Cryptolepine Analog Exhibits Antitumor Activity against Ehrlich Ascites Carcinoma Cells in Mice via Targeting Cell Growth, Oxidative Stress, and PTEN/Akt/mTOR Signaling Pathway


如何引用文章

全文:

详细

Background:The efficacy of chemotherapy continues to be limited due to associated toxicity and chemoresistance. Thus, synthesizing and investigating novel agents for cancer treatment that could potentially eliminate such limitations is imperative.

Objective:The current study aims to explore the anticancer potency of cryptolepine (CPE) analog on Ehrlich ascites carcinoma cells (EACs) in mice.

Methods:The effect of a CPE analog on EAC cell viability and ascites volume, as well as malonaldehyde, total antioxidant capacity, and catalase, were estimated. The concentration of caspase-8 and mTOR in EACs was also measured, and the expression levels of PTEN and Akt were determined.

Results:Results revealed that CPE analog exerts a cytotoxic effect on EAC cell viability and reduces the ascites volume. Moreover, this analog induces oxidative stress in EACs by increasing the level of malonaldehyde and decreasing the level of total antioxidant capacity and catalase activity. It also induces apoptosis by elevating the concentration of caspase-8 in EACs. Furthermore, it decreases the concentration of mTOR in EACs. Moreover, it upregulates the expression of PTEN and downregulates the expression of Akt in EACs.

Conclusion:Our findings showed the anticancer activity of CPE analog against EACs in mice mediated by regulation of the PTEN/Akt/mTOR signaling pathway.

作者简介

Bishoy El-Aarag

Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Eman Shalaan

Biochemistry Division, Department of Chemistry, Faculty of Science, Menoufia University,

Email: info@benthamscience.net

Abdullah Ahmed

Department of Chemistry, Faculty of Science, Menoufia University

Email: info@benthamscience.net

Ibrahim El Sayed

Department of Chemistry, Faculty of Science, Menoufia University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Wafaa Ibrahim

Department of Medical Biochemistry, Faculty of Medicine, Tanta University

Email: info@benthamscience.net

参考

  1. Zhou, L.; Li, M.; Chai, Z.; Zhang, J.; Cao, K.; Deng, L.; Liu, Y.; Jiao, C.; Zou, G-M.; Wu, J.; Han, F. Anticancer effects and mechanisms of astragaloside-IV (Review). Oncol. Rep., 2023, 49(1), 1-15. PMID: 36367181
  2. Osafo, N.; Mensah, K. B.; Yeboah, O. K. Phytochemical and pharmacological review of Cryptolepis sanguinolenta (Lindl.) Schlechter. Adv. Pharmacol. Sci., 2017, 2017.
  3. Olajide, O.A.; Ajayi, A.M.; Wright, C.W. Anti-inflammatory properties of cryptolepine. Phytother. Res., 2009, 23(10), 1421-1425. doi: 10.1002/ptr.2794 PMID: 19288476
  4. Olajide, O.A.; Bhatia, H.S.; de Oliveira, A.C.P.; Wright, C.W.; Fiebich, B.L. Anti-neuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: Possible involvement of NF-κB and p38 MAPK inhibition. Eur. J. Med. Chem., 2013, 63, 333-339. doi: 10.1016/j.ejmech.2013.02.004 PMID: 23507189
  5. Bugyei, K.A.; Boye, G.L.; Addy, M.E. Clinical efficacy of a teabag formulation of Cryptolepis sanguinolenta root in the treatment of acute uncomplicated falciparum malaria. Ghana Med. J., 2010, 44(1), 3-9. PMID: 21326984
  6. Tudu, C.K.; Bandyopadhyay, A.; Kumar, M.; Radha,; Das, T.; Nandy, S.; Ghorai, M.; Gopalakrishnan, A.V.; Proćków, J.; Dey, A. Unravelling the pharmacological properties of cryptolepine and its derivatives: A mini-review insight. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(2), 229-238. doi: 10.1007/s00210-022-02302-7 PMID: 36251044
  7. Pal, H.; Katiyar, S. Cryptolepine, a plant alkaloid, inhibits the growth of non-melanoma skin cancer cells through inhibition of topoisomerase and induction of DNA damage. Molecules, 2016, 21(12), 1758. doi: 10.3390/molecules21121758 PMID: 28009843
  8. Pal, H.C.; Prasad, R.; Katiyar, S.K. Cryptolepine inhibits melanoma cell growth through coordinated changes in mitochondrial biogenesis, dynamics and metabolic tumor suppressor AMPKα1/2-LKB1. Sci. Rep., 2017, 7(1), 1498. doi: 10.1038/s41598-017-01659-7 PMID: 28473727
  9. Zhu, H.; Gooderham, N.J. Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells. Toxicol. Sci., 2006, 91(1), 132-139. doi: 10.1093/toxsci/kfj146 PMID: 16510557
  10. Lisgarten, J.N.; Coll, M.; Portugal, J.; Wright, C.W.; Aymami, J. The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites. Nat. Struct. Biol., 2002, 9(1), 57-60. doi: 10.1038/nsb729 PMID: 11731803
  11. (a) Nagy, E.T.; Ahmed, A.A.S.; Elmongy, E.I. ; EL-Gendy, S.M.; Elmadbouh, I.; El Sayed, I.E.T.; Abd Eldaim, M.A.; El-Gokha, A.A. Design and cytotoxic evaluation via apoptotic and antiproliferative activity for novel 11(4-aminophenylamino)neocryptolepine on hepatocellular and colorectal cancer cells. Apoptosis, 2023, 28(3-4), 653-668. 653-668. doi: 10.1007/s10495-023-01810-y PMID: 36719468; (b) Wang, N.; Świtalska, M.; Wang, L.; Shaban, E.; Hossain, M.I.; El Sayed, I.E.T.; Wietrzyk, J.; Inokuchi, T. Structural modifications of nature-inspired indoloquinolines: A mini review of their potential antiproliferative activity. Molecules, 2019, 24(11), 2121. doi: 10.3390/molecules24112121 PMID: 31195640; (c) Lu, W.J.; Świtalska, M.; Wang, L.; Yonezawa, M.; El-Sayed, I.E.T.; Wietrzyk, J.; Inokuchi, T. In vitro antiproliferative activity of 11-aminoalkylamino-substituted 5H-indolo2,3-bquinolines; improving activity of neocryptolepines by installation of ester substituent. Med. Chem. Res., 2013, 22(9), 4492-4504. doi: 10.1007/s00044-012-0443-x; (d) Sebeka, A.H.; Osman, A.M.; El Sayed, I.E.; El-Bahanasawy, M.; Tantawy, M.A. Synthesis and antiproliferative activity of novel neocryptolepine-hydrazides hybrids. J. Appl. Pharm. Sci., 2017, 7, 9-15.
  12. Beck, J.T.; Ismail, A.; Tolomeo, C. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: An emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat. Rev., 2014, 40(8), 980-989. doi: 10.1016/j.ctrv.2014.06.006 PMID: 25037117
  13. Szwed, A.; Kim, E.; Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev., 2021, 101(3), 1371-1426. doi: 10.1152/physrev.00026.2020 PMID: 33599151
  14. Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci., 2020, 10(1), 31. doi: 10.1186/s13578-020-00396-1 PMID: 32175074
  15. Mafi, S.; Mansoori, B.; Taeb, S.; Sadeghi, H.; Abbasi, R.; Cho, W.C.; Rostamzadeh, D. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment. Front. Immunol., 2022, 12, 774103. doi: 10.3389/fimmu.2021.774103 PMID: 35250965
  16. Hua, H.; Zhang, H.; Chen, J.; Wang, J.; Liu, J.; Jiang, Y. Targeting Akt in cancer for precision therapy. J. Hematol. Oncol., 2021, 14(1), 128. doi: 10.1186/s13045-021-01137-8 PMID: 34419139
  17. He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther., 2021, 6(1), 425. doi: 10.1038/s41392-021-00828-5 PMID: 34916492
  18. Raith, F.; O’Donovan, D.H.; Lemos, C.; Politz, O.; Haendler, B. Addressing the reciprocal crosstalk between the AR and the PI3K/AKT/mTOR Signaling pathways for prostate cancer treatment. Int. J. Mol. Sci., 2023, 24(3), 2289. doi: 10.3390/ijms24032289 PMID: 36768610
  19. He, T.; Zhang, X.; Hao, J.; Ding, S. Phosphatase and tensin homolog in non-neoplastic digestive disease: More than just tumor suppressor. Front. Physiol., 2021, 12, 684529. doi: 10.3389/fphys.2021.684529 PMID: 34140896
  20. Koita, M.; Sosse, S.A.; Abumsimir, B.; Mahasneh, I.A.; Mrabti, M.; Laraqui, A.; Ennaji, M.M. Dramatic impact of partial loss of PTEN function on tumorigenesis and progression of prostate cancer. In: Immunological Implications and Molecular Diagnostics of Genitourinary Cancer; Academic Press, 2023; p. 339. doi: 10.1016/B978-0-323-85496-2.00015-4
  21. Tummers, B.; Green, D.R. Caspase‐8: Regulating life and death. Immunol. Rev., 2017, 277(1), 76-89. doi: 10.1111/imr.12541 PMID: 28462525
  22. Fianco, G.; Contadini, C.; Ferri, A.; Cirotti, C.; Stagni, V.; Barilà, D. Caspase-8: A novel target to overcome resistance to chemotherapy in glioblastoma. Int. J. Mol. Sci., 2018, 19(12), 3798. doi: 10.3390/ijms19123798 PMID: 30501030
  23. Guirgis, A.A.; Zahran, M.A.H.; Mohamed, A.S.; Talaat, R.M.; Abdou, B.Y.; Agwa, H.S. Effect of thalidomide dithiocarbamate analogs on the intercellular adhesion molecule-1 expression. Int. Immunopharmacol., 2010, 10(7), 806-811. doi: 10.1016/j.intimp.2010.04.023 PMID: 20438868
  24. El-Aarag, B.Y.A.; Kasai, T.; Zahran, M.A.H.; Zakhary, N.I.; Shigehiro, T.; Sekhar, S.C.; Agwa, H.S.; Mizutani, A.; Murakami, H.; Kakuta, H.; Seno, M. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int. Immunopharmacol., 2014, 21(2), 283-292. doi: 10.1016/j.intimp.2014.05.007 PMID: 24859059
  25. El-Aarag, B.; Kasai, T.; Masuda, J.; Agwa, H.; Zahran, M.; Seno, M. Anticancer effects of novel thalidomide analogs in A549 cells through inhibition of vascular endothelial growth factor and matrix metalloproteinase-2. Biomed. Pharmacother., 2017, 85, 549-555. doi: 10.1016/j.biopha.2016.11.063 PMID: 27889230
  26. Zahran, M.A.H.; El-Aarag, B.; Mehany, A.B.M.; Belal, A.; Younes, A.S. Design, synthesis, biological evaluations, molecular docking, and in vivo studies of novel phthalimide analogs. Arch. Pharm., 2018, 351(5), 1700363. doi: 10.1002/ardp.201700363 PMID: 29611624
