bothrops jararaca snake venom modulates key cancer-related proteins in breast tumor cell lines. Toxins, 2021, 13(8), 519. doi: 10.3390/toxins13080519 PMID: 34437390
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
- Boffetta, P.; Nyberg, F. Contribution of environmental factors to cancer risk. Br. Med. Bull., 2003, 68(1), 71-94. doi: 10.1093/bmp/ldg023 PMID: 14757710
- Thrift, A.P.; Wenker, T.N.; El-Serag, H.B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol., 2023, 20(5), 338-349. doi: 10.1038/s41571-023-00747-0 PMID: 36959359
- van Tuijl, L.A.; Basten, M.; Pan, K.Y.; Vermeulen, R.; Portengen, L.; de Graeff, A.; Dekker, J.; Geerlings, M.I.; Hoogendoorn, A.; Lamers, F.; Voogd, A.C.; Abell, J.; Awadalla, P.; Beekman, A.T.F.; Bjerkeset, O.; Boyd, A.; Cui, Y.; Frank, P.; Galenkamp, H.; Garssen, B.; Hellingman, S.; Huisman, M.; Huss, A.; de Jong, T.R.; Keats, M.R.; Kok, A.A.L.; Krokstad, S.; Van Leeuwen, F.E.; Luik, A.I.; Noisel, N.; Onland-Moret, N.C.; Payette, Y.; Penninx, B.W.J.H.; Rissanen, I.; Roest, A.M.; Ruiter, R.; Schoevers, R.A.; Soave, D.; Spaan, M.; Steptoe, A.; Stronks, K.; Sund, E.R.; Sweeney, E.; Twait, E.L.; Teyhan, A.; Verschuren, W.M.M.; Van der Willik, K.D.; Rosmalen, J.G.M.; Ranchor, A.V. Depression, anxiety, and the risk of cancer: An individual participant data meta‐analysis. Cancer, 2023, 129(20), 3287-3299. doi: 10.1002/cncr.34853 PMID: 37545248
- Haycock, P.C.; Borges, M.C.; Burrows, K.; Lemaitre, R.N.; Burgess, S.; Khankari, N.K.; Tsilidis, K.K.; Gaunt, T.R.; Hemani, G.; Zheng, J.; Truong, T.; Birmann, B.M. OMara, T.; Spurdle, A.B.; Iles, M.M.; Law, M.H.; Slager, S.L.; Saberi Hosnijeh, F.; Mariosa, D.; Cotterchio, M.; Cerhan, J.R.; Peters, U.; Enroth, S.; Gharahkhani, P.; Le Marchand, L.; Williams, A.C.; Block, R.C.; Amos, C.I.; Hung, R.J.; Zheng, W.; Gunter, M.J.; Smith, G.D.; Relton, C.; Martin, R.M.; Tintle, N.; Rice, T.; Cheng, I.; Jenkins, M.; Gallinger, S.; Cornish, A.J.; Sud, A.; Vijayakrishnan, J.; Wrensch, M.; Johansson, M.; Norman, A.D.; Klein, A.; Clay-Gilmour, A.; Franke, A.; Ardisson Korat, A.V.; Wheeler, B.; Nilsson, B.; Smith, C.; Heng, C-K.; Song, C.; Riadi, D.; Claus, E.B.; Ellinghaus, E.; Ostroumova, E.; Hosnijeh; de Vathaire, F.; Cugliari, G.; Matullo, G.; Oi-Lin Ng, I.; Passow, J.E.; Foo, J.N.; Han, J.; Liu, J.; Barnholtz-Sloan, J.; Schildkraut, J.M.; Maris, J.; Wiemels, J.L.; Hemminki, K.; Yang, K.; Kiemeney, L.A.; Wu, L.; Amundadottir, L.; Stern, M-H.; Boutron, M-C.; Iles, M.M.; Purdue, M.P.; Stanulla, M.; Bondy, M.; Gaudet, M.; Mobuchon, L.; Camp, N.J.; Sham, P.C.; Guénel, P.; Brennan, P.; Taylor, P.R.; Ostrom, Q.; Stolzenberg-Solomon, R.; Dorajoo, R.; Houlston, R.; Jenkins, R.B.; Diskin, S.; Berndt, S.I.; Tsavachidis, S.; Channock, S.J.; Harrison, T.; Galesloot, T.; Gyllensten, U.; Joseph, V.; Shi, Y.; Yang, W.; Lin, Y.; Van Den Eeden, S.K. The association between genetically elevated polyunsaturated fatty acids and risk of cancer. EBioMedicine, 2023, 91, 104510. doi: 10.1016/j.ebiom.2023.104510 PMID: 37086649
- Kalita, B.; Saviola, A.J.; Mukherjee, A.K. From venom to drugs: A review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes. Drug Discov. Today, 2021, 26(4), 993-1005. doi: 10.1016/j.drudis.2020.12.021 PMID: 33486112
- Diniz-Sousa, R.; Caldeira, C.A.S.; Pereira, S.S.; Da Silva, S.L.; Fernandes, P.A.; Teixeira, L.M.C.; Zuliani, J.P.; Soares, A.M. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int. J. Biol. Macromol., 2023, 238, 124357. doi: 10.1016/j.ijbiomac.2023.124357 PMID: 37028634
- Almeida, T.C.; Ribeiro, S.L.M.; de Oliveira, B.A.M.; Lopes, F.S.R.; SantAnna, M.B.; Picolo, G. Cytotoxic effect of crotoxin on cancer cells and its antitumoral effects correlated to tumor microenvironment: A review. Int. J. Biol. Macromol., 2023, 242(Pt 2), 124892. doi: 10.1016/j.ijbiomac.2023.124892 PMID: 37196721
- Bialves, T.S.; Bastos Junior, C.L.Q.; Cordeiro, M.F.; Boyle, R.T. Snake venom, a potential treatment for melanoma. A systematic review. Int. J. Biol. Macromol., 2023, 231, 123367. doi: 10.1016/j.ijbiomac.2023.123367 PMID: 36690229
- Morjen, M.; Zakraoui, O.; Abdelkafi-Koubaa, Z.; Srairi-Abid, N.; Marrakchi, N.; Essafi-Benkhadir, K.; Jebali, J. CC5 and CC8, two disintegrin isoforms from cerastes cerastes snake venom decreased inflammation response in vitro and in vivo. Int. J. Mol. Sci., 2023, 24(15), 12427. doi: 10.3390/ijms241512427 PMID: 37569801
- Oliveira, D.; Guerra-Duarte, C.; Stransky, S.; Scussel, R.; Pereira de Castro, K.L.; Costal-Oliveira, F.; Aragão, M.; Oliveira-Souza, G.; Saavedra-Langer, R.; Trevisan, G.; Bonilla-Ferreyra, C.; Chávez-Olórtegui, C.; Machado-de-Ávila, R.A. Toxic and antigenic characterization of Peruvian Micrurus surinamensis coral snake venom. Toxicon, 2023, 225, 107056. doi: 10.1016/j.toxicon.2023.107056 PMID: 36804442
- Si, H.; Yin, C.; Wang, W.; Davies, P.; Sanchez, E.; Suntravat, M.; Zawieja, D.; Cromer, W. Effect of the snake venom component crotamine on lymphatic endothelial cell responses and lymph transport. Microcirculation, 2023, 30(2-3), e12775. doi: 10.1111/micc.12775 PMID: 35689804
- DiBianco, R. Angiotensin converting enzyme inhibition. Postgrad. Med., 1985, 78(5), 229-248. 244, 247-248 doi: 10.1080/00325481.1985.11699167 PMID: 2864682
- Marte, F.; Sankar, P.; Cassagnol, M. Captopril. In: StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022.
- Ram, C.V.S. Captoril. Arch. Intern. Med., 1982, 142(5), 914-916. doi: 10.1001/archinte.1982.00340180072016 PMID: 6282230
- Brown, S.; Nores, G.D.G.; Sarker, A.; Ly, C.; Li, C.; Park, H.J.; Hespe, G.E.; Gardenier, J.; Kuonqui, K.; Campbell, A.; Shin, J.; Kataru, R.P.; Aras, O.; Mehrara, B.J. Topical captopril: A promising treatment for secondary lymphedema. Transl. Res., 2023, 257, 43-53. doi: 10.1016/j.trsl.2023.01.005 PMID: 36736951
- Manjunatha, K.R. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon, 2003, 42(8), 827-840. doi: 10.1016/j.toxicon.2003.11.002 PMID: 15019485
- Du, X.Y.; Clemetson, K.J. Snake venom l-amino acid oxidases. Toxicon, 2002, 40(6), 659-665. doi: 10.1016/S0041-0101(02)00102-2 PMID: 12175601
- Olaoba, O.T.; Karina dos Santos, P.; Selistre-de-Araujo, H.S.; Ferreira de Souza, D.H. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon X, 2020, 7, 100052. doi: 10.1016/j.toxcx.2020.100052 PMID: 32776002
- McCleary, R.J.R.; Kini, R.M. Non-enzymatic proteins from snake venoms: A gold mine of pharmacological tools and drug leads. Toxicon, 2013, 62, 56-74. doi: 10.1016/j.toxicon.2012.09.008 PMID: 23058997
- Li, L.; Huang, J.; Lin, Y. Snake venoms in cancer therapy: Past, present and future. Toxins, 2018, 10(9), 346. doi: 10.3390/toxins10090346 PMID: 30158426
- Garcia. Soares; Stockand, Stockand. J.D. Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins, 2019, 11(10), 564. doi: 10.3390/toxins11100564 PMID: 31557973
- Akhtar, B.; Muhammad, F.; Sharif, A.; Anwar, M.I. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur. J. Pharmacol., 2021, 899, 174022. doi: 10.1016/j.ejphar.2021.174022 PMID: 33727054
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496. doi: 10.3109/10715761003667554 PMID: 20370557
- Zhao, Y.; Ye, X.; Xiong, Z.; Ihsan, A.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Anadón, A.; Wang, X.; Martínez, M.A. Cancer metabolism: The role of ROS in DNA damage and induction of apoptosis in cancer cells. Metabolites, 2023, 13(7), 796. doi: 10.3390/metabo13070796 PMID: 37512503
- Park, J.A.; Na, H.H.; Jin, H.O.; Kim, K.C. Increased expression of fosb through reactive oxygen species accumulation functions as pro-apoptotic protein in piperlongumine treated MCF7 breast cancer cells. Mol. Cells, 2019, 42(12), 884-892. PMID: 31735020
- Endres, L.; Begley, U.; Clark, R.; Gu, C.; Dziergowska, A. Małkiewicz, A.; Melendez, J.A.; Dedon, P.C.; Begley, T.J. Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS One, 2015, 10(7), e0131335. doi: 10.1371/journal.pone.0131335 PMID: 26147969
- Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol., 2000, 3(1), 3-8. PMID: 10963327
- Wang, R.; Liang, L.; Matsumoto, M.; Iwata, K.; Umemura, A.; He, F. Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules, 2023, 13(2), 353. doi: 10.3390/biom13020353 PMID: 36830722
- Lyons, N.J.; Giri, R.; Begun, J.; Clark, D.; Proud, D.; He, Y.; Hooper, J.D.; Kryza, T. Reactive oxygen species as mediators of disease progression and therapeutic response in colorectal cancer. Antioxid. Redox Signal., 2023, 39(1-3), 186-205. doi: 10.1089/ars.2022.0127 PMID: 36792932
- Kwak, A.W.; Lee, J.Y.; Lee, S.O.; Seo, J.; Park, J.W.; Choi, Y.H.; Cho, S.S.; Yoon, G.; Lee, M.H.; Shim, J.H. Echinatin induces reactive oxygen species‐mediated apoptosis viaJNK/p38 MAPK signaling pathway in colorectal cancer cells. Phytother. Res., 2023, 37(2), 563-577. doi: 10.1002/ptr.7634 PMID: 36184899
- He, M.; Wang, M.; Xu, T.; Zhang, M.; Dai, H.; Wang, C.; Ding, D.; Zhong, Z. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. J. Control. Release, 2023, 356, 623-648. doi: 10.1016/j.jconrel.2023.02.040 PMID: 36868519
- Ding, Y.; Pan, Q.; Gao, W.; Pu, Y.; Luo, K.; He, B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater. Sci., 2023, 11(4), 1182-1214. doi: 10.1039/D2BM01833K PMID: 36606593
- Biagioni, A.; Peri, S.; Versienti, G.; Fiorillo, C.; Becatti, M.; Magnelli, L.; Papucci, L. Gastric cancer vascularization and the contribution of reactive oxygen species. Biomolecules, 2023, 13(6), 886. doi: 10.3390/biom13060886 PMID: 37371466
- Yu, J.E.; Yeo, I.J.; Lee, D.W.; Chang, J.Y.; Son, D.J.; Yun, J.; Han, S.B.; Hong, J.T. Snake venom induces an autophagic cell death via activation of the JNK pathway in colorectal cancer cells. J. Cancer, 2022, 13(12), 3333-3341. doi: 10.7150/jca.75791 PMID: 36186900
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett., 2018, 16(1), 101-112. doi: 10.1007/s10311-017-0670-y
- Pandey, R.P.; Kumar, S.; Dhiman, R.; Prudencio, C.R.; da Costa, A.C.; Vibhuti, A.; Leal, E.; Chang, C-M.; Raj, V.S. Chitosan: Applications in drug delivery system. Mini Rev. Med. Chem., 2023, 23(2), 187-191. doi: 10.2174/1389557522666220609102010 PMID: 35692143
- Wang, X.; Song, R.; Johnson, M. A, S.; Shen, P.; Zhang, N.; Lara-Sáez, I.; Xu, Q.; Wang, W. Chitosan‐based hydrogels for infected wound treatment. Macromol. Biosci., 2023, 23(9), 2300094. doi: 10.1002/mabi.202300094 PMID: 37158294
- Meng, Q.; Zhong, S.; Wang, J.; Gao, Y.; Cui, X. Advances in chitosan-based microcapsules and their applications. Carbohydr. Polym., 2023, 300, 120265. doi: 10.1016/j.carbpol.2022.120265 PMID: 36372516
- Kulka, K.; Sionkowska, A. Chitosan based materials in cosmetic applications: A review. Molecules, 2023, 28(4), 1817. doi: 10.3390/molecules28041817 PMID: 36838805
- Guadarrama-Escobar, O.R.; Serrano-Castañeda, P.; Anguiano-Almazán, E.; Vázquez-Durán, A.; Peña-Juárez, M.C.; Vera-Graziano, R.; Morales-Florido, M.I.; Rodriguez-Perez, B.; Rodriguez-Cruz, I.M.; Miranda-Calderón, J.E.; Escobar-Chávez, J.J. Chitosan nanoparticles as oral drug carriers. Int. J. Mol. Sci., 2023, 24(5), 4289. doi: 10.3390/ijms24054289 PMID: 36901719
- Aghbashlo, M.; Amiri, H.; Moosavi Basri, S.M.; Rastegari, H.; Lam, S.S.; Pan, J.; Gupta, V.K.; Tabatabaei, M. Tuning chitosans chemical structure for enhanced biological functions. Trends Biotechnol., 2023, 41(6), 785-797. doi: 10.1016/j.tibtech.2022.11.009 PMID: 36535818
- Dubey, S.K.; Bhatt, T.; Agrawal, M.; Saha, R.N.; Saraf, S.; Saraf, S.; Alexander, A. Application of chitosan modified nanocarriers in breast cancer. Int. J. Biol. Macromol., 2022, 194, 521-538. doi: 10.1016/j.ijbiomac.2021.11.095 PMID: 34822820
- Sachdeva, B.; Sachdeva, P.; Negi, A.; Ghosh, S.; Han, S.; Dewanjee, S.; Jha, S.K.; Bhaskar, R.; Sinha, J.K.; Paiva-Santos, A.C.; Jha, N.K.; Kesari, K.K. Chitosan nanoparticles-based cancer drug delivery: Application and challenges. Mar. Drugs, 2023, 21(4), 211. doi: 10.3390/md21040211 PMID: 37103352
- Ghaz-Jahanian, M.A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol., 2015, 57(3), 201-218. doi: 10.1007/s12033-014-9816-3 PMID: 25385004
- Shargh, V.H.; Hondermarck, H.; Liang, M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine, 2016, 11(1), 63-79. doi: 10.2217/nnm.15.186 PMID: 26654068
- Vaezifar, S.; Razavi, S.; Golozar, M.A.; Karbasi, S.; Morshed, M.; Kamali, M. Effects of some parameters on particle size distribution of chitosan nanoparticles prepared by ionic gelation method. J. Cluster Sci., 2013, 24(3), 891-903. doi: 10.1007/s10876-013-0583-2
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275. doi: 10.1016/S0021-9258(19)52451-6 PMID: 14907713
- Alalawy, A.I.; Haddad, A., E.R.; Fahad, M.A.; Ahmed, A.T.; Mohammed, A.A.; Nahla, S.Z.; Mohamed, I.S. Effectual anticancer potentiality of loaded bee venom onto fungal chitosan nanoparticles. Int. J. Polym. Sci., 2020, 2020. doi: 10.1155/2020/2785304
- Mohammadpour, D.N.; Eskandari, R.; Avadi, M.R.; Zolfagharian, H.; Mir, M.S.A.; Rezayat, M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J. Venom. Anim. Toxins Incl. Trop. Dis., 2012, 18(1), 44-52. doi: 10.1590/S1678-91992012000100006
- Jimenez-Canale, J.; Fernandez-Quiroz, D.; Teran-Saavedra, N.G.; Diaz-Galvez, K.R.; Gallegos-Tabanico, A.; Burgara-Estrella, A.J.; Sarabia-Sainz, H.M.; Guzman-Partida, A.M.; Robles-Burgueño, M.D.R.; Vazquez-Moreno, L.; Sarabia-Sainz, J.A. Cytotoxic activity of Crotalus molossus molossus snake venom-loaded in chitosan nanoparticles against T-47D breast carcinoma cells. Acta Biochim. Pol., 2022, 69(1), 233-243. PMID: 35148045
- Zahr, A.S.; Davis, C.A.; Pishko, M.V. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir, 2006, 22(19), 8178-8185. doi: 10.1021/la060951b PMID: 16952259
- Sawtarie, N.; Cai, Y.; Lapitsky, Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids Surf. B Biointerfaces, 2017, 157, 110-117. doi: 10.1016/j.colsurfb.2017.05.055 PMID: 28578269
- Hussain, Z.; Sahudin, S. Preparation, characterisation and colloidal stability of chitosan-tripolyphosphate nanoparticles: optimisation of formulation and process parameters. Int. J. Pharm. Pharm. Sci., 2016, 8(3), 297-308.
- Dev, A.; Binulal, N.S.; Anitha, A.; Nair, S.V.; Furuike, T.; Tamura, H.; Jayakumar, R. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr. Polym., 2010, 80(3), 833-838. doi: 10.1016/j.carbpol.2009.12.040
- Vyas, A.; Saraf, S.; Saraf, S. Encapsulation of cyclodextrin complexed simvastatin in chitosan nanocarriers: A novel technique for oral delivery. J. Incl. Phenom. Macrocycl. Chem., 2010, 66(3-4), 251-259. doi: 10.1007/s10847-009-9605-y
- Akhlaq, A.; Ashraf, M.; Omer, M.O.; Altaf, I. Carvacrol-fabricated chitosan nanoparticle synergistic potential with topoisomerase inhibitors on breast and cervical cancer cells. ACS Omega, 2023, 8(35), 31826-31838. doi: 10.1021/acsomega.3c03337 PMID: 37692253
- Ali, A.; Saroj, S.; Saha, S.; Gupta, S.K.; Rakshit, T.; Pal, S. Glucose-responsive chitosan nanoparticle/poly(vinyl alcohol) hydrogels for sustained insulin release in vivo. ACS Appl. Mater. Interfaces, 2023, 15(27), 32240-32250. doi: 10.1021/acsami.3c05031 PMID: 37368956
- Zhang, Y.; Chan, J.W.; Moretti, A.; Uhrich, K.E. Designing polymers with sugar-based advantages for bioactive delivery applications. J. Control. Release, 2015, 219, 355-368. doi: 10.1016/j.jconrel.2015.09.053 PMID: 26423239
- Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosanTPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces, 2005, 44(2-3), 65-73. doi: 10.1016/j.colsurfb.2005.06.001 PMID: 16024239
- Yang, X.; Yuan, X.; Cai, D.; Wang, S.; Zong, L. Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int. J. Pharm., 2009, 375(1-2), 123-132. doi: 10.1016/j.ijpharm.2009.03.032 PMID: 19481698
- Tabynov, K.; Solomadin, M.; Turebekov, N.; Babayeva, M.; Fomin, G.; Yadagiri, G.; Renu, S.; Yerubayev, T.; Petrovsky, N.; Renukaradhya, G.J.; Tabynov, K. An intranasal vaccine comprising SARS-CoV-2 spike receptor-binding domain protein entrapped in mannose-conjugated chitosan nanoparticle provides protection in hamsters. Sci. Rep., 2023, 13(1), 12115. doi: 10.1038/s41598-023-39402-0 PMID: 37495639
- Qi, L.; Xu, Z.; Chen, M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur. J. Cancer, 2007, 43(1), 184-193. doi: 10.1016/j.ejca.2006.08.029 PMID: 17049839
- Qi, L.; Xu, Z. In vivo antitumor activity of chitosan nanoparticles. Bioorg. Med. Chem. Lett., 2006, 16(16), 4243-4245. doi: 10.1016/j.bmcl.2006.05.078 PMID: 16759859
- Sheikh, A.; Hazari, S.A.; Molugulu, N.; Alshehri, S.A.; Wahab, S.; Sahebkar, A.; Kesharwani, P. Hyaluronic acid engineered gallic acid embedded chitosan nanoparticle as an effective delivery system for treatment of psoriasis. Environ. Res., 2023, 238(Pt 1), 117086. doi: 10.1016/j.envres.2023.117086 PMID: 37683783
- Algandaby, M.M.; Esmat, A.; Nasrullah, M.Z.; Alhakamy, N.A.; Abdel-Naim, A.B.; Rashad, O.M.; Elhady, S.S.; Eltamany, E.E. LC-MS based metabolic profiling and wound healing activity of a chitosan nanoparticle-loaded formula of Teucrium polium in diabetic rats. Biomed. Pharmacother., 2023, 168, 115626. doi: 10.1016/j.biopha.2023.115626 PMID: 37852098
- Yinsong, W.; Lingrong, L.; Jian, W.; Zhang, Q. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates. Carbohydr. Polym., 2007, 69(3), 597-606. doi: 10.1016/j.carbpol.2007.01.016
- Zhang, W.; Zhang, J.; Jiang, Q.; Xia, W. Physicochemical and structural characteristics of chitosan nanopowders prepared by ultrafine milling. Carbohydr. Polym., 2012, 87(1), 309-313. doi: 10.1016/j.carbpol.2011.07.057 PMID: 34662966
- Brunel, F.; Véron, L.; David, L.; Domard, A.; Delair, T. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir, 2008, 24(20), 11370-11377. doi: 10.1021/la801917a PMID: 18774829
- Mitra, S.; Gaur, U.; Ghosh, P.C.; Maitra, A.N. Tumour targeted delivery of encapsulated dextrandoxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release, 2001, 74(1-3), 317-323. doi: 10.1016/S0168-3659(01)00342-X PMID: 11489513
- Vasconcellos, F.C.; Goulart, G.A.S.; Beppu, M.M. Production and characterization of chitosan microparticles containing papain for controlled release applications. Powder Technol., 2011, 205(1-3), 65-70. doi: 10.1016/j.powtec.2010.08.066
- Mirzaei, F.; Mohammadpour Dounighi, N.; Avadi, M.R.; Rezayat, M. A new approach to antivenom preparation using chitosan nanoparticles containing echiscarinatus venom as a novel antigen delivery system. Iran. J. Pharm. Res., 2017, 16(3), 858-867. PMID: 29201077
- Mohammadur, D.; Mehrabi, M.; Avadi, M.R.; Zolfagharian, H.; Rezayat, M. Preparation, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system. Arch. Razi Inst., 2015, 70(4), 269-277.
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I.M.; Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers, 2021, 13(11), 1717. doi: 10.3390/polym13111717 PMID: 34074020
- Wu, J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J. Pers. Med., 2021, 11(8), 771. doi: 10.3390/jpm11080771 PMID: 34442415
- Shambayati, M.H. Characterizing and controlling the loading of Vipera albicornuta venom in chitosan nanoparticles as an adjuvant and vaccine delivery system. J. Nanomed. Res., 2019, 4(4), 220-227.
- Patra, A.; Kalita, B.; Chanda, A.; Mukherjee, A.K. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci. Rep., 2017, 7(1), 17119. doi: 10.1038/s41598-017-17227-y PMID: 29215036
- Zaeri, S.; Fatemikia, H.; Kamyab, M.; Esmaili, A.; Kim, E. Mohammadpour Dounighi, N.; Salemi, A.; Khadem, P.; Seyedian, R., Hemodynamic Changes Provoked through Intravascular Injection of the Echis carinatus Venom in Rats. Arch. Razi Inst., 2021, 76(3), 599-607.
- Parihar, V.; Mittal, A.; Vikarn, V.; Didel, S.; Singh, K. Venom-induced consumptive coagulopathy leading to thrombotic microangiopathy following Echis carinatus sochureki bite: is snake antivenom effective? J. Trop. Pediatr., 2022, 69(1), fmac113.
- Kachhwaha, A.; Kumar, A.; Garg, P.; Sharma, A.; Garg, M.K.; Gopalakrishnan, M. Delayed compression paralysis following an iliopsoas hematoma 30 days after saw-scaled viper (Echis carinatus sochureki) envenoming: A case report. Wilderness & environmental medicine, 2023, 34(3), 366-371.
- Pirasath, S.; Athirayan, C.; Gajan, D. Thrombotic microangiopathy following saw-scaled viper (Echis carinatus) envenoming in Sri Lanka. SAGE open medical case reports, 2021, 9, 2050313x211032399.
- Woythe, L.; Madhikar, P.; Feiner-Gracia, N.; Storm, C.; Albertazzi, L. A single-molecule view at nanoparticle targeting selectivity: correlating ligand functionality and cell receptor density. ACS Nano, 2022, 16(3), 3785-3796.
- Liu, M.; Wang, L.; Lo, Y.; Shiu, S.C.; Kinghorn, A.B.; Tanner, J.A. Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells, 2022, 11(1), 159.
- Safarzadeh, K.P.; Rahbarizadeh, F. Flexible aptamer-based nucleolin-targeting cancer treatment modalities: A focus on immunotherapy, radiotherapy, and phototherapy. Trends Med. Sci., 2021, 1(3), e113991.
- Ruks, T.; Loza, K.; Heggen, M.; Prymak, O.; Sehnem, A.L.; Oliveira, C.L.P.; Bayer, P.; Beuck, C.; Epple, M. Peptide-conjugated ultrasmall gold nanoparticles (2 nm) for selective protein targeting. ACS Applied Bio Materials, 2021, 4(1), 945-965.
- Kozani, P.S.; Kozani, P.S.; Malik, M.T. AS1411-functionalized delivery nanosystems for targeted cancer therapy. Explor. Med., 2021, 2, 146-166.
- Rao, D.A.; Forrest, M.L.; Alani, A.W.; Kwon, G.S.; Robinson, J.R. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J. Pharm. Sci., 2010, 99(4), 2018-2031.
- Garrastazu Pereira, G.; Lawson, A.J.; Buttini, F.; Sonvico, F. Loco-regional administration of nanomedicines for the treatment of lung cancer. Drug Delivery., 2016, 23(8), 2881-2896.
- Mangal, S.; Gao, W.; Li, T.; Zhou, Q.T. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacologica Sinica, 2017, 38(6), 782-797.
- Terracciano, R.; Carcamo-Bahena, Y.; Royal, A.L.R.; Messina, L.; Delk, J.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Wang, Z.; Cristini, V.; Dogra, P.; Filgueira, C.S. Zonal intratumoral delivery of nanoparticles guided by surface functionalization. Langmuir, 2022, 38(45), 13983-13994.
- Terracciano, R.; Carcamo-Bahena, Y.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Filgueira, C.S. Hyaluronate-thiol passivation enhances gold nanoparticle peritumoral distribution when administered intratumorally in lung cancer. Biomedicines, 2021, 9(11), 1561.
- Yu, T.; Lin, Y.; Jin, A.; Zhang, P.; Zhou, X.; Fang, M.; Liu, X. Safety and efficiency of low dose intra-arterial tirofiban in mechanical thrombectomy during acute ischemic stroke. Curr. Neurovas. Res., 2018, 15(2), 145-150.
- Sarkees, M. L.; Bavry, A.A. Non ST-elevation acute coronary syndrome. BMJ. Clin. Evid., 2010, 2010, 0209.
补充文件
