Turmeric Extract-loaded Selenium Nanoparticles Counter Doxorubicin-induced Hepatotoxicity in Mice via Repressing Oxidative Stress, Inflammatory Cytokines, and Cell Apoptosis


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Doxorubicin (DOX) is an antitumor anthracycline used to treat a variety of malignancies; however, its clinical use is associated with noticeable hepatotoxicity. Therefore, the current study was designed to delineate if biosynthesized SeNPs with turmeric extract (Tur-SeNPs) could alleviate DOX-induced hepatic adverse effects.

Methods:Mice were orally post-treated with Tur extract, Tur-SeNPs, or N-acetyl cysteine after the intraperitoneal injection of DOX.

Results:Our findings have unveiled a remarkable liver attenuating effect in DOX-injected mice post-treated with Tur-SeNPs. High serum levels of ALT, AST, ALP, and total bilirubin induced by DOX were significantly decreased by Tur-SeNPs therapy. Furthermore, Tur-SeNPs counteracted DOX-caused hepatic oxidative stress, indicated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and mRNA expression levels of Nrf-2. Noteworthily, decreased hepatic IL-1β, TNF-α, and NF-κB p65 levels in addition to downregulated iNOS gene expression in Tur-SeNPs-treated mice have indicated their potent antiinflammatory impact. Post-treatment with Tur-SeNPs also mitigated the hepatic apoptosis evoked by DOX injection. A liver histological examination confirmed the biochemical and molecular findings.

Conclusions::In brief, the outcomes have demonstrated Tur loaded with nanoselenium to successfully mitigate the liver damage induced by DOX via blocking oxidative stress, and inflammatory and apoptotic signaling.

Авторлар туралы

Barakat ALRashdi

Department of Biology, College of Science, Jouf University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Mohamed Hussein

Department of Chemistry, Faculty of Science, Helwan University

Email: info@benthamscience.net

Rawan Mohammed

Department of Chemistry, Faculty of Science, Helwan University

Email: info@benthamscience.net

Nada Abdelhamed

Department of Chemistry, Faculty of Science, Helwan University

Email: info@benthamscience.net

Maran Asaad

Department of Chemistry, Faculty of Science, Helwan University

Email: info@benthamscience.net

Mubarak Alruwaili

Department of Internal Medicine, College of Medicine, Jouf University

Email: info@benthamscience.net

Saad Alrashidi

Consultant Radiation Oncology, Comprehensive Cancer Centre, King Fahad Medical City & College of Medicine, Alfaisal University

Email: info@benthamscience.net

Ola Habotta

Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University

Email: info@benthamscience.net

Ahmed Abdel Moneim

Department of Zoology and Entomology, Faculty of Science, Helwan University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Shimaa Ramadan

Department of Chemistry, Faculty of Science, Helwan University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Al-Qahtani, W.H.; Alshammari, G.M.; Ajarem, J.S.; Al-Zahrani, A.Y.; Alzuwaydi, A.; Eid, R.; Yahya, M.A. Isoliquiritigenin prevents Doxorubicin-induced hepatic damage in rats by upregulating and activating SIRT1. Biomed. Pharmacother., 2022, 146, 112594. doi: 10.1016/j.biopha.2021.112594 PMID: 34968927
  2. AlAsmari, A.F.; Alharbi, M.; Alqahtani, F.; Alasmari, F.; AlSwayyed, M.; Alzarea, S.I.; Al-Alallah, I.A.; Alghamdi, A.; Hakami, H.M.; Alyousef, M.K.; Sari, Y.; Ali, N. Diosmin alleviates doxorubicin-induced liver injury via modulation of oxidative stressmediated hepatic inflammation and apoptosis via NfκB and MAPK pathway: A preclinical studY. Antioxidants, 2021, 10(12), 1998. doi: 10.3390/antiox10121998 PMID: 34943101
  3. Song, S.; Chu, L.; Liang, H.; Chen, J.; Liang, J.; Huang, Z.; Zhang, B.; Chen, X. Protective effects of dioscin against doxorubicin-induced hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal. Front. Pharmacol., 2019, 10, 1030. doi: 10.3389/fphar.2019.01030 PMID: 31572199
  4. Akin, A.T.; Öztürk, E.; Kaymak, E.; Karabulut, D.; Yakan, B. Therapeutic effects of thymoquinone in doxorubicin-induced hepatotoxicity via oxidative stress, inflammation and apoptosis. Anat. Histol. Embryol., 2021, 50(6), 908-917. doi: 10.1111/ahe.12735 PMID: 34494664
  5. Saleh, D.O.; Mahmoud, S.S.; Hassan, A.; Sanad, E.F. Doxorubicin-induced hepatic toxicity in rats: Mechanistic protective role of Omega-3 fatty acids through Nrf2/HO-1 activation and PI3K/Akt/GSK-3β axis modulation. Saudi J. Biol. Sci., 2022, 29(7), 103308. doi: 10.1016/j.sjbs.2022.103308 PMID: 35677895
  6. Prša, P.; Karademir, B.; Biçim, G.; Mahmoud, H.; Dahan, I.; Yalçın, A.S.; Mahajna, J.; Milisav, I. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem. Pharmacol., 2020, 173, 113551. doi: 10.1016/j.bcp.2019.06.007 PMID: 31185225
  7. Moezian, G.S.A.; Javadinia, S.A.; Sales, S.S.; Fanipakdel, A.; Elyasi, S.; Karimi, G. Oral silymarin formulation efficacy in management of AC-T protocol induced hepatotoxicity in breast cancer patients: A randomized, triple blind, placebo-controlled clinical trial. J. Oncol. Pharm. Pract., 2022, 28(4), 827-835. PMID: 33861657
  8. Kamble, S.M.; Patil, C.R. Asiatic acid ameliorates doxorubicininduced cardiac and hepato-renal toxicities with Nrf2 transcriptional factor activation in rats. Cardiovasc. Toxicol., 2018, 18(2), 131-141. doi: 10.1007/s12012-017-9424-0 PMID: 28856520
  9. Barakat, B.M.; Ahmed, H.I.; Bahr, H.I.; Elbahaie, A.M. Protective effect of boswellic acids against doxorubicin-induced hepatotoxicity: impact on Nrf2/HO-1 defense pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-10. doi: 10.1155/2018/8296451 PMID: 29541348
  10. Kuzu, M. ; Yıldırım, S.; Kandemir, F.M.; Küçükler, S.; Çağlayan, C.; Türk, E.; Dörtbudak, M.B. Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chem. Biol. Interact., 2019, 308, 89-100. doi: 10.1016/j.cbi.2019.05.017 PMID: 31100273
  11. Ahmed, O.M.; Galaly, S.R.; Mostafa, M.A.M.A.; Eed, E.M.; Ali, T.M.; Fahmy, A.M.; Zaky, M.Y. Thyme oil and thymol counter doxorubicin-induced hepatotoxicity via modulation of inflammation, apoptosis, and oxidative stress. Oxid. Med. Cell. Longev., 2022, 2022, 1-19. doi: 10.1155/2022/6702773 PMID: 35178158
  12. Moghadam, A.R. Tutunchi, S.; Namvaran-Abbas-Abad, A.; Yazdi, M.; Bonyadi, F.; Mohajeri, D.; Mazani, M.; Marzban, H.; Łos, M.J.; Ghavami, S. Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress. BMC Complement. Altern. Med., 2015, 15(1), 246. doi: 10.1186/s12906-015-0773-6 PMID: 26199067
  13. Li, S.; Yuan, W.; Deng, G.; Wang, P.; Yang, P.; Aggarwal, B. Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm. Crop., 2011, 5(1), 28-54. doi: 10.2174/2210290601102010028
  14. Lee, H.Y.; Kim, S.W.; Lee, G.H.; Choi, M.K.; Jung, H.W.; Kim, Y.J.; Kwon, H.J.; Chae, H.J. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation. BMC Complement. Altern. Med., 2016, 16(1), 316. doi: 10.1186/s12906-016-1307-6 PMID: 27561811
  15. Hossen, M.S.; Tanvir, E.M.; Prince, M.B.; Paul, S.; Saha, M.; Ali, M.Y.; Gan, S.H.; Khalil, M.I.; Karim, N. Protective mechanism of turmeric (Curcuma longa) on carbofuran-induced hematological and hepatic toxicities in a rat model. Pharm. Biol., 2017, 55(1), 1937-1945. doi: 10.1080/13880209.2017.1345951 PMID: 28675957
  16. El-Mansy, AA; Mazroa, SA; Hamed, WS; Yaseen, AH; El-Mohandes, EA Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity. Biotech Histochem, 2016, 91(3), 170-181. doi: 10.3109/10520295.2015.1116048
  17. Alhusaini, A.M.; Faddah, L.M.; Hasan, I.H.; Jarallah, S.J.; Alghamdi, S.H.; Alhadab, N.M.; Badr, A.; Elorabi, N.; Zakaria, E.; Al-anazi, A. Vitamin C and turmeric attenuate bax and Bcl-2 proteins’ expressions and DNA damage in lead acetate-induced liver injury. Dose Response, 2019, 17(4) doi: 10.1177/1559325819885782 PMID: 31798354
  18. Zarei, M.; Acharya, P.; Talahalli, R.R. Ginger and turmeric lipid-solubles attenuate heated oil-induced cardio-hepatic oxidative stress via the up-regulation of nuclear factor erythroid 2-related factor 2 and decrease blood pressure in rats. Br. J. Nutr., 2021, 126(2), 199-207. doi: 10.1017/S0007114520003967 PMID: 33028437
  19. Uchio, R.; Higashi, Y.; Kohama, Y.; Kawasaki, K.; Hirao, T.; Muroyama, K.; Murosaki, S. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production. J. Nutr. Sci., 2017, 6, e3. doi: 10.1017/jns.2016.43 PMID: 28620478
  20. Yuan, X.; Fu, Z.; Ji, P.; Guo, L.; Al-Ghamdy, A.O.; Alkandiri, A.; Habotta, O.A.; Abdel Moneim, A.E.; Kassab, R.B. Selenium nanoparticles pre-treatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazole-induced epileptic seizures in mice. Int. J. Nanomedicine, 2020, 15, 6339-6353. doi: 10.2147/IJN.S259134 PMID: 32922005
  21. Al-Brakati, A.; Alsharif, K.F.; Alzahrani, K.J.; Kabrah, S.; Al-Amer, O.; Oyouni, A.A.; Habotta, O.A.; Lokman, M.S.; Bauomy, A.A.; Kassab, R.B.; Abdel Moneim, A.E. Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. Int. J. Nanomedicine, 2021, 16, 4335-4349. doi: 10.2147/IJN.S306186 PMID: 34234429
  22. Kassab, R.B.; Elbaz, M.; Oyouni, A.A.A.; Mufti, A.H.; Theyab, A.; Al-Brakati, A.; Mohamed, H.A.; Hebishy, A.M.S.; Elmallah, M.I.Y.; Abdelfattah, M.S.; Abdel Moneim, A.E. Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid–induced colitis in rats. Environ. Sci. Pollut. Res. Int., 2022, 29(37), 55790-55802. doi: 10.1007/s11356-022-19747-1 PMID: 35320477
  23. Bai, K.; Hong, B.; He, J.; Huang, W. Antioxidant capacity and hepatoprotective role of chitosan-stabilized selenium nanoparticles in concanavalin a-induced liver injury in mice. Nutrients, 2020, 12(3), 857. doi: 10.3390/nu12030857 PMID: 32210138
  24. Khan, M.A.; Singh, D.; Arif, A.; Sodhi, K.K.; Singh, D.K.; Islam, S.N.; Ahmad, A.; Akhtar, K.; Siddique, H.R. Protective effect of green synthesized Selenium Nanoparticles against Doxorubicin induced multiple adverse effects in Swiss albino mice. Life Sci., 2022, 305, 120792. doi: 10.1016/j.lfs.2022.120792 PMID: 35817167
  25. Mohamed, A.A.R.; Khater, S.I.; Hamed Arisha, A.; Metwally, M.M.M.; Mostafa-Hedeab, G.; El-Shetry, E.S. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene, 2021, 768, 145288. doi: 10.1016/j.gene.2020.145288 PMID: 33181259
  26. Ahmed, Z.S.O.; Galal, M.K.; Drweesh, E.A.; Abou-El-Sherbini, K.S.; Elzahany, E.A.M.; Elnagar, M.M.; Yasin, N.A.E. Protective effect of starch-stabilized selenium nanoparticles against melamine-induced hepato-renal toxicity in male albino rats. Int. J. Biol. Macromol., 2021, 191, 792-802. doi: 10.1016/j.ijbiomac.2021.09.156 PMID: 34597692
  27. Serairi Beji, R.; Ben Mansour, R.; Bettaieb, R. I.; Aidi Wannes, W.; Jameleddine, S.; Hammami, M.; Megdiche, W.; Ksouri, R. Does Curcuma longa root powder have an effect against CCl4-induced hepatotoxicity in rats: A protective and curative approach. Food Sci. Biotechnol., 2019, 28(1), 181-189. doi: 10.1007/s10068-018-0449-3 PMID: 30815309
  28. Elshopakey, G.E.; Almeer, R.; Alfaraj, S.; Albasher, G.; Abdelgawad, M.E.; Abdel Moneim, A.E.; Essawy, E.A. Zingerone mitigates inflammation, apoptosis and oxidative injuries associated with renal impairment in adriamycin-intoxicated mice. Toxin Rev., 2022, 41(3), 731-742. doi: 10.1080/15569543.2021.1923528
  29. AlBasher, G.; Alfarraj, S.; Alarifi, S.; Alkhtani, S.; Almeer, R.; Alsultan, N.; Alharthi, M.; Alotibi, N.; Al-dbass, A.; Abdel Moneim, A.E. Nephroprotective role of selenium nanoparticles against glycerol-induced acute kidney injury in rats. Biol. Trace Elem. Res., 2020, 194(2), 444-454. doi: 10.1007/s12011-019-01793-5 PMID: 31264127
  30. Al-Quraishy, S.; Dkhil, M.A.; Abdel-Gaber, R.; Zrieq, R.; Hafez, T.A.; Mubaraki, M.A.; Abdel Moneim, A.E. Myristica fragrans seed extract reverses scopolamine-induced cortical injury via stimulation of HO-1 expression in male rats. Environ. Sci. Pollut. Res. Int., 2020, 27(11), 12395-12404. doi: 10.1007/s11356-020-07686-8 PMID: 31993909
  31. Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63. doi: 10.1093/ajcp/28.1.56 PMID: 13458125
  32. Belfield, A.; Goldberg, D.M. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme, 1971, 12(5), 561-573. doi: 10.1159/000459586 PMID: 5169852
  33. Walter, M.; Gerade, H. Colourimetric method for estimation of total bilirubin. Microchem. J., 1970, 15, 231.
  34. Yagi, K. Simple assay for the level of total lipid peroxides in serum or plasma. In: Free radical and antioxidant protocols; Springer, 1998; pp. 101-106.
  35. Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and 15Nnitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138. doi: 10.1016/0003-2697(82)90118-X PMID: 7181105
  36. Akerboom, T.P.; Sies, H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods in enzymology; Elsevier, 1981, pp. 373-382.
  37. Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126. doi: 10.1016/S0076-6879(84)05016-3 PMID: 6727660
  38. Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 1972, 247(10), 3170-3175. doi: 10.1016/S0021-9258(19)45228-9 PMID: 4623845
  39. Pinto, M.C.; Mata, A.M.; Lopez-barea, J. Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch. Biochem. Biophys., 1984, 228(1), 1-12. doi: 10.1016/0003-9861(84)90040-7 PMID: 6364985
  40. Tappel, A. Glutathione peroxidase and hydroperoxides. In: Methods in enzymology; Elsevier, 1978; pp. 506-513.
  41. Amalraj, A.; Pius, A.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med., 2017, 7(2), 205-233. doi: 10.1016/j.jtcme.2016.05.005 PMID: 28417091
  42. Dkhil, M.; Zrieq, R.; Al-Quraishy, S.; Abdel Moneim, A. Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin-induced diabetic rats. Molecules, 2016, 21(11), 1517. doi: 10.3390/molecules21111517 PMID: 27869771
  43. Mohanty, C.; Das, M.; Sahoo, S.K. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv., 2012, 9(11), 1347-1364. doi: 10.1517/17425247.2012.724676 PMID: 22971222
  44. Krishnan, V.; Loganathan, C.; Thayumanavan, P. Green synthesized selenium nanoparticles using Spermacoce hispida as carrier of s-allyl glutathione: To accomplish hepatoprotective and nephroprotective activity against acetaminophen toxicity. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 56-63. doi: 10.1080/21691401.2018.1543192 PMID: 30669860
  45. Kim, S.W.; Ha, K.C.; Choi, E.K.; Jung, S.Y.; Kim, M.G.; Kwon, D.Y.; Yang, H.J.; Kim, M.J.; Kang, H.J.; Back, H.I.; Kim, S.Y.; Park, S.H.; Baek, H.Y.; Kim, Y.J.; Lee, J.Y.; Chae, S.W. The effectiveness of fermented turmeric powder in subjects with elevated alanine transaminase levels: a randomised controlled study. BMC Complement. Altern. Med., 2013, 13(1), 58. doi: 10.1186/1472-6882-13-58 PMID: 23497020
  46. Al-Kahtani, M.; Morsy, K. Ameliorative effect of selenium nanoparticles against aluminum chloride-induced hepatorenal toxicity in rats. Environ. Sci. Pollut. Res. Int., 2019, 26(31), 32189-32197. doi: 10.1007/s11356-019-06417-y PMID: 31494850
  47. Amin, K.A.; Hashem, K.S.; Alshehri, F.S.; Awad, S.T.; Hassan, M.S. Antioxidant and hepatoprotective efficiency of selenium nanoparticles against acetaminophen-induced hepatic damage. Biol. Trace Elem. Res., 2017, 175(1), 136-145. doi: 10.1007/s12011-016-0748-6 PMID: 27220627
  48. Ahmed, O.M.; Elkomy, M.H.; Fahim, H.I.; Ashour, M.B.; Naguib, I.A.; Alghamdi, B.S.; Mahmoud, H.U.R.; Ahmed, N.A. Rutin and quercetin counter doxorubicin-induced liver toxicity in wistar rats via their modulatory effects on inflammation, oxidative stress, apoptosis, and Nrf2. Oxid. Med. Cell. Longev., 2022, 2022, 1-19. doi: 10.1155/2022/2710607 PMID: 35936216
  49. Kassab, R.B.; Lokman, M.S.; Daabo, H.M.A.; Gaber, D.A.; Habotta, O.A.; Hafez, M.M.; Zhery, A.S.; Moneim, A.E.A.; Fouda, M.S. Ferulic acid influences Nrf2 activation to restore testicular tissue from cadmium-induced oxidative challenge, inflammation, and apoptosis in rats. J. Food Biochem., 2020, 44(12), e13505. doi: 10.1111/jfbc.13505 PMID: 33047361
  50. Kassab, R.B.; Theyab, A.; Al-Ghamdy, A.O.; Algahtani, M.; Mufti, A.H.; Alsharif, K.F.; Abdella, E.M.; Habotta, O.A.; Omran, M.M.; Lokman, M.S.; Bauomy, A.A.; Albrakati, A.; Baty, R.S.; Hassan, K.E.; Alshiekheid, M.A.; Abdel Moneim, A.E.; Elmasry, H.A. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. Environ. Sci. Pollut. Res. Int., 2022, 29(8), 12208-12221. doi: 10.1007/s11356-021-16578-4 PMID: 34562213
  51. Lokman, M.S.; Zaafar, D.; Althagafi, H.A.; Abdel Daim, M.M.; Theyab, A.; Hasan Mufti, A.; Algahtani, M.; Habotta, O.A.; Alghamdi, A.A.A.; Alsharif, K.F.; Albrakati, A.; Oyouni, A.A.A.; Bauomy, A.A.; Baty, R.S.; Zhery, A.S.; Hassan, K.E.; Abdel Moneim, A.E.; Kassab, R.B. Antiulcer activity of proanthocyanidins is mediated via suppression of oxidative, inflammatory, and apoptotic machineries. J. Food Biochem., 2022, 46(2), e14070. doi: 10.1111/jfbc.14070 PMID: 35034361
  52. Habotta, O.A.; Dawood, M.A.O.; Kari, Z.A.; Tapingkae, W.; Van Doan, H. Antioxidative and immunostimulant potential of fruit derived biomolecules in aquaculture. Fish Shellfish Immunol., 2022, 130, 317-322. doi: 10.1016/j.fsi.2022.09.029 PMID: 36122634
  53. Adeyemi, DO; Awoniran, PO Curcuma longa extracts suppress pathophysiology of experimental hepatic parenchymal cell necrosis. Pathophysiology, 2019, 26(2), 153-162. doi: 10.1016/j.pathophys.2019.04.002
  54. Lokman, MS; Althagafi, HA; Alharthi, F; Habotta, OA; Hassan, AA; Elhefny, MA Protective effect of quercetin against 5-fluorouracil-induced cardiac impairments through activating Nrf2 and inhibiting NF-κB and caspase-3 activities. Environ. Sci. Pollut. Res. Int., 2022, 30(7), 17657-17669. doi: 10.1007/s11356-022-23314-z
  55. El-Khadragy, M.F.; AL-Megrin, W.A.; Alomar, S.; Alkhuriji, A.F.; Metwally, D.M.; Mahgoub, S.; Amin, H.K.; Habotta, O.A.; Abdel Moneim, A.E.; Albeltagy, R.S. Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chem. Biol. Interact., 2021, 333, 109333. doi: 10.1016/j.cbi.2020.109333 PMID: 33242462
  56. Xu, C.; Qiao, L.; Ma, L.; Guo, Y.; Dou, X.; Yan, S.; Zhang, B.; Román, A. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. Int. J. Nanomedicine, 2019, 14, 4491-4502. doi: 10.2147/IJN.S199193 PMID: 31417254
  57. Bagchi, A.K.; Malik, A.; Akolkar, G.; Jassal, D.S.; Singal, P.K. Endoplasmic reticulum stress promotes iNOS/NO and influences inflammation in the development of doxorubicin-induced cardiomyopathy. Antioxidants, 2021, 10(12), 1897. doi: 10.3390/antiox10121897 PMID: 34943000
  58. Geng, S.; Wang, S.; Zhu, W.; Xie, C.; Li, X.; Wu, J.; Zhu, J.; Jiang, Y.; Yang, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; Zhong, C. Curcumin suppresses JNK pathway to attenuate BPA-induced insulin resistance in LO2 cells. Biomed. Pharmacother., 2018, 97, 1538-1543. doi: 10.1016/j.biopha.2017.11.069 PMID: 29793316
  59. Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28(8), 1765-1773. doi: 10.1093/carcin/bgm123 PMID: 17522064
  60. Zarei, M.; Acharya, P.; Talahalli, R.R. Ginger and turmeric lipidsolubles attenuate heated oil-induced hepatic inflammation via the downregulation of NF-κB in rats. Life Sci., 2021, 265, 118856. doi: 10.1016/j.lfs.2020.118856 PMID: 33278395
  61. Lee, H.Y.; Lee, G.H.; Hoang, T.H.; Kim, S.W.; Kang, C.G.; Jo, J.H.; Chung, M.J.; Min, K.; Chae, H.J. Turmeric extract (Curcuma longa L.) regulates hepatic toxicity in a single ethanol binge rat model. Heliyon, 2022, 8(9), e10737. doi: 10.1016/j.heliyon.2022.e10737 PMID: 36193527
  62. Alhusaini, A.; Fadda, L.; Hasan, I.H.; Zakaria, E.; Alenazi, A.M.; Mahmoud, A.M. Curcumin ameliorates lead-induced hepatotoxicity by suppressing oxidative stress and inflammation, and modulating Akt/GSK-3β signaling pathway. Biomolecules, 2019, 9(11), 703. doi: 10.3390/biom9110703 PMID: 31694300
  63. Ge, J.; Guo, K.; Zhang, C.; Talukder, M.; Lv, M.W.; Li, J.Y.; Li, J.L. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. Sci. Total Environ., 2021, 773, 145442. doi: 10.1016/j.scitotenv.2021.145442 PMID: 33940727
  64. Song, X.; Qiao, L.; Yan, S.; Chen, Y.; Dou, X.; Xu, C. Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food Funct., 2021, 12(14), 6403-6415. doi: 10.1039/D1FO01019K PMID: 34057171
  65. Zhu, C.; Zhang, S.; Song, C.; Zhang, Y.; Ling, Q.; Hoffmann, P.R.; Li, J.; Chen, T.; Zheng, W.; Huang, Z. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J. Nanobiotechnology, 2017, 15(1), 20. doi: 10.1186/s12951-017-0252-y PMID: 28270147
  66. Wang, Z.H.; Chen, B.H.; Lin, Y.Y.; Xing, J.; Wei, Z.L.; Ren, L. Herbal decoction of Gastrodia, Uncaria, and Curcuma confers neuroprotection against cerebral ischemia in vitro and in vivo. J. Integr. Neurosci., 2020, 19(3), 513-519. doi: 10.31083/j.jin.2020.03.002 PMID: 33070532
  67. Wu, X.; Huang, L.; Zhou, X.; Liu, J. Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice. Biochem. Biophys. Res. Commun., 2020, 530(1), 15-21. doi: 10.1016/j.bbrc.2020.05.053 PMID: 32828278
  68. Alsharif, KF; Albrakati, A; Al Omairi, NE; Almalki, AS; Alsanie, WF; Elmageed, ZYA Therapeutic antischizophrenic activity of prodigiosin and selenium co-supplementation against amphetamine hydrochloride-induced behavioural changes and oxidative, inflammatory, and apoptotic challenges in rats. Environ. Sci. Pollut. Res. Int., 2022, 30(3), 7987-8001. doi: 10.21203/rs.3.rs-1732868/v1

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024