  27. El-Saied, F.; El-Aarag, B.; Salem, T.; Said, G.; Khalifa, S.A.M.; El-Seedi, H.R. Synthesis, characterization, and in vivo anti-cancer activity of new metal complexes derived from isatin-N (4) antipyrinethiosemicarbazone ligand against ehrlich ascites carcinoma cells. Molecules, 2019, 24(18), 3313. doi: 10.3390/molecules24183313 PMID: 31514445
  28. El-Aarag, B.; El-Saied, F.; Salem, T.; Khedr, N.; Khalifa, S.A.M.; El-Seedi, H.R. New metal complexes derived from diacetylmonoxime-n(4)antipyrinylthiosemicarbazone: Synthesis, characterization and evaluation of antitumor activity against Ehrlich solid tumors induced in mice. Arab. J. Chem., 2021, 14(3), 102993. doi: 10.1016/j.arabjc.2021.102993
  29. El-Aarag, B.; Attia, A.; Zahran, M.; Younes, A.; Tousson, E. New phthalimide analog ameliorates CCl4 induced hepatic injury in mice via reducing ROS formation, inflammation, and apoptosis. Saudi J. Biol. Sci., 2021, 28(11), 6384-6395. doi: 10.1016/j.sjbs.2021.07.014 PMID: 34764756
  30. El-Aarag, B.; El-Tahan, E.; Zahran, M. New thalidomide derivative with an anti-migrative and anti-proliferative effects on lewis lung carcinoma cell. Egypt. J. Chem., 2022, 65(8), 309-316. doi: 10.21608/ejchem.2022.109507.4997
  31. Mante, P.K.; Adomako, N.O.; Antwi, P.; Kusi-Boadum, N.K. Chronic administration of cryptolepine nanoparticle formulation alleviates seizures in a neurocysticercosis model. Curr. Res. Pharmacol. Drug Discover., 2021, 2, 100040. doi: 10.1016/j.crphar.2021.100040 PMID: 34909669
  32. Aston, W.J.; Hope, D.E.; Nowak, A.K.; Robinson, B.W.; Lake, R.A.; Lesterhuis, W.J. A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice. BMC Cancer, 2017, 17(1), 684. doi: 10.1186/s12885-017-3677-7 PMID: 29037232
  33. Lahouel, M.; Boulkour, S.; Segueni, N.; Fillastre, J.P. Protective effect of flavonoides against the toxicity of vinblastine, cyclophoshamide and paracetamol by inhibition of lipidperoxydation and increase of liver glutathione. Haema, 2004, 7, 59-67.
  34. Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76. doi: 10.1006/abio.1996.0292 PMID: 8660627
  35. Xu, J.; Yuan, X.; Lang, P. Determination of catalase activity and catalase inhibition by ultraviolet spectrophotometry. Chin. Environ. Chem, 1997, 16, e76.
  36. Forkuo, A.D.; Ansah, C.; Boadu, K.M.; Boampong, J.N.; Ameyaw, E.O.; Gyan, B.A.; Arku, A.T.; Ofori, M.F. Synergistic anti-malarial action of cryptolepine and artemisinins. Malar. J., 2016, 15, 1-12.
  37. Abacha, Y.Z.; Forkuo, A.D.; Gbedema, S.Y.; Mittal, N.; Ottilie, S.; Rocamora, F.; Winzeler, E.A.; van Schalkwyk, D.A.; Kelly, J.M.; Taylor, M.C.; Reader, J.; Birkholtz, L.M.; Lisgarten, D.R.; Cockcroft, J.K.; Lisgarten, J.N.; Palmer, R.A.; Talbert, R.C.; Shnyder, S.D.; Wright, C.W. Semi-synthetic analogues of cryptolepine as a potential source of sustainable drugs for the treatment of malaria, human african trypanosomiasis, and cancer. Front. Pharmacol., 2022, 13, 875647. doi: 10.3389/fphar.2022.875647 PMID: 35600849
  38. Domfeh, S.A.; Narkwa, P.W.; Quaye, O.; Kusi, K.A.; Awandare, G.A.; Ansah, C.; Salam, A.; Mutocheluh, M. Cryptolepine inhibits hepatocellular carcinoma growth through inhibiting interleukin-6/STAT3 signalling. BMC Complemen. Med. Therap., 2021, 21, 161.
  39. Rašić, I.; Rašić, A.; Akšamija, G.; Radović, S. The relationship between serum level of malondialdehyde and progression of colorectal cancer. Acta Clin. Croat., 2018, 57(3), 411-416. PMID: 31168172
  40. Lorenzo, E.; Ruiz-Ruiz, C.; Quesada, A.J.; Hernández, G.; Rodríguez, A.; López-Rivas, A.; Redondo, J.M. Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism. J. Biol. Chem., 2002, 277(13), 10883-10892. doi: 10.1074/jbc.M107442200 PMID: 11779855
  41. Kleszczyński, K.; Ernst, I.M.A.; Wagner, A.E.; Kruse, N.; Zillikens, D.; Rimbach, G.; Fischer, T.W. Sulforaphane and phenylethyl isothiocyanate protect human skin against UVR-induced oxidative stress and apoptosis: Role of Nrf2-dependent gene expression and antioxidant enzymes. Pharmacol. Res., 2013, 78, 28-40. doi: 10.1016/j.phrs.2013.09.009 PMID: 24121007
  42. Galluzzi, L.; López-Soto, A.; Kumar, S.; Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity, 2016, 44(2), 221-231. doi: 10.1016/j.immuni.2016.01.020 PMID: 26885855
  43. Russo, M.; Guida, F.; Paparo, L.; Trinchese, G.; Aitoro, R.; Avagliano, C.; Fiordelisi, A.; Napolitano, F.; Mercurio, V.; Sala, V.; Li, M.; Sorriento, D.; Ciccarelli, M.; Ghigo, A.; Hirsch, E.; Bianco, R.; Iaccarino, G.; Abete, P.; Bonaduce, D.; Calignano, A.; Berni Canani, R.; Tocchetti, C.G. The novel butyrate derivative phenylalanine‐butyramide protects from doxorubicin‐induced cardiotoxicity. Eur. J. Heart Fail., 2019, 21(4), 519-528. doi: 10.1002/ejhf.1439 PMID: 30843309
  44. Jia, M.; Chen, X.; Liu, J.; Chen, J. PTEN promotes apoptosis of H2O2-injured rat nasal epithelial cells through PI3K/Akt and other pathways. Mol. Med. Rep., 2018, 17(1), 571-579. PMID: 29115519
  45. Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers, 2021, 13(16), 3949. doi: 10.3390/cancers13163949 PMID: 34439105
  46. Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26. doi: 10.1186/s12943-019-0954-x PMID: 30782187
  47. Geng, H.; Feng, C.; Sun, Z.; Fan, X.; Xie, Y.; Gu, J.; Fan, L.; Liu, G.; Li, C.; Thorne, R.F.; Zhang, X.D.; Li, X.; Liu, X. Chloride intracellular channel 1 promotes esophageal squamous cell carcinoma proliferation via mTOR signalling. Transl. Oncol., 2023, 27, 101560. doi: 10.1016/j.tranon.2022.101560 PMID: 36252281
  48. Liu, R.; Chen, Y.; Liu, G.; Li, C.; Song, Y.; Cao, Z.; Li, W.; Hu, J.; Lu, C.; Liu, Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis., 2020, 11(9), 797. doi: 10.1038/s41419-020-02998-6 PMID: 32973135
  49. Dan, H.C.; Ebbs, A.; Pasparakis, M.; Van Dyke, T.; Basseres, D.S.; Baldwin, A.S. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). J. Biol. Chem., 2014, 289(36), 25227-25240. doi: 10.1074/jbc.M114.554881 PMID: 24990947
  50. Cerma, K.; Piacentini, F.; Moscetti, L.; Barbolini, M.; Canino, F.; Tornincasa, A.; Caggia, F.; Cerri, S.; Molinaro, A.; Dominici, M.; Omarini, C. Targeting PI3K/AKT/mTOR pathway in breast cancer: From biology to clinical challenges. Biomedicines, 2023, 11(1), 109. doi: 10.3390/biomedicines11010109 PMID: 36672617
  51. Liu, T.; Wang, Y.; Wang, Y.; Chan, A.M. Multifaceted regulation of PTEN subcellular distributions and biological functions. Cancers, 2019, 11(9), 1247. doi: 10.3390/cancers11091247 PMID: 31454965
  52. Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635. doi: 10.1016/j.cell.2017.07.029 PMID: 28802037
  53. Wen, C.; Wang, H.; Wu, X.; He, L.; Zhou, Q.; Wang, F.; Chen, S.; Huang, L.; Chen, J.; Wang, H.; Ye, W.; Li, W.; Yang, X.; Liu, H.; Peng, J. ROS-mediated inactivation of the PI3K/AKT pathway is involved in the antigastric cancer effects of thioredoxin reductase-1 inhibitor chaetocin. Cell Death Dis., 2019, 10(11), 809. doi: 10.1038/s41419-019-2035-x PMID: 31649256

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024