JHD205, A Novel Abemaciclib Derivative, Exerts Antitumor Effects on Breast Cancer by CDK4/6
- Authors: Ji J.1, Qin J.1, Wang X.1, Lv M.1, Hou X.1, Jing A.1, Zhou J.1, Zuo L.1, Liu W.1, Feng J.1, Qian Q.1, Liu Y.1, Wang X.1, Liu B.1
-
Affiliations:
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
- Issue: Vol 24, No 6 (2024)
- Pages: 400-411
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644222
- DOI: https://doi.org/10.2174/0118715206265751231204190204
- ID: 644222
Cite item
Full Text
Abstract
Background:Efficient targeted molecular therapeutics are needed for the treatment of triple-negative breast cancer (TNBC), a highly invasive and difficult-to-treat form of breast cancer associated with a poor prognosis.
Objectives:This study aims to evaluate the potential of selective CDK4/6 inhibitors as a therapeutic option for TNBC by impairing the cell cycle G1 phase through the inhibition of retinoblastoma protein (Rb) phosphorylation.
Methods:In this study, we synthesized a compound called JHD205, derived from the chemical structure of Abemaciclib, and examined its inhibitory effects on the malignant characteristics of TNBC cells.
Results:Our results demonstrated that JHD205 exhibited superior tumor growth inhibition compared to Abemaciclib in breast cancer xenograft chicken embryo models. Western blot analysis revealed that JHD205 could dosedependently degrade CDK4 and CDK6 while also causing abnormal changes in other proteins associated with CDK4/6, such as p-Rb, Rb, and E2F1. Moreover, JHD205 induced apoptosis and DNA damage and inhibited DNA repair by upregulating Caspase3 and p-H2AX protein levels.
Conclusion:Collectively, our findings suggest that JHD205 holds promise as a potential treatment for breast carcinoma.
About the authors
Jing Ji
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Author for correspondence.
Email: info@benthamscience.net
Jingting Qin
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Xiaoshuo Wang
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Mingxiao Lv
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Xiao Hou
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Aixin Jing
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Jiaojiao Zhou
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Lingyi Zuo
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Wenwen Liu
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Jing Feng
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Qilan Qian
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Yuanyuan Liu
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Email: info@benthamscience.net
Xiujun Wang
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Author for correspondence.
Email: info@benthamscience.net
Bin Liu
Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy,, Jiangsu Ocean University
Author for correspondence.
Email: info@benthamscience.net
References
- Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2020, 70(4), 313. doi: 10.3322/caac.21609 PMID: 32767693
- Ryu, D.W.; Jung, M.J.; Choi, W.S.; Lee, C.H. Clinical significance of morphologic characteristics in triple negative breast cancer. J. Korean Surg. Soc., 2011, 80(5), 301-306. doi: 10.4174/jkss.2011.80.5.301 PMID: 22066052
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
- Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in TNBC. Cancers, 2020, 12(4), 916. doi: 10.3390/cancers12040916 PMID: 32276534
- Ji, J.; Liu, W.; Xu, Y.; Xu, Z.; Lv, M.; Feng, J.; Lv, J.; He, X.; Zhang, Z.; Xie, M.; Jing, A.; Wang, X.; Ma, J.; Liu, B. WXJ-202, a novel Ribociclib derivative, exerts antitumor effects against breast cancer through CDK4/6. Front. Pharmacol., 2023, 13, 1072194. doi: 10.3389/fphar.2022.1072194 PMID: 36744210
- Dickson, M.A. Molecular pathways: CDK4 inhibitors for cancer therapy. Clin. Cancer Res., 2014, 20(13), 3379-3383. doi: 10.1158/1078-0432.CCR-13-1551 PMID: 24795392
- Spring, L.M.; Wander, S.A.; Zangardi, M.; Bardia, A. CDK 4/6 inhibitors in breast cancer: Current controversies and future directions. Curr. Oncol. Rep., 2019, 21(3), 25. doi: 10.1007/s11912-019-0769-3 PMID: 30806829
- Burkhart, D.L.; Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer, 2008, 8(9), 671-682. doi: 10.1038/nrc2399 PMID: 18650841
- Witkiewicz, A.K.; Ertel, A.; McFalls, J.; Valsecchi, M.E.; Schwartz, G.; Knudsen, E.S. RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer. Clin. Cancer Res., 2012, 18(18), 5110-5122. doi: 10.1158/1078-0432.CCR-12-0903 PMID: 22811582
- Witkiewicz, A.K.; Balaji, U.; Eslinger, C.; McMillan, E.; Conway, W.; Posner, B.; Mills, G.B.; OReilly, E.M.; Knudsen, E.S. Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer. Cell Rep., 2016, 16(7), 2017-2031. doi: 10.1016/j.celrep.2016.07.023 PMID: 27498862
- Nebenfuehr, S.; Kollmann, K.; Sexl, V. The role of CDK6 in cancer. Int. J. Cancer, 2020, 147(11), 2988-2995. doi: 10.1002/ijc.33054 PMID: 32406095
- Goel, S.; Bergholz, J.S.; Zhao, J.J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer, 2022, 22(6), 356-372. doi: 10.1038/s41568-022-00456-3 PMID: 35304604
- Khleif, S.N.; DeGregori, J.; Yee, C.L.; Otterson, G.A.; Kaye, F.J.; Nevins, J.R.; Howley, P.M. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc. Natl. Acad. Sci. USA, 1996, 93(9), 4350-4354. doi: 10.1073/pnas.93.9.4350 PMID: 8633069
- Slamon, D.J.; Neven, P.; Chia, S.; Jerusalem, G.; De Laurentiis, M. Im, S.; Petrakova, K.; Valeria Bianchi, G.; Martín, M.; Nusch, A.; Sonke, G.S.; De la Cruz-Merino, L.; Beck, J.T.; Ji, Y.; Wang, C.; Deore, U.; Chakravartty, A.; Zarate, J.P.; Taran, T.; Fasching, P.A. Ribociclib plus fulvestrant for postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in the phase III randomized MONALEESA-3 trial: updated overall survival. Ann. Oncol., 2021, 32(8), 1015-1024. doi: 10.1016/j.annonc.2021.05.353 PMID: 34102253
- Slamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M. Im, S.A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; Nusch, A.; Sonke, G.S.; De la Cruz-Merino, L.; Beck, J.T.; Pivot, X.; Vidam, G.; Wang, Y.; Rodriguez Lorenc, K.; Miller, M.; Taran, T.; Jerusalem, G. Phase III randomized study of Ribociclib and Fulvestrant in hormone receptorpositive, human epidermal growth factor receptor 2negative advanced breast cancer: MONALEESA-3. J. Clin. Oncol., 2018, 36(24), 2465-2472. doi: 10.1200/JCO.2018.78.9909 PMID: 29860922
- Sledge, G.W., Jr; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; Koh, H.; Grischke, E.M.; Frenzel, M.; Lin, Y.; Barriga, S.; Smith, I.C.; Bourayou, N.; Llombart-Cussac, A. MONARCH 2: Abemaciclib in combination with fulvestrant in women With HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol., 2017, 35(25), 2875-2884. doi: 10.1200/JCO.2017.73.7585 PMID: 28580882
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767. doi: 10.1172/JCI45014 PMID: 21633166
- Asghar, U.S.; Barr, A.R.; Cutts, R.; Beaney, M.; Babina, I.; Sampath, D.; Giltnane, J.; Lacap, J.A.; Crocker, L.; Young, A.; Pearson, A.; Herrera-Abreu, M.T.; Bakal, C.; Turner, N.C. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin. Cancer Res., 2017, 23(18), 5561-5572. doi: 10.1158/1078-0432.CCR-17-0369 PMID: 28606920
- Bosco, E.E.; Knudsen, E.S. RB in breast cancer: At the crossroads of tumorigenesis and treatment. Cell Cycle, 2007, 6(6), 667-671. doi: 10.4161/cc.6.6.3988 PMID: 17361100
- Weintraub, S.J.; Prater, C.A.; Dean, D.C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature, 1992, 358(6383), 259-261. doi: 10.1038/358259a0 PMID: 1321348
- Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093. doi: 10.1242/dev.091744 PMID: 23861057
- Gao, X.; Leone, G.W.; Wang, H. Cyclin D-CDK4/6 functions in cancer. Adv. Cancer Res., 2020, 148, 147-169. doi: 10.1016/bs.acr.2020.02.002 PMID: 32723562
- Nebenfuehr, S.; Bellutti, F.; Sexl, V. Cdk6: At the interface of Rb and p53. Mol. Cell. Oncol., 2018, 5(5), e1511206. doi: 10.1080/23723556.2018.1511206 PMID: 30263948
- Liao, C.C.; Tsai, C.Y.; Chang, W.C.; Lee, W.H.; Wang, J.M. RBE2F1 complex mediates DNA damage responses through transcriptional regulation of ZBRK1. J. Biol. Chem., 2010, 285(43), 33134-33143. doi: 10.1074/jbc.M110.143461 PMID: 20713352
- Cretella, D.; Fumarola, C.; Bonelli, M.; Alfieri, R.; La Monica, S.; Digiacomo, G.; Cavazzoni, A.; Galetti, M.; Generali, D.; Petronini, P.G. Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells. Sci. Rep., 2019, 9(1), 13014. doi: 10.1038/s41598-019-49484-4 PMID: 31506466
- Roos, W.P.; Thomas, A.D.; Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer, 2016, 16(1), 20-33. doi: 10.1038/nrc.2015.2 PMID: 26678314
- Wang, Y.; Luo, W.; Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair, 2019, 81, 102651. doi: 10.1016/j.dnarep.2019.102651 PMID: 31302005
- Vaitsiankova, A.; Burdova, K.; Sobol, M.; Gautam, A.; Benada, O.; Hanzlikova, H.; Caldecott, K.W. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol., 2022, 29(4), 329-338. doi: 10.1038/s41594-022-00747-1 PMID: 35332322
- Lei, S.; Ge, F.; Lin, M.; Wang, X.; Shen, J.; Yang, Y.; Deng, J.; Wang, Z.; Wang, J.; Li, K. PARP inhibitors diminish DNA damage repair for the enhancement of tumor photodynamic therapy. Photodiagn. Photodyn. Ther., 2022, 40, 103058. doi: 10.1016/j.pdpdt.2022.103058 PMID: 35944846
- Huang, P.; Chen, G.; Jin, W.; Mao, K.; Wan, H.; He, Y. Molecular mechanisms of parthanatos and its role in diverse diseases. Int. J. Mol. Sci., 2022, 23(13), 7292. doi: 10.3390/ijms23137292 PMID: 35806303
- Burma, S.; Chen, B.P.; Murphy, M.; Kurimasa, A.; Chen, D.J. ATM phosphorylates histone H2AX in response to DNA doublestrand breaks. J. Biol. Chem., 2001, 276(45), 42462-42467. doi: 10.1074/jbc.C100466200 PMID: 11571274
- Dean, J.L.; McClendon, A.K.; Knudsen, E.S. Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J. Biol. Chem., 2012, 287(34), 29075-29087. doi: 10.1074/jbc.M112.365494 PMID: 22733811
- Salvador-Barbero, B.; Alvarez-Fernández, M.; Zapatero-Solana, E.; El Bakkali, A.; Menéndez, M.C.; López-Casas, P.P.; Di Domenico, T.; Xie, T.; VanArsdale, T.; Shields, D.J.; Hidalgo, M.; Malumbres, M. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. Cancer Cell, 2020, 38(4), 584. doi: 10.1016/j.ccell.2020.09.012 PMID: 33049208
- Crozier, L.; Foy, R.; Mouery, B.L.; Whitaker, R.H.; Corno, A.; Spanos, C.; Ly, T.; Gowen Cook, J.; Saurin, A.T. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J., 2022, 41(6), e108599. doi: 10.15252/embj.2021108599 PMID: 35037284
- Zhu, X.; Chen, L.; Huang, B.; Li, X.; Yang, L.; Hu, X.; Jiang, Y.; Shao, Z.; Wang, Z. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 122. doi: 10.1186/s13046-021-01930-w PMID: 33832512
Supplementary files
