Design, Synthesis, In vitro and In vivo Evaluation of New Imidazo[1,2-a]pyridine Derivatives as Cyclooxygenase-2 Inhibitors


Cite item

Full Text

Abstract

Background:Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases.

Objectives:The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits.

Methods:Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities.

Results:The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC50 values of 0.13 to 0.05 µM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC50 value of 0.05 µM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. In vivo analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED50 value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90.

Conclusion:The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.

About the authors

Nahid Ahmadi

Department of Pharmaceutical Chemistry, School of Pharmacy,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Mona Khoramjouy

Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Mahsa Azami Movahed

Department of Pharmaceutical Chemistry, School of Pharmacy,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Salimeh Amidi

Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Mehrdad Faizi

Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Afshin Zarghi

Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Montinari, M.R.; Minelli, S.; De Caterina, R. The first 3500 years of aspirin history from its roots - A concise summary. Vascul. Pharmacol., 2019, 113, 1-8. doi: 10.1016/j.vph.2018.10.008 PMID: 30391545
  2. Desborough, M.J.R.; Keeling, D.M. The aspirin story – From willow to wonder drug. Br. J. Haematol., 2017, 177(5), 674-683. doi: 10.1111/bjh.14520 PMID: 28106908
  3. Sneader, W. The discovery of aspirin: A reappraisal. BMJ, 2000, 321(7276), 1591-1594. doi: 10.1136/bmj.321.7276.1591 PMID: 11124191
  4. Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 1971, 231(25), 232-235. doi: 10.1038/newbio231232a0 PMID: 5284360
  5. Smith, J.B.; Willis, A.L. Aspirin selectively inhibits prostaglandin production in human platelets. Nat. New Biol., 1971, 231(25), 235-237. doi: 10.1038/newbio231235a0 PMID: 5284361
  6. Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009, 50, S29-S34. doi: 10.1194/jlr.R800042-JLR200
  7. Brian, J.E., Jr; Moore, S.A.; Faraci, F.M. Expression and vascular effects of cyclooxygenase-2 in brain. Stroke, 1998, 29(12), 2600-2606. doi: 10.1161/01.STR.29.12.2600 PMID: 9836773
  8. Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441. doi: 10.1021/jm0613166 PMID: 17341061
  9. Kurumbail, R.; Kiefer, J.R.; Marnett, L.J. Cyclooxygenase enzymes: Catalysis and inhibition. Curr. Opin. Struct. Biol., 2001, 11(6), 752-760. doi: 10.1016/S0959-440X(01)00277-9 PMID: 11751058
  10. Simon, L.S. Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med., 1999, 106(5), 37S-42S. doi: 10.1016/S0002-9343(99)00115-1 PMID: 10390126
  11. Masferrer, J.L.; Zweifel, B.S.; Manning, P.T.; Hauser, S.D.; Leahy, K.M.; Smith, W.G.; Isakson, P.C.; Seibert, K. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci., 1994, 91(8), 3228-3232. doi: 10.1073/pnas.91.8.3228 PMID: 8159730
  12. Catella-Lawson, F.; Reilly, M.P.; Kapoor, S.C.; Cucchiara, A.J.; DeMarco, S.; Tournier, B.; Vyas, S.N.; FitzGerald, G.A. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N. Engl. J. Med., 2001, 345(25), 1809-1817. doi: 10.1056/NEJMoa003199 PMID: 11752357
  13. Patrono, C. Cardiovascular effects of cyclooxygenase‐2 inhibitors: A mechanistic and clinical perspective. Br. J. Clin. Pharmacol., 2016, 82(4), 957-964. doi: 10.1111/bcp.13048 PMID: 27317138
  14. Jüni, P.; Nartey, L.; Reichenbach, S.; Sterchi, R.; Dieppe, P.A.; Egger, M. Risk of cardiovascular events and rofecoxib: Cumulative meta-analysis. Lancet, 2004, 364(9450), 2021-2029. doi: 10.1016/S0140-6736(04)17514-4 PMID: 15582059
  15. Davies, N.M.; Jamali, F. COX-2 selective inhibitors cardiac toxicity: Getting to the heart of the matter. J. Pharm. Pharm. Sci., 2004, 7(3), 332-336. PMID: 15576013
  16. Turini, M.E.; DuBois, R.N. Cyclooxygenase-2: A therapeutic target. Annu. Rev. Med., 2002, 53(1), 35-57. doi: 10.1146/annurev.med.53.082901.103952 PMID: 11818462
  17. Teismann, P. COX‐2 in the neurodegenerative process of Parkinson’s disease. Biofactors, 2012, 38(6), 395-397. doi: 10.1002/biof.1035 PMID: 22826171
  18. O’Banion, M.K. COX-2 and Alzheimer’s disease: Potential roles in inflammation and neurodegeneration. Expert Opin. Investig. Drugs, 1999, 8(10), 1521-1536. doi: 10.1517/13543784.8.10.1521 PMID: 11139808
  19. Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int., 2015, 15(1), 106. doi: 10.1186/s12935-015-0260-7 PMID: 26549987
  20. Howe, L.R.; Dannenberg, A.J. , Eds.; A role for cyclooxygenase-2 inhibitors in the prevention and treatment of cancer. Seminars in oncology; Elsevier, 2002.
  21. Castellone, M.D.; Teramoto, H.; Williams, B.O.; Druey, K.M.; Gutkind, J.S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 2005, 310(5753), 1504-1510. doi: 10.1126/science.1116221 PMID: 16293724
  22. Singh-Ranger, G.; Salhab, M.; Mokbel, K. The role of cyclooxygenase-2 in breast cancer (Review). Breast Cancer Res. Treat., 2008, 109(2), 189-198. doi: 10.1007/s10549-007-9641-5 PMID: 17624587
  23. Mahboubi Rabbani, S.M.I.; Zarghi, A. Selective COX-2 inhibitors as anticancer agents: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(6), 407-427.
  24. Baghaki, S.; Yalcin, C.E.; Baghaki, H.S.; Aydin, S.Y.; Daghan, B.; Yavuz, E. COX2 inhibition in the treatment of COVID-19: Review of literature to propose repositioning of celecoxib for randomized controlled studies. Int. J. Infect. Dis., 2020, 101, 29-32. doi: 10.1016/j.ijid.2020.09.1466 PMID: 33007455
  25. Hawkey, C.J. COX-2 inhibitors. Lancet, 1999, 353(9149), 307-314. doi: 10.1016/S0140-6736(98)12154-2 PMID: 9929039
  26. Faki, Y.; Er, A. Different chemical structures and physiological/pathological roles of cyclooxygenases. Rambam Maimonides Med. J., 2021, 12(1), e0003. doi: 10.5041/RMMJ.10426 PMID: 33245277
  27. FitzGerald, G.A.; Patrono, C. The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med., 2001, 345(6), 433-442. doi: 10.1056/NEJM200108093450607 PMID: 11496855
  28. Méric, J.B.; Rottey, S.; Olaussen, K.; Soria, J.C.; Khayat, D.; Rixe, O.; Spano, J.P. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol., 2006, 59(1), 51-64. doi: 10.1016/j.critrevonc.2006.01.003 PMID: 16531064
  29. Chahal, S.; Rani, P. Kiran; Sindhu, J.; Joshi, G.; Ganesan, A.; Kalyaanamoorthy, S.; Mayank; Kumar, P.; Singh, R.; Negi, A. Design and development of COX-II inhibitors: Current scenario and future perspective. ACS Omega, 2023, 8(20), 17446-17498. doi: 10.1021/acsomega.3c00692 PMID: 37251190
  30. Arefi, H.; Naderi, N.; Shemirani, A.B.I.; Kiani, F.M.; Azami, M.M.; Zarghi, A. Design, synthesis, and biological evaluation of new 1,4‐diarylazetidin‐2‐one derivatives (β‐lactams) as selective cyclooxygenase‐2 inhibitors. Arch. Pharm., 2020, 353(3), 1900293. doi: 10.1002/ardp.201900293 PMID: 31917485
  31. Bayanati, M.; Khoramjouy, M.; Faizi, M.; Movahed, M.A.; Mahboubi-Rabbani, M.; Zarghi, A. Novel Benzo4,5imidazo1,2-apyrimidine derivatives as selective Cyclooxygenase-2 Inhibitors: Design, synthesis, docking studies, and biological evaluation. Med. Chem. Res., 2023, 32(3), 495-505. doi: 10.1007/s00044-023-03022-0 PMID: 36713891
  32. Azami, M.M.; Abbasi, F.K.; Rajabi, M.; Abedi, N.; Naderi, N.; Daraei, B. Design, synthesis, and biological evaluation of new 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo1,2-apyridin-3-amine as selective COX-2 inhibitors. Med. Chem. Res., 2023.
  33. Soltani, S.; Abolhasani, H.; Zarghi, A.; Jouyban, A. QSAR analysis of diaryl COX-2 inhibitors: Comparison of feature selection and train-test data selection methods. Eur. J. Med. Chem., 2010, 45(7), 2753-2760. doi: 10.1016/j.ejmech.2010.02.055 PMID: 20332057
  34. Abolhasani, H.; Zarghi, A.; Komeili, M.T.; Abolhasani, A.; Daraei, B.; Dastmalchi, S. Design, synthesis and biological evaluation of novel indanone containing spiroisoxazoline derivatives with selective COX-2 inhibition as anticancer agents. Bioorg. Med. Chem., 2021, 32, 115960. doi: 10.1016/j.bmc.2020.115960 PMID: 33477020
