Design, Synthesis, and In vitro Anti-cervical Cancer Activity of a Novel MDM2-p53 Inhibitor Based on a Chalcone Scaffold


Cite item

Full Text

Abstract

Objective:Several novel fluorinated chalcone derivatives were synthesized, and their in vitro anticervical cancer activity and mechanism of action were investigated using the parent nucleus of licorice chalcone as the lead compound backbone and MDM2-p53 as the target.

Methods:In this study, 16 novel chalcone derivatives (3a–3r) were designed and synthesized by molecular docking technology based on the licorice chalcone parent nucleus as the lead compound scaffold and the cancer apoptosis regulatory target MDM2–p53. The structures of these compounds were confirmed by 1H-NMR, 13C-NMR, and HR-ESI-MS. The inhibitory effects of the compounds on the proliferation of three human cervical cancer cell lines (SiHa, HeLa, and C-33A) and two normal cell lines (H8 and HaCaT) were determined by MTT assay, and the initialstructure–activity relationship was analyzed. Transwell and flow cytometry were used to evaluate the effects of target compounds on the inhibition of cancer cell migration and invasion, apoptosis induction, and cell cycle arrest. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were used to detect the effects of candidate compounds on mRNA, p53, and Murine double minute 2 (MDM2) protein expression. The binding characteristics of the target compounds to the MDM2 protein target in the p53–MDM2 pathway were evaluated by molecular docking technology.

Results:The target compounds had considerable inhibitory activity on the proliferation of three cervical cancer cell lines. Among them, compound 3k (E)-3-(4-(dimethylamino)phenyl)-2-methyl-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one) showed the highest activity against HeLa cells (IC50=1.08 µmol/L), which was better than that of the lead compound Licochalcone B, and 3k showed lower toxicity to both normal cells. Compound 3k strongly inhibited the migration and invasion of HeLa cells and induced apoptosis and cell cycle arrest at the G0/G1 phase. Furthermore, compound 3k upregulated the expression of p53 and BAX and downregulated the expression of MDM2, MDMX, and BCL2. Moreover, molecular docking results showed that compound 3k could effectively bind to the MDM2 protein (binding energy: −9.0 kcal/mol). These results suggest that the compounds may activate the p53 signaling pathway by inhibiting MDM2 protein, which prevents cancer cell proliferation, migration, and invasion and induces apoptosis and cell cycle arrest in cancer cells.

Conclusion:This study provides a new effective and low-toxicity drug candidate from licochalcone derivatives for treating cervical cancer.

About the authors

Yusupuwajimu Alimujiang

College of Pharmacy, Xinjiang Medical University

Email: info@benthamscience.net

Aikebaier Maimaiti

College of Pharmacy, Xinjiang Medical University

Email: info@benthamscience.net

Mourboul Ablise

College of Pharmacy, Xinjiang Medical University

Author for correspondence.
Email: info@benthamscience.net

Zheng Yang

College of Pharmacy, Xinjiang Medical University

Email: info@benthamscience.net

Zhengye Liu

College of Pharmacy, Xinjiang Medical University

Email: info@benthamscience.net

Yu Wang

College of Pharmacy, Xinjiang Medical University

Email: info@benthamscience.net

Zuohelaguli Mutalipu

College of Pharmacy, Xinjiang Medical University

Email: info@benthamscience.net

Tong Yan

College of Pharmacy, Xinjiang Medical University

Email: info@benthamscience.net

References

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. Drețcanu, G.; Iuhas, C.I.; Diaconeasa, Z. The involvement of natural polyphenols in the chemoprevention of cervical cancer. Int. J. Mol. Sci., 2021, 22(16), 8812. doi: 10.3390/ijms22168812 PMID: 34445518
  4. He, M.; Xia, L.; Li, J. Potential mechanisms of plant-derived natural products in the treatment of cervical cancer. Biomolecules, 2021, 11(10), 1539. doi: 10.3390/biom11101539 PMID: 34680171
  5. Wang, C.; Zhu, M.; Long, X.; Wang, Q.; Wang, Z.; Ouyang, G. Design, synthesis and antitumor activity of 1H-indazole-3-amine derivatives. Int. J. Mol. Sci., 2023, 24(10), 8686. doi: 10.3390/ijms24108686 PMID: 37240028
  6. Taghizadeh, E.; Jahangiri, S.; Rostami, D.; Taheri, F.; Renani, P.G.; Taghizadeh, H.; Gheibi Hayat, S.M. Roles of E6 and E7 human papilloma virus proteinsin molecular pathogenesis of cervical cancer. Curr. Protein Pept. Sci., 2019, 20(9), 926-934. doi: 10.2174/1389203720666190618101441 PMID: 31244421
  7. Brisson, M.; Kim, J.J.; Canfell, K.; Drolet, M.; Gingras, G.; Burger, E.A.; Martin, D.; Simms, K.T.; Bénard, É.; Boily, M.C.; Sy, S.; Regan, C.; Keane, A.; Caruana, M.; Nguyen, D.T.N.; Smith, M.A.; Laprise, J.F.; Jit, M.; Alary, M.; Bray, F.; Fidarova, E.; Elsheikh, F.; Bloem, P.J.N.; Broutet, N.; Hutubessy, R. Impact of HPV vaccination and cervical screening on cervical cancer elimination: A comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet, 2020, 395(10224), 575-590. doi: 10.1016/S0140-6736(20)30068-4 PMID: 32007141
  8. Udomwan, P.; Pientong, C.; Tongchai, P.; Burassakarn, A.; Sunthamala, N.; Roytrakul, S.; Suebsasana, S.; Ekalaksananan, T. Proteomics analysis of andrographolide-Induced apoptosis via the regulation of tumor suppressor p53 proteolysis in cervical cancer-derived human papillomavirus 16-positive cell Lines. Int. J. Mol. Sci., 2021, 22(13), 6806. doi: 10.3390/ijms22136806 PMID: 34202736
  9. Nicolò, S.; Antonelli, A.; Tanturli, M.; Baccani, I.; Bonaiuto, C.; Castronovo, G.; Rossolini, G.M.; Mattiuz, G.; Torcia, M.G. Bacterial species from vaginal microbiota differently affect the production of the E6 and E7 oncoproteins and of p53 and p-Rb oncosuppressors in HPV16-infected cells. Int. J. Mol. Sci., 2023, 24(8), 7173. doi: 10.3390/ijms24087173 PMID: 37108333
  10. Xiong, J.; Li, G.; Mei, X.; Ding, J.; Shen, H.; Zhu, D.; Wang, H. Co-delivery of p53 restored and E7 targeted nucleic acids by poly (beta-amino ester) complex nanoparticles for the treatment of HPV related cervical lesions. Front. Pharmacol., 2022, 13, 826771. doi: 10.3389/fphar.2022.826771 PMID: 35185576
  11. Kooti, A.; Abuei, H.; Farhadi, A.; Behzad-Behbahani, A.; Zarrabi, M. Activating transcription factor 3 mediates apoptotic functions through a p53-independent pathway in human papillomavirus 18 infected HeLa cells. Virus Genes, 2022, 58(2), 88-97. doi: 10.1007/s11262-022-01887-8 PMID: 35129760
  12. Heijkants, R.C.; Teunisse, A.F.A.S.; de Jong, D.; Glinkina, K.; Mei, H.; Kielbasa, S.M.; Szuhai, K.; Jochemsen, A.G. MDMX regulates transcriptional activity of p53 and FOXO proteins to stimulate proliferation of melanoma cells. Cancers, 2022, 14(18), 4482. doi: 10.3390/cancers14184482 PMID: 36139642
  13. Chinnam, M.; Xu, C.; Lama, R.; Zhang, X.; Cedeno, C.D.; Wang, Y.; Stablewski, A.B.; Goodrich, D.W.; Wang, X. MDM2 E3 ligase activity is essential for p53 regulation and cell cycle integrity. PLoS Genet., 2022, 18(5), e1010171. doi: 10.1371/journal.pgen.1010171 PMID: 35588102
  14. Zhang, J.; Yu, G.; Yang, Y.; Wang, Y.; Guo, M.; Yin, Q.; Yan, C.; Tian, J.; Fu, F.; Wang, H. A small-molecule inhibitor of MDMX suppresses cervical cancer cells via the inhibition of E6-E6AP-p53 axis. Pharmacol. Res., 2022, 177, 106128. doi: 10.1016/j.phrs.2022.106128 PMID: 35150860
  15. Espadinha, M.; Lopes, E.A.; Marques, V.; Amaral, J.D.; dos Santos, D.J.V.A.; Mori, M.; Daniele, S.; Piccarducci, R.; Zappelli, E.; Martini, C.; Rodrigues, C.M.P.; Santos, M.M.M. Discovery of MDM2-p53 and MDM4-p53 protein-protein interactions small molecule dual inhibitors. Eur. J. Med. Chem., 2022, 241, 114637. doi: 10.1016/j.ejmech.2022.114637 PMID: 35961068
  16. Grinkevich, V.V.; Vema, A.; Fawkner, K.; Issaeva, N.; Andreotti, V.; Dickinson, E.R.; Hedström, E.; Spinnler, C.; Inga, A.; Larsson, L.G.; Karlén, A.; Wilhelm, M.; Barran, P.E.; Okorokov, A.L.; Selivanova, G.; Zawacka-Pankau, J.E. Novel allosteric mechanism of dual p53/MDM2 and p53/MDM4 inhibition by a small molecule. Front. Mol. Biosci., 2022, 9, 823195. doi: 10.3389/fmolb.2022.823195 PMID: 35720128
  17. de Souza, P.S.; Bibá, G.C.C.; Melo, E.D.N.; Muzitano, M.F. Chalcones against the hallmarks of cancer: A mini-review. Nat. Prod. Res., 2022, 36(18), 4803-4820. doi: 10.1080/14786419.2021.2000980 PMID: 34865580
  18. Constantinescu, T.; Lungu, C.N. Anticancer activity of natural and synthetic chalcones. Int. J. Mol. Sci., 2021, 22(21), 11306. doi: 10.3390/ijms222111306 PMID: 34768736
  19. Shukla, S.; Sood, A.K.; Goyal, K.; Singh, A.; Sharma, V.; Guliya, N.; Gulati, S.; Kumar, S. Chalcone scaffolds as anticancer drugs: A review on molecular insight in action of mechanisms and anticancer properties. Anticancer. Agents Med. Chem., 2021, 21(13), 1650-1670. doi: 10.2174/1871520620999201124212840 PMID: 33238850
  20. Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894. doi: 10.3390/biom11060894 PMID: 34208562
  21. Moreira, J.; Almeida, J.; Saraiva, L.; Cidade, H.; Pinto, M. Chalcones as promising antitumor agents by targeting the p53 pathway: An overview and new insights in drug-likeness. Molecules, 2021, 26(12), 3737. doi: 10.3390/molecules26123737 PMID: 34205272
  22. Si, D.; Luo, H.; Zhang, X.; Yang, K.; Wen, H.; Li, W.; Liu, J. Design, synthesis and biological evaluation of novel pyrrolidone-based derivatives as potent p53-MDM2 inhibitors. Bioorg. Chem., 2021, 115, 105268. doi: 10.1016/j.bioorg.2021.105268 PMID: 34426149
  23. Shabir, G.; Saeed, A.; Zahid, W.; Naseer, F.; Riaz, Z.; Khalil, N. Muneeba; Albericio, F. Chemistry and pharmacology of fluorinated drugs approved by the FDA (2016–2022). Pharmaceuticals, 2023, 16(8), 1162. doi: 10.3390/ph16081162 PMID: 37631077
  24. Liu, L.; Wang, Z.; Gao, C.; Dai, H.; Si, X.; Zhang, Y.; Meng, Y.; Zheng, J.; Ke, Y.; Liu, H.; Zhang, Q. Design, synthesis and antitumor activity evaluation of trifluoromethyl-substituted pyrimidine derivatives. Bioorg. Med. Chem. Lett., 2021, 51, 128268. doi: 10.1016/j.bmcl.2021.128268 PMID: 34302974
  25. Ren, B.; Ablise, M.; Yang, X.; Liao, B.; Yang, Z. Synthesis and biological evaluation of α-methyl-chalcone for anti-cervical cancer activity. Med. Chem. Res., 2017, 26(9), 1871-1883. doi: 10.1007/s00044-017-1891-0
  26. Yang, Z.; Liu, Z.Y.; Ablise, M.; Maimaiti, A.; Mutalipu, Z.; Alimujiang, Y.; Aihaiti, A. Design, synthesis, and anti-cervical cancer and reversal of tumor multidrug resistance activity of novel nitrogen-containing heterocyclic chalcone derivatives. Molecules, 2023, 28(11), 4537. doi: 10.3390/molecules28114537 PMID: 37299013
  27. Jeng, P.S.; Inoue-Yamauchi, A.; Hsieh, J.J.; Cheng, E.H. BH3-dependent and independent activation of BAX and BAK in mitochondrial apoptosis. Curr. Opin. Physiol., 2018, 3, 71-81. doi: 10.1016/j.cophys.2018.03.005 PMID: 30334018
  28. Ahaiti, A.; Maimaiti, A.; Ablise, M. Preparation and anticervical cancer activity of a novel α-methylchalcone and its effect on Akt-MDM2-p53 signalling pathway. Zhongguo Yaolixue Tongbao, 2023, 39(07), 1399-1400.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers