JHD205, A Novel Abemaciclib Derivative, Exerts Antitumor Effects on Breast Cancer by CDK4/6


Cite item

Full Text

Abstract

Background:Efficient targeted molecular therapeutics are needed for the treatment of triple-negative breast cancer (TNBC), a highly invasive and difficult-to-treat form of breast cancer associated with a poor prognosis.

Objectives:This study aims to evaluate the potential of selective CDK4/6 inhibitors as a therapeutic option for TNBC by impairing the cell cycle G1 phase through the inhibition of retinoblastoma protein (Rb) phosphorylation.

Methods:In this study, we synthesized a compound called JHD205, derived from the chemical structure of Abemaciclib, and examined its inhibitory effects on the malignant characteristics of TNBC cells.

Results:Our results demonstrated that JHD205 exhibited superior tumor growth inhibition compared to Abemaciclib in breast cancer xenograft chicken embryo models. Western blot analysis revealed that JHD205 could dosedependently degrade CDK4 and CDK6 while also causing abnormal changes in other proteins associated with CDK4/6, such as p-Rb, Rb, and E2F1. Moreover, JHD205 induced apoptosis and DNA damage and inhibited DNA repair by upregulating Caspase3 and p-H2AX protein levels.

Conclusion:Collectively, our findings suggest that JHD205 holds promise as a potential treatment for breast carcinoma.

About the authors

Jing Ji

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Author for correspondence.
Email: info@benthamscience.net

Jingting Qin

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Xiaoshuo Wang

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Mingxiao Lv

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Xiao Hou

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Aixin Jing

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Jiaojiao Zhou

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Lingyi Zuo

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Wenwen Liu

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Jing Feng

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Qilan Qian

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Yuanyuan Liu

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Email: info@benthamscience.net

Xiujun Wang

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Author for correspondence.
Email: info@benthamscience.net

Bin Liu

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2020, 70(4), 313. doi: 10.3322/caac.21609 PMID: 32767693
  2. Ryu, D.W.; Jung, M.J.; Choi, W.S.; Lee, C.H. Clinical significance of morphologic characteristics in triple negative breast cancer. J. Korean Surg. Soc., 2011, 80(5), 301-306. doi: 10.4174/jkss.2011.80.5.301 PMID: 22066052
  3. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  4. Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in TNBC. Cancers, 2020, 12(4), 916. doi: 10.3390/cancers12040916 PMID: 32276534
  5. Ji, J.; Liu, W.; Xu, Y.; Xu, Z.; Lv, M.; Feng, J.; Lv, J.; He, X.; Zhang, Z.; Xie, M.; Jing, A.; Wang, X.; Ma, J.; Liu, B. WXJ-202, a novel Ribociclib derivative, exerts antitumor effects against breast cancer through CDK4/6. Front. Pharmacol., 2023, 13, 1072194. doi: 10.3389/fphar.2022.1072194 PMID: 36744210
  6. Dickson, M.A. Molecular pathways: CDK4 inhibitors for cancer therapy. Clin. Cancer Res., 2014, 20(13), 3379-3383. doi: 10.1158/1078-0432.CCR-13-1551 PMID: 24795392
  7. Spring, L.M.; Wander, S.A.; Zangardi, M.; Bardia, A. CDK 4/6 inhibitors in breast cancer: Current controversies and future directions. Curr. Oncol. Rep., 2019, 21(3), 25. doi: 10.1007/s11912-019-0769-3 PMID: 30806829
  8. Burkhart, D.L.; Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer, 2008, 8(9), 671-682. doi: 10.1038/nrc2399 PMID: 18650841
  9. Witkiewicz, A.K.; Ertel, A.; McFalls, J.; Valsecchi, M.E.; Schwartz, G.; Knudsen, E.S. RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer. Clin. Cancer Res., 2012, 18(18), 5110-5122. doi: 10.1158/1078-0432.CCR-12-0903 PMID: 22811582
  10. Witkiewicz, A.K.; Balaji, U.; Eslinger, C.; McMillan, E.; Conway, W.; Posner, B.; Mills, G.B.; O’Reilly, E.M.; Knudsen, E.S. Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer. Cell Rep., 2016, 16(7), 2017-2031. doi: 10.1016/j.celrep.2016.07.023 PMID: 27498862
  11. Nebenfuehr, S.; Kollmann, K.; Sexl, V. The role of CDK6 in cancer. Int. J. Cancer, 2020, 147(11), 2988-2995. doi: 10.1002/ijc.33054 PMID: 32406095
  12. Goel, S.; Bergholz, J.S.; Zhao, J.J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer, 2022, 22(6), 356-372. doi: 10.1038/s41568-022-00456-3 PMID: 35304604
  13. Khleif, S.N.; DeGregori, J.; Yee, C.L.; Otterson, G.A.; Kaye, F.J.; Nevins, J.R.; Howley, P.M. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc. Natl. Acad. Sci. USA, 1996, 93(9), 4350-4354. doi: 10.1073/pnas.93.9.4350 PMID: 8633069
  14. Slamon, D.J.; Neven, P.; Chia, S.; Jerusalem, G.; De Laurentiis, M. Im, S.; Petrakova, K.; Valeria Bianchi, G.; Martín, M.; Nusch, A.; Sonke, G.S.; De la Cruz-Merino, L.; Beck, J.T.; Ji, Y.; Wang, C.; Deore, U.; Chakravartty, A.; Zarate, J.P.; Taran, T.; Fasching, P.A. Ribociclib plus fulvestrant for postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in the phase III randomized MONALEESA-3 trial: updated overall survival. Ann. Oncol., 2021, 32(8), 1015-1024. doi: 10.1016/j.annonc.2021.05.353 PMID: 34102253
  15. Slamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M. Im, S.A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; Nusch, A.; Sonke, G.S.; De la Cruz-Merino, L.; Beck, J.T.; Pivot, X.; Vidam, G.; Wang, Y.; Rodriguez Lorenc, K.; Miller, M.; Taran, T.; Jerusalem, G. Phase III randomized study of Ribociclib and Fulvestrant in hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: MONALEESA-3. J. Clin. Oncol., 2018, 36(24), 2465-2472. doi: 10.1200/JCO.2018.78.9909 PMID: 29860922
  16. Sledge, G.W., Jr; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; Koh, H.; Grischke, E.M.; Frenzel, M.; Lin, Y.; Barriga, S.; Smith, I.C.; Bourayou, N.; Llombart-Cussac, A. MONARCH 2: Abemaciclib in combination with fulvestrant in women With HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol., 2017, 35(25), 2875-2884. doi: 10.1200/JCO.2017.73.7585 PMID: 28580882
  17. Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767. doi: 10.1172/JCI45014 PMID: 21633166