  35. Farzaneh, S.; Shahhosseini, S.; Arefi, H.; Daraei, B.; Esfahanizadeh, M.; Zarghi, A. Design, synthesis and biological evaluation of new 1,3-diphenyl-3- (phenylamino)propan-1-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem., 2018, 14(7), 652-659. doi: 10.2174/1573406414666180525133221 PMID: 29804536
  36. Zarghi, A.; Kakhki, S. Design, synthesis, and biological evaluation of new 2-phenyl-4H-chromen-4-one derivatives as selective cyclooxygenase-2 inhibitors. Sci. Pharm., 2015, 83(1), 15-26. doi: 10.3797/scipharm.1407-20 PMID: 26839798
  37. Zarghi, A.; Ghodsi, R. Design, synthesis, and biological evaluation of ketoprofen analogs as potent cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5855-5860. doi: 10.1016/j.bmc.2010.06.094 PMID: 20650641
  38. Elie, J.; Vercouillie, J.; Arlicot, N.; Lemaire, L.; Bidault, R.; Bodard, S.; Hosselet, C.; Deloye, J.B.; Chalon, S.; Emond, P.; Guilloteau, D.; Buron, F.; Routier, S. Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a 18 F PET tracer. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1-7. doi: 10.1080/14756366.2018.1501043 PMID: 30362376
  39. Bekheit, M.S.; Mohamed, H.A.; Abdel-Wahab, B.F.; Fouad, M.A. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors. Med. Chem. Res., 2021, 30(5), 1125-1138. doi: 10.1007/s00044-021-02716-7
  40. Sağlık, B.N.; Osmaniye, D.; Levent, S.; Çevik, U.A.; Çavuşoğlu, B.K.; Özkay, Y.; Kaplancıklı Z.A. Design, synthesis and biological assessment of new selective COX-2 inhibitors including methyl sulfonyl moiety. Eur. J. Med. Chem., 2021, 209, 112918. doi: 10.1016/j.ejmech.2020.112918 PMID: 33071054
  41. Vernieri, E.; Gomez-Monterrey, I.; Milite, C.; Grieco, P.; Musella, S.; Bertamino, A.; Scognamiglio, I.; Alcaro, S.; Artese, A.; Ortuso, F.; Novellino, E.; Sala, M.; Campiglia, P. Design, synthesis, and evaluation of new tripeptides as COX-2 inhibitors. J. Amino Acids, 2013, 2013, 1-7. doi: 10.1155/2013/606282 PMID: 23533709
  42. Uddin, M.J.; Rao, P.N.P.; Knaus, E.E. Design and synthesis of novel celecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: Replacement of the sulfonamide pharmacophore by a sulfonylazide bioisostere. Bioorg. Med. Chem., 2003, 11(23), 5273-5280. doi: 10.1016/j.bmc.2003.07.005 PMID: 14604691
  43. Goel, R.; Luxami, V.; Paul, K. Imidazo 1, 2-a pyridines: Promising drug candidate for antitumor therapy. Curr. Top. Med. Chem., 2016, 16(30), 3590-3616. doi: 10.2174/1568026616666160414122644 PMID: 27086790
  44. Bagdi, A.K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo1,2-apyridines: A decade update. Chem. Commun., 2015, 51(9), 1555-1575. doi: 10.1039/C4CC08495K PMID: 25407981
  45. Gallemi, C.F.; Bono, I-J.M.; Serrat, A.M.F.; Vidal, C.M.; Arnal, C.L.; Guasch, F.G. Substituted imidazo 1, {2a} azines as selective inhibitors of cox-2; Google Patents, 2003.
  46. Azami, M.M.; Daraei, B.; Zarghi, A. Synthesis and biological evaluation of new imidazo 1, 2-a pyridine derivatives as selective cox-2 inhibitors. Lett. Drug Des. Discov., 2016, 13(8), 793-799. doi: 10.2174/1570180813666160613090944
  47. Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662. doi: 10.1002/(SICI)1096-987X(19981115)19:143.0.CO;2-B
  48. Domer, F. Characterization of the analgesic activity of ketorolac in mice. Eur. J. Pharmacol., 1990, 177(3), 127-135. doi: 10.1016/0014-2999(90)90262-5 PMID: 2311674
  49. Ghorbannia-Dellavar, S.; Farimani, M.M.; Pahlevani, A.H.; Khoramjouy, M.; Mosaddegh, M.; Faizi, M. Antinociceptive activity of Iranian Euphorbia species in mice: Preliminary phytochemical analysis of Euphorbia malleata. S. Afr. J. Bot., 2023, 159, 532-543. doi: 10.1016/j.sajb.2023.05.012
  50. Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 1962, 194(4832), 927-929. doi: 10.1038/194927b0 PMID: 13871375
  51. Tang, D.; Guo, X.; Wang, Y.; Wang, J.; Li, J.; Huang, Q.; Chen, B. Metal free, I2-catalyzed 3+1+1 cycloaddition reactions to synthesize 1,2,4-trisubstituted imidazoles. Tetrahedron Lett., 2015, 56(44), 5982-5985. doi: 10.1016/j.tetlet.2015.09.034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers