Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with Echis carinatus Venom

  • 作者: Mehrabi M.1, Bitaraf F.2, Vahedi H.3, Alizadeh M.4, Bernkop-Schnürch A.5, Kancha M.6
  • 隶属关系:
    1. Department of Medical Nanotechnology, School of Medicine,, Shahroud University of Medical Sciences
    2. Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Science
    3. Department of Gastroenterology, School of Medicine,, Shahroud University of Medical Sciences
    4. Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences
    5. Department of Pharmaceutical Technology,, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine
    6. Student Research Committee, School of Medicine,, Shahroud University of Medical Sciences
  • 期: 卷 24, 编号 7 (2024)
  • 页面: 533-543
  • 栏目: Oncology
  • URL: https://snv63.ru/1871-5206/article/view/644267
  • DOI: https://doi.org/10.2174/0118715206279731231129105221
  • ID: 644267

如何引用文章

全文:

详细

Aims and Background:Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.).

Objective:Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects

Methods:In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay.

Results:The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells.

Conclusion:It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.

作者简介

Mohsen Mehrabi

Department of Medical Nanotechnology, School of Medicine,, Shahroud University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

Fatemeh Bitaraf

Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Science

Email: info@benthamscience.net

Hamid Vahedi

Department of Gastroenterology, School of Medicine,, Shahroud University of Medical Sciences

Email: info@benthamscience.net

Morteza Alizadeh

Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences

Email: info@benthamscience.net

Andreas Bernkop-Schnürch

Department of Pharmaceutical Technology,, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine

Email: info@benthamscience.net

Maral Kancha

Student Research Committee, School of Medicine,, Shahroud University of Medical Sciences

Email: info@benthamscience.net

参考

  1. Kisaki, C.Y.; Arcos, S.S.S.; Montoni, F.; da Silva Santos, W.; Calacina, H.M.; Lima, I.F.; Cajado-Carvalho, D.; Ferro, E.S.; Nishiyama-Jr, M.Y.; Iwai, L.K. Bothrops jararaca snake venom modulates key cancer-related proteins in breast tumor cell lines. Toxins, 2021, 13(8), 519. doi: 10.3390/toxins13080519 PMID: 34437390
  2. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  3. Boffetta, P.; Nyberg, F. Contribution of environmental factors to cancer risk. Br. Med. Bull., 2003, 68(1), 71-94. doi: 10.1093/bmp/ldg023 PMID: 14757710
  4. Thrift, A.P.; Wenker, T.N.; El-Serag, H.B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol., 2023, 20(5), 338-349. doi: 10.1038/s41571-023-00747-0 PMID: 36959359
  5. van Tuijl, L.A.; Basten, M.; Pan, K.Y.; Vermeulen, R.; Portengen, L.; de Graeff, A.; Dekker, J.; Geerlings, M.I.; Hoogendoorn, A.; Lamers, F.; Voogd, A.C.; Abell, J.; Awadalla, P.; Beekman, A.T.F.; Bjerkeset, O.; Boyd, A.; Cui, Y.; Frank, P.; Galenkamp, H.; Garssen, B.; Hellingman, S.; Huisman, M.; Huss, A.; de Jong, T.R.; Keats, M.R.; Kok, A.A.L.; Krokstad, S.; Van Leeuwen, F.E.; Luik, A.I.; Noisel, N.; Onland-Moret, N.C.; Payette, Y.; Penninx, B.W.J.H.; Rissanen, I.; Roest, A.M.; Ruiter, R.; Schoevers, R.A.; Soave, D.; Spaan, M.; Steptoe, A.; Stronks, K.; Sund, E.R.; Sweeney, E.; Twait, E.L.; Teyhan, A.; Verschuren, W.M.M.; Van der Willik, K.D.; Rosmalen, J.G.M.; Ranchor, A.V. Depression, anxiety, and the risk of cancer: An individual participant data meta‐analysis. Cancer, 2023, 129(20), 3287-3299. doi: 10.1002/cncr.34853 PMID: 37545248
  6. Haycock, P.C.; Borges, M.C.; Burrows, K.; Lemaitre, R.N.; Burgess, S.; Khankari, N.K.; Tsilidis, K.K.; Gaunt, T.R.; Hemani, G.; Zheng, J.; Truong, T.; Birmann, B.M. OMara, T.; Spurdle, A.B.; Iles, M.M.; Law, M.H.; Slager, S.L.; Saberi Hosnijeh, F.; Mariosa, D.; Cotterchio, M.; Cerhan, J.R.; Peters, U.; Enroth, S.; Gharahkhani, P.; Le Marchand, L.; Williams, A.C.; Block, R.C.; Amos, C.I.; Hung, R.J.; Zheng, W.; Gunter, M.J.; Smith, G.D.; Relton, C.; Martin, R.M.; Tintle, N.; Rice, T.; Cheng, I.; Jenkins, M.; Gallinger, S.; Cornish, A.J.; Sud, A.; Vijayakrishnan, J.; Wrensch, M.; Johansson, M.; Norman, A.D.; Klein, A.; Clay-Gilmour, A.; Franke, A.; Ardisson Korat, A.V.; Wheeler, B.; Nilsson, B.; Smith, C.; Heng, C-K.; Song, C.; Riadi, D.; Claus, E.B.; Ellinghaus, E.; Ostroumova, E.; Hosnijeh; de Vathaire, F.; Cugliari, G.; Matullo, G.; Oi-Lin Ng, I.; Passow, J.E.; Foo, J.N.; Han, J.; Liu, J.; Barnholtz-Sloan, J.; Schildkraut, J.M.; Maris, J.; Wiemels, J.L.; Hemminki, K.; Yang, K.; Kiemeney, L.A.; Wu, L.; Amundadottir, L.; Stern, M-H.; Boutron, M-C.; Iles, M.M.; Purdue, M.P.; Stanulla, M.; Bondy, M.; Gaudet, M.; Mobuchon, L.; Camp, N.J.; Sham, P.C.; Guénel, P.; Brennan, P.; Taylor, P.R.; Ostrom, Q.; Stolzenberg-Solomon, R.; Dorajoo, R.; Houlston, R.; Jenkins, R.B.; Diskin, S.; Berndt, S.I.; Tsavachidis, S.; Channock, S.J.; Harrison, T.; Galesloot, T.; Gyllensten, U.; Joseph, V.; Shi, Y.; Yang, W.; Lin, Y.; Van Den Eeden, S.K. The association between genetically elevated polyunsaturated fatty acids and risk of cancer. EBioMedicine, 2023, 91, 104510. doi: 10.1016/j.ebiom.2023.104510 PMID: 37086649
  7. Kalita, B.; Saviola, A.J.; Mukherjee, A.K. From venom to drugs: A review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes. Drug Discov. Today, 2021, 26(4), 993-1005. doi: 10.1016/j.drudis.2020.12.021 PMID: 33486112
  8. Diniz-Sousa, R.; Caldeira, C.A.S.; Pereira, S.S.; Da Silva, S.L.; Fernandes, P.A.; Teixeira, L.M.C.; Zuliani, J.P.; Soares, A.M. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int. J. Biol. Macromol., 2023, 238, 124357. doi: 10.1016/j.ijbiomac.2023.124357 PMID: 37028634
  9. Almeida, T.C.; Ribeiro, S.L.M.; de Oliveira, B.A.M.; Lopes, F.S.R.; Sant’Anna, M.B.; Picolo, G. Cytotoxic effect of crotoxin on cancer cells and its antitumoral effects correlated to tumor microenvironment: A review. Int. J. Biol. Macromol., 2023, 242(Pt 2), 124892. doi: 10.1016/j.ijbiomac.2023.124892 PMID: 37196721
  10. Bialves, T.S.; Bastos Junior, C.L.Q.; Cordeiro, M.F.; Boyle, R.T. Snake venom, a potential treatment for melanoma. A systematic review. Int. J. Biol. Macromol., 2023, 231, 123367. doi: 10.1016/j.ijbiomac.2023.123367 PMID: 36690229
  11. Morjen, M.; Zakraoui, O.; Abdelkafi-Koubaa, Z.; Srairi-Abid, N.; Marrakchi, N.; Essafi-Benkhadir, K.; Jebali, J. CC5 and CC8, two disintegrin isoforms from cerastes cerastes snake venom decreased inflammation response in vitro and in vivo. Int. J. Mol. Sci., 2023, 24(15), 12427. doi: 10.3390/ijms241512427 PMID: 37569801
  12. Oliveira, D.; Guerra-Duarte, C.; Stransky, S.; Scussel, R.; Pereira de Castro, K.L.; Costal-Oliveira, F.; Aragão, M.; Oliveira-Souza, G.; Saavedra-Langer, R.; Trevisan, G.; Bonilla-Ferreyra, C.; Chávez-Olórtegui, C.; Machado-de-Ávila, R.A. Toxic and antigenic characterization of Peruvian Micrurus surinamensis coral snake venom. Toxicon, 2023, 225, 107056. doi: 10.1016/j.toxicon.2023.107056 PMID: 36804442
  13. Si, H.; Yin, C.; Wang, W.; Davies, P.; Sanchez, E.; Suntravat, M.; Zawieja, D.; Cromer, W. Effect of the snake venom component crotamine on lymphatic endothelial cell responses and lymph transport. Microcirculation, 2023, 30(2-3), e12775. doi: 10.1111/micc.12775 PMID: 35689804
  14. DiBianco, R. Angiotensin converting enzyme inhibition. Postgrad. Med., 1985, 78(5), 229-248. 244, 247-248 doi: 10.1080/00325481.1985.11699167 PMID: 2864682
  15. Marte, F.; Sankar, P.; Cassagnol, M. Captopril. In: StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022.
  16. Ram, C.V.S. Captoril. Arch. Intern. Med., 1982, 142(5), 914-916. doi: 10.1001/archinte.1982.00340180072016 PMID: 6282230
  17. Brown, S.; Nores, G.D.G.; Sarker, A.; Ly, C.; Li, C.; Park, H.J.; Hespe, G.E.; Gardenier, J.; Kuonqui, K.; Campbell, A.; Shin, J.; Kataru, R.P.; Aras, O.; Mehrara, B.J. Topical captopril: A promising treatment for secondary lymphedema. Transl. Res., 2023, 257, 43-53. doi: 10.1016/j.trsl.2023.01.005 PMID: 36736951
  18. Manjunatha, K.R. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon, 2003, 42(8), 827-840. doi: 10.1016/j.toxicon.2003.11.002 PMID: 15019485
  19. Du, X.Y.; Clemetson, K.J. Snake venom l-amino acid oxidases. Toxicon, 2002, 40(6), 659-665. doi: 10.1016/S0041-0101(02)00102-2 PMID: 12175601
  20. Olaoba, O.T.; Karina dos Santos, P.; Selistre-de-Araujo, H.S.; Ferreira de Souza, D.H. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon X, 2020, 7, 100052. doi: 10.1016/j.toxcx.2020.100052 PMID: 32776002
  21. McCleary, R.J.R.; Kini, R.M. Non-enzymatic proteins from snake venoms: A gold mine of pharmacological tools and drug leads. Toxicon, 2013, 62, 56-74. doi: 10.1016/j.toxicon.2012.09.008 PMID: 23058997
  22. Li, L.; Huang, J.; Lin, Y. Snake venoms in cancer therapy: Past, present and future. Toxins, 2018, 10(9), 346. doi: 10.3390/toxins10090346 PMID: 30158426
  23. Garcia. Soares; Stockand, Stockand. J.D. Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins, 2019, 11(10), 564. doi: 10.3390/toxins11100564 PMID: 31557973
  24. Akhtar, B.; Muhammad, F.; Sharif, A.; Anwar, M.I. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur. J. Pharmacol., 2021, 899, 174022. doi: 10.1016/j.ejphar.2021.174022 PMID: 33727054
  25. Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496. doi: 10.3109/10715761003667554 PMID: 20370557
  26. Zhao, Y.; Ye, X.; Xiong, Z.; Ihsan, A.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Anadón, A.; Wang, X.; Martínez, M.A. Cancer metabolism: The role of ROS in DNA damage and induction of apoptosis in cancer cells. Metabolites, 2023, 13(7), 796. doi: 10.3390/metabo13070796 PMID: 37512503
  27. Park, J.A.; Na, H.H.; Jin, H.O.; Kim, K.C. Increased expression of fosb through reactive oxygen species accumulation functions as pro-apoptotic protein in piperlongumine treated MCF7 breast cancer cells. Mol. Cells, 2019, 42(12), 884-892. PMID: 31735020
  28. Endres, L.; Begley, U.; Clark, R.; Gu, C.; Dziergowska, A. Małkiewicz, A.; Melendez, J.A.; Dedon, P.C.; Begley, T.J. Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS One, 2015, 10(7), e0131335. doi: 10.1371/journal.pone.0131335 PMID: 26147969
  29. Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol., 2000, 3(1), 3-8. PMID: 10963327
  30. Wang, R.; Liang, L.; Matsumoto, M.; Iwata, K.; Umemura, A.; He, F. Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules, 2023, 13(2), 353. doi: 10.3390/biom13020353 PMID: 36830722
  31. Lyons, N.J.; Giri, R.; Begun, J.; Clark, D.; Proud, D.; He, Y.; Hooper, J.D.; Kryza, T. Reactive oxygen species as mediators of disease progression and therapeutic response in colorectal cancer. Antioxid. Redox Signal., 2023, 39(1-3), 186-205. doi: 10.1089/ars.2022.0127 PMID: 36792932
  32. Kwak, A.W.; Lee, J.Y.; Lee, S.O.; Seo, J.; Park, J.W.; Choi, Y.H.; Cho, S.S.; Yoon, G.; Lee, M.H.; Shim, J.H. Echinatin induces reactive oxygen species‐mediated apoptosis viaJNK/p38 MAPK signaling pathway in colorectal cancer cells. Phytother. Res., 2023, 37(2), 563-577. doi: 10.1002/ptr.7634 PMID: 36184899
  33. He, M.; Wang, M.; Xu, T.; Zhang, M.; Dai, H.; Wang, C.; Ding, D.; Zhong, Z. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. J. Control. Release, 2023, 356, 623-648. doi: 10.1016/j.jconrel.2023.02.040 PMID: 36868519
  34. Ding, Y.; Pan, Q.; Gao, W.; Pu, Y.; Luo, K.; He, B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater. Sci., 2023, 11(4), 1182-1214. doi: 10.1039/D2BM01833K PMID: 36606593
  35. Biagioni, A.; Peri, S.; Versienti, G.; Fiorillo, C.; Becatti, M.; Magnelli, L.; Papucci, L. Gastric cancer vascularization and the contribution of reactive oxygen species. Biomolecules, 2023, 13(6), 886. doi: 10.3390/biom13060886 PMID: 37371466
  36. Yu, J.E.; Yeo, I.J.; Lee, D.W.; Chang, J.Y.; Son, D.J.; Yun, J.; Han, S.B.; Hong, J.T. Snake venom induces an autophagic cell death via activation of the JNK pathway in colorectal cancer cells. J. Cancer, 2022, 13(12), 3333-3341. doi: 10.7150/jca.75791 PMID: 36186900
  37. Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett., 2018, 16(1), 101-112. doi: 10.1007/s10311-017-0670-y
  38. Pandey, R.P.; Kumar, S.; Dhiman, R.; Prudencio, C.R.; da Costa, A.C.; Vibhuti, A.; Leal, E.; Chang, C-M.; Raj, V.S. Chitosan: Applications in drug delivery system. Mini Rev. Med. Chem., 2023, 23(2), 187-191. doi: 10.2174/1389557522666220609102010 PMID: 35692143
  39. Wang, X.; Song, R.; Johnson, M. A, S.; Shen, P.; Zhang, N.; Lara-Sáez, I.; Xu, Q.; Wang, W. Chitosan‐based hydrogels for infected wound treatment. Macromol. Biosci., 2023, 23(9), 2300094. doi: 10.1002/mabi.202300094 PMID: 37158294
  40. Meng, Q.; Zhong, S.; Wang, J.; Gao, Y.; Cui, X. Advances in chitosan-based microcapsules and their applications. Carbohydr. Polym., 2023, 300, 120265. doi: 10.1016/j.carbpol.2022.120265 PMID: 36372516
  41. Kulka, K.; Sionkowska, A. Chitosan based materials in cosmetic applications: A review. Molecules, 2023, 28(4), 1817. doi: 10.3390/molecules28041817 PMID: 36838805
  42. Guadarrama-Escobar, O.R.; Serrano-Castañeda, P.; Anguiano-Almazán, E.; Vázquez-Durán, A.; Peña-Juárez, M.C.; Vera-Graziano, R.; Morales-Florido, M.I.; Rodriguez-Perez, B.; Rodriguez-Cruz, I.M.; Miranda-Calderón, J.E.; Escobar-Chávez, J.J. Chitosan nanoparticles as oral drug carriers. Int. J. Mol. Sci., 2023, 24(5), 4289. doi: 10.3390/ijms24054289 PMID: 36901719
  43. Aghbashlo, M.; Amiri, H.; Moosavi Basri, S.M.; Rastegari, H.; Lam, S.S.; Pan, J.; Gupta, V.K.; Tabatabaei, M. Tuning chitosan’s chemical structure for enhanced biological functions. Trends Biotechnol., 2023, 41(6), 785-797. doi: 10.1016/j.tibtech.2022.11.009 PMID: 36535818
  44. Dubey, S.K.; Bhatt, T.; Agrawal, M.; Saha, R.N.; Saraf, S.; Saraf, S.; Alexander, A. Application of chitosan modified nanocarriers in breast cancer. Int. J. Biol. Macromol., 2022, 194, 521-538. doi: 10.1016/j.ijbiomac.2021.11.095 PMID: 34822820
  45. Sachdeva, B.; Sachdeva, P.; Negi, A.; Ghosh, S.; Han, S.; Dewanjee, S.; Jha, S.K.; Bhaskar, R.; Sinha, J.K.; Paiva-Santos, A.C.; Jha, N.K.; Kesari, K.K. Chitosan nanoparticles-based cancer drug delivery: Application and challenges. Mar. Drugs, 2023, 21(4), 211. doi: 10.3390/md21040211 PMID: 37103352
  46. Ghaz-Jahanian, M.A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol., 2015, 57(3), 201-218. doi: 10.1007/s12033-014-9816-3 PMID: 25385004
  47. Shargh, V.H.; Hondermarck, H.; Liang, M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine, 2016, 11(1), 63-79. doi: 10.2217/nnm.15.186 PMID: 26654068
  48. Vaezifar, S.; Razavi, S.; Golozar, M.A.; Karbasi, S.; Morshed, M.; Kamali, M. Effects of some parameters on particle size distribution of chitosan nanoparticles prepared by ionic gelation method. J. Cluster Sci., 2013, 24(3), 891-903. doi: 10.1007/s10876-013-0583-2
  49. Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275. doi: 10.1016/S0021-9258(19)52451-6 PMID: 14907713
  50. Alalawy, A.I.; Haddad, A., E.R.; Fahad, M.A.; Ahmed, A.T.; Mohammed, A.A.; Nahla, S.Z.; Mohamed, I.S. Effectual anticancer potentiality of loaded bee venom onto fungal chitosan nanoparticles. Int. J. Polym. Sci., 2020, 2020. doi: 10.1155/2020/2785304
  51. Mohammadpour, D.N.; Eskandari, R.; Avadi, M.R.; Zolfagharian, H.; Mir, M.S.A.; Rezayat, M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J. Venom. Anim. Toxins Incl. Trop. Dis., 2012, 18(1), 44-52. doi: 10.1590/S1678-91992012000100006
  52. Jimenez-Canale, J.; Fernandez-Quiroz, D.; Teran-Saavedra, N.G.; Diaz-Galvez, K.R.; Gallegos-Tabanico, A.; Burgara-Estrella, A.J.; Sarabia-Sainz, H.M.; Guzman-Partida, A.M.; Robles-Burgueño, M.D.R.; Vazquez-Moreno, L.; Sarabia-Sainz, J.A. Cytotoxic activity of Crotalus molossus molossus snake venom-loaded in chitosan nanoparticles against T-47D breast carcinoma cells. Acta Biochim. Pol., 2022, 69(1), 233-243. PMID: 35148045
  53. Zahr, A.S.; Davis, C.A.; Pishko, M.V. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir, 2006, 22(19), 8178-8185. doi: 10.1021/la060951b PMID: 16952259
  54. Sawtarie, N.; Cai, Y.; Lapitsky, Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids Surf. B Biointerfaces, 2017, 157, 110-117. doi: 10.1016/j.colsurfb.2017.05.055 PMID: 28578269
  55. Hussain, Z.; Sahudin, S. Preparation, characterisation and colloidal stability of chitosan-tripolyphosphate nanoparticles: optimisation of formulation and process parameters. Int. J. Pharm. Pharm. Sci., 2016, 8(3), 297-308.
  56. Dev, A.; Binulal, N.S.; Anitha, A.; Nair, S.V.; Furuike, T.; Tamura, H.; Jayakumar, R. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr. Polym., 2010, 80(3), 833-838. doi: 10.1016/j.carbpol.2009.12.040
  57. Vyas, A.; Saraf, S.; Saraf, S. Encapsulation of cyclodextrin complexed simvastatin in chitosan nanocarriers: A novel technique for oral delivery. J. Incl. Phenom. Macrocycl. Chem., 2010, 66(3-4), 251-259. doi: 10.1007/s10847-009-9605-y
  58. Akhlaq, A.; Ashraf, M.; Omer, M.O.; Altaf, I. Carvacrol-fabricated chitosan nanoparticle synergistic potential with topoisomerase inhibitors on breast and cervical cancer cells. ACS Omega, 2023, 8(35), 31826-31838. doi: 10.1021/acsomega.3c03337 PMID: 37692253
  59. Ali, A.; Saroj, S.; Saha, S.; Gupta, S.K.; Rakshit, T.; Pal, S. Glucose-responsive chitosan nanoparticle/poly(vinyl alcohol) hydrogels for sustained insulin release in vivo. ACS Appl. Mater. Interfaces, 2023, 15(27), 32240-32250. doi: 10.1021/acsami.3c05031 PMID: 37368956
  60. Zhang, Y.; Chan, J.W.; Moretti, A.; Uhrich, K.E. Designing polymers with sugar-based advantages for bioactive delivery applications. J. Control. Release, 2015, 219, 355-368. doi: 10.1016/j.jconrel.2015.09.053 PMID: 26423239
  61. Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces, 2005, 44(2-3), 65-73. doi: 10.1016/j.colsurfb.2005.06.001 PMID: 16024239
  62. Yang, X.; Yuan, X.; Cai, D.; Wang, S.; Zong, L. Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int. J. Pharm., 2009, 375(1-2), 123-132. doi: 10.1016/j.ijpharm.2009.03.032 PMID: 19481698
  63. Tabynov, K.; Solomadin, M.; Turebekov, N.; Babayeva, M.; Fomin, G.; Yadagiri, G.; Renu, S.; Yerubayev, T.; Petrovsky, N.; Renukaradhya, G.J.; Tabynov, K. An intranasal vaccine comprising SARS-CoV-2 spike receptor-binding domain protein entrapped in mannose-conjugated chitosan nanoparticle provides protection in hamsters. Sci. Rep., 2023, 13(1), 12115. doi: 10.1038/s41598-023-39402-0 PMID: 37495639
  64. Qi, L.; Xu, Z.; Chen, M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur. J. Cancer, 2007, 43(1), 184-193. doi: 10.1016/j.ejca.2006.08.029 PMID: 17049839
  65. Qi, L.; Xu, Z. In vivo antitumor activity of chitosan nanoparticles. Bioorg. Med. Chem. Lett., 2006, 16(16), 4243-4245. doi: 10.1016/j.bmcl.2006.05.078 PMID: 16759859
  66. Sheikh, A.; Hazari, S.A.; Molugulu, N.; Alshehri, S.A.; Wahab, S.; Sahebkar, A.; Kesharwani, P. Hyaluronic acid engineered gallic acid embedded chitosan nanoparticle as an effective delivery system for treatment of psoriasis. Environ. Res., 2023, 238(Pt 1), 117086. doi: 10.1016/j.envres.2023.117086 PMID: 37683783
  67. Algandaby, M.M.; Esmat, A.; Nasrullah, M.Z.; Alhakamy, N.A.; Abdel-Naim, A.B.; Rashad, O.M.; Elhady, S.S.; Eltamany, E.E. LC-MS based metabolic profiling and wound healing activity of a chitosan nanoparticle-loaded formula of Teucrium polium in diabetic rats. Biomed. Pharmacother., 2023, 168, 115626. doi: 10.1016/j.biopha.2023.115626 PMID: 37852098
  68. Yinsong, W.; Lingrong, L.; Jian, W.; Zhang, Q. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates. Carbohydr. Polym., 2007, 69(3), 597-606. doi: 10.1016/j.carbpol.2007.01.016
  69. Zhang, W.; Zhang, J.; Jiang, Q.; Xia, W. Physicochemical and structural characteristics of chitosan nanopowders prepared by ultrafine milling. Carbohydr. Polym., 2012, 87(1), 309-313. doi: 10.1016/j.carbpol.2011.07.057 PMID: 34662966
  70. Brunel, F.; Véron, L.; David, L.; Domard, A.; Delair, T. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir, 2008, 24(20), 11370-11377. doi: 10.1021/la801917a PMID: 18774829
  71. Mitra, S.; Gaur, U.; Ghosh, P.C.; Maitra, A.N. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release, 2001, 74(1-3), 317-323. doi: 10.1016/S0168-3659(01)00342-X PMID: 11489513
  72. Vasconcellos, F.C.; Goulart, G.A.S.; Beppu, M.M. Production and characterization of chitosan microparticles containing papain for controlled release applications. Powder Technol., 2011, 205(1-3), 65-70. doi: 10.1016/j.powtec.2010.08.066
  73. Mirzaei, F.; Mohammadpour Dounighi, N.; Avadi, M.R.; Rezayat, M. A new approach to antivenom preparation using chitosan nanoparticles containing echiscarinatus venom as a novel antigen delivery system. Iran. J. Pharm. Res., 2017, 16(3), 858-867. PMID: 29201077
  74. Mohammadur, D.; Mehrabi, M.; Avadi, M.R.; Zolfagharian, H.; Rezayat, M. Preparation, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system. Arch. Razi Inst., 2015, 70(4), 269-277.
  75. Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I.M.; Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers, 2021, 13(11), 1717. doi: 10.3390/polym13111717 PMID: 34074020
  76. Wu, J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J. Pers. Med., 2021, 11(8), 771. doi: 10.3390/jpm11080771 PMID: 34442415
  77. Shambayati, M.H. Characterizing and controlling the loading of Vipera albicornuta venom in chitosan nanoparticles as an adjuvant and vaccine delivery system. J. Nanomed. Res., 2019, 4(4), 220-227.
  78. Patra, A.; Kalita, B.; Chanda, A.; Mukherjee, A.K. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci. Rep., 2017, 7(1), 17119. doi: 10.1038/s41598-017-17227-y PMID: 29215036
  79. Zaeri, S.; Fatemikia, H.; Kamyab, M.; Esmaili, A.; Kim, E. Mohammadpour Dounighi, N.; Salemi, A.; Khadem, P.; Seyedian, R., Hemodynamic Changes Provoked through Intravascular Injection of the Echis carinatus Venom in Rats. Arch. Razi Inst., 2021, 76(3), 599-607.
  80. Parihar, V.; Mittal, A.; Vikarn, V.; Didel, S.; Singh, K. Venom-induced consumptive coagulopathy leading to thrombotic microangiopathy following Echis carinatus sochureki bite: is snake antivenom effective? J. Trop. Pediatr., 2022, 69(1), fmac113.
  81. Kachhwaha, A.; Kumar, A.; Garg, P.; Sharma, A.; Garg, M.K.; Gopalakrishnan, M. Delayed compression paralysis following an iliopsoas hematoma 30 days after saw-scaled viper (Echis carinatus sochureki) envenoming: A case report. Wilderness & environmental medicine, 2023, 34(3), 366-371.
  82. Pirasath, S.; Athirayan, C.; Gajan, D. Thrombotic microangiopathy following saw-scaled viper (Echis carinatus) envenoming in Sri Lanka. SAGE open medical case reports, 2021, 9, 2050313x211032399.
  83. Woythe, L.; Madhikar, P.; Feiner-Gracia, N.; Storm, C.; Albertazzi, L. A single-molecule view at nanoparticle targeting selectivity: correlating ligand functionality and cell receptor density. ACS Nano, 2022, 16(3), 3785-3796.
  84. Liu, M.; Wang, L.; Lo, Y.; Shiu, S.C.; Kinghorn, A.B.; Tanner, J.A. Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells, 2022, 11(1), 159.
  85. Safarzadeh, K.P.; Rahbarizadeh, F. Flexible aptamer-based nucleolin-targeting cancer treatment modalities: A focus on immunotherapy, radiotherapy, and phototherapy. Trends Med. Sci., 2021, 1(3), e113991.
  86. Ruks, T.; Loza, K.; Heggen, M.; Prymak, O.; Sehnem, A.L.; Oliveira, C.L.P.; Bayer, P.; Beuck, C.; Epple, M. Peptide-conjugated ultrasmall gold nanoparticles (2 nm) for selective protein targeting. ACS Applied Bio Materials, 2021, 4(1), 945-965.
  87. Kozani, P.S.; Kozani, P.S.; Malik, M.T. AS1411-functionalized delivery nanosystems for targeted cancer therapy. Explor. Med., 2021, 2, 146-166.
  88. Rao, D.A.; Forrest, M.L.; Alani, A.W.; Kwon, G.S.; Robinson, J.R. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J. Pharm. Sci., 2010, 99(4), 2018-2031.
  89. Garrastazu Pereira, G.; Lawson, A.J.; Buttini, F.; Sonvico, F. Loco-regional administration of nanomedicines for the treatment of lung cancer. Drug Delivery., 2016, 23(8), 2881-2896.
  90. Mangal, S.; Gao, W.; Li, T.; Zhou, Q.T. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacologica Sinica, 2017, 38(6), 782-797.
  91. Terracciano, R.; Carcamo-Bahena, Y.; Royal, A.L.R.; Messina, L.; Delk, J.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Wang, Z.; Cristini, V.; Dogra, P.; Filgueira, C.S. Zonal intratumoral delivery of nanoparticles guided by surface functionalization. Langmuir, 2022, 38(45), 13983-13994.
  92. Terracciano, R.; Carcamo-Bahena, Y.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Filgueira, C.S. Hyaluronate-thiol passivation enhances gold nanoparticle peritumoral distribution when administered intratumorally in lung cancer. Biomedicines, 2021, 9(11), 1561.
  93. Yu, T.; Lin, Y.; Jin, A.; Zhang, P.; Zhou, X.; Fang, M.; Liu, X. Safety and efficiency of low dose intra-arterial tirofiban in mechanical thrombectomy during acute ischemic stroke. Curr. Neurovas. Res., 2018, 15(2), 145-150.
  94. Sarkees, M. L.; Bavry, A.A. Non ST-elevation acute coronary syndrome. BMJ. Clin. Evid., 2010, 2010, 0209.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024