  18. Asghar, U.S.; Barr, A.R.; Cutts, R.; Beaney, M.; Babina, I.; Sampath, D.; Giltnane, J.; Lacap, J.A.; Crocker, L.; Young, A.; Pearson, A.; Herrera-Abreu, M.T.; Bakal, C.; Turner, N.C. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin. Cancer Res., 2017, 23(18), 5561-5572. doi: 10.1158/1078-0432.CCR-17-0369 PMID: 28606920
  19. Bosco, E.E.; Knudsen, E.S. RB in breast cancer: At the crossroads of tumorigenesis and treatment. Cell Cycle, 2007, 6(6), 667-671. doi: 10.4161/cc.6.6.3988 PMID: 17361100
  20. Weintraub, S.J.; Prater, C.A.; Dean, D.C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature, 1992, 358(6383), 259-261. doi: 10.1038/358259a0 PMID: 1321348
  21. Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093. doi: 10.1242/dev.091744 PMID: 23861057
  22. Gao, X.; Leone, G.W.; Wang, H. Cyclin D-CDK4/6 functions in cancer. Adv. Cancer Res., 2020, 148, 147-169. doi: 10.1016/bs.acr.2020.02.002 PMID: 32723562
  23. Nebenfuehr, S.; Bellutti, F.; Sexl, V. Cdk6: At the interface of Rb and p53. Mol. Cell. Oncol., 2018, 5(5), e1511206. doi: 10.1080/23723556.2018.1511206 PMID: 30263948
  24. Liao, C.C.; Tsai, C.Y.; Chang, W.C.; Lee, W.H.; Wang, J.M. RBE2F1 complex mediates DNA damage responses through transcriptional regulation of ZBRK1. J. Biol. Chem., 2010, 285(43), 33134-33143. doi: 10.1074/jbc.M110.143461 PMID: 20713352
  25. Cretella, D.; Fumarola, C.; Bonelli, M.; Alfieri, R.; La Monica, S.; Digiacomo, G.; Cavazzoni, A.; Galetti, M.; Generali, D.; Petronini, P.G. Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells. Sci. Rep., 2019, 9(1), 13014. doi: 10.1038/s41598-019-49484-4 PMID: 31506466
  26. Roos, W.P.; Thomas, A.D.; Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer, 2016, 16(1), 20-33. doi: 10.1038/nrc.2015.2 PMID: 26678314
  27. Wang, Y.; Luo, W.; Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair, 2019, 81, 102651. doi: 10.1016/j.dnarep.2019.102651 PMID: 31302005
  28. Vaitsiankova, A.; Burdova, K.; Sobol, M.; Gautam, A.; Benada, O.; Hanzlikova, H.; Caldecott, K.W. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol., 2022, 29(4), 329-338. doi: 10.1038/s41594-022-00747-1 PMID: 35332322
  29. Lei, S.; Ge, F.; Lin, M.; Wang, X.; Shen, J.; Yang, Y.; Deng, J.; Wang, Z.; Wang, J.; Li, K. PARP inhibitors diminish DNA damage repair for the enhancement of tumor photodynamic therapy. Photodiagn. Photodyn. Ther., 2022, 40, 103058. doi: 10.1016/j.pdpdt.2022.103058 PMID: 35944846
  30. Huang, P.; Chen, G.; Jin, W.; Mao, K.; Wan, H.; He, Y. Molecular mechanisms of parthanatos and its role in diverse diseases. Int. J. Mol. Sci., 2022, 23(13), 7292. doi: 10.3390/ijms23137292 PMID: 35806303
  31. Burma, S.; Chen, B.P.; Murphy, M.; Kurimasa, A.; Chen, D.J. ATM phosphorylates histone H2AX in response to DNA doublestrand breaks. J. Biol. Chem., 2001, 276(45), 42462-42467. doi: 10.1074/jbc.C100466200 PMID: 11571274
  32. Dean, J.L.; McClendon, A.K.; Knudsen, E.S. Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J. Biol. Chem., 2012, 287(34), 29075-29087. doi: 10.1074/jbc.M112.365494 PMID: 22733811
  33. Salvador-Barbero, B.; Alvarez-Fernández, M.; Zapatero-Solana, E.; El Bakkali, A.; Menéndez, M.C.; López-Casas, P.P.; Di Domenico, T.; Xie, T.; VanArsdale, T.; Shields, D.J.; Hidalgo, M.; Malumbres, M. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. Cancer Cell, 2020, 38(4), 584. doi: 10.1016/j.ccell.2020.09.012 PMID: 33049208
  34. Crozier, L.; Foy, R.; Mouery, B.L.; Whitaker, R.H.; Corno, A.; Spanos, C.; Ly, T.; Gowen Cook, J.; Saurin, A.T. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J., 2022, 41(6), e108599. doi: 10.15252/embj.2021108599 PMID: 35037284
  35. Zhu, X.; Chen, L.; Huang, B.; Li, X.; Yang, L.; Hu, X.; Jiang, Y.; Shao, Z.; Wang, Z. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 122. doi: 10.1186/s13046-021-01930-w PMID: 33832512

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers