Synthesis of a Novel Gold(I) Complex and Evaluation of Its Anticancer Properties in Breast Cancer Cells
- Authors: Khan H.1, Isab A.2, Alhomida A.1, Gatasheh M.1, Alhoshani A.3, Aldhafeeri B.4, Prasad N5
-
Affiliations:
- Department of Biochemistry, College of Science, King Saud University
- Department of Chemistry, College of Science,, King Fahd University of Petroleum and Minerals
- Department of Pharmaceutical Chemistry, College of Pharmacy,, King Fahd University of Petroleum and Minerals
- Department of Pharmaceutical Chemistry, College of Pharmacy,, King Saud University
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, Annamalai University
- Issue: Vol 24, No 5 (2024)
- Pages: 379-388
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644198
- DOI: https://doi.org/10.2174/0118715206281182231127113608
- ID: 644198
Cite item
Full Text
Abstract
Background:Platinum complexes are commonly used for cancer chemotherapy; however, they are not only highly-priced but also have various side effects. It is, therefore, important to design affordable anticancer drugs with minimal side effects.
Methods:We synthesized a new gold(I) complex, PF6{(BDPEA)(TPPMS) digold(I)} (abbreviated as PBTDG) and tested its cytotoxicity in MCF-7 breast cancer cells. We also evaluated the effects of PBTDG on mitochondrial membrane potential, generation of reactive oxygen species (ROS) and apoptosis in breast cancer cells.
Results:The IC50 values for PBTDG and sorafenib were found to be 1.48 µM and 4.45 µM, respectively. Exposure to PBTDG caused significant and concentration-dependent depletion of ATP and disruption of mitochondrial membrane potential. PBTDG induced 2.6, 3.6, and 5.7-fold apoptosis for 1 µM, 3 µM, and 10 µM concentrations, respectively. The induction of apoptosis by the same concentrations of sorafenib was 1.2, 1.3, and 1.6-fold, respectively. The low concentration of PBTDG (1 µM) induced the generation of ROS by 99.83%, which was significantly higher than the ROS generation caused by the same concentration of sorafenib (73.76%). The ROS induction caused by higher concentrations (5 µM) of PBTDG and sorafenib were 104.95% and 122.11%, respectively.
Conclusion:The lower concentration of PBTDG produced similar cytotoxicity and apoptotic effects that were caused by a comparatively higher concentration of known anticancer drug (sorafenib). The anticancer effects of PBTDG are attributed to its tendency to disrupt mitochondrial membrane potential, induction of apoptosis and generation of ROS. Further studies are warranted to test the anticancer effects of PBTDG in animal models of cancer.
About the authors
Haseeb Khan
Department of Biochemistry, College of Science, King Saud University
Author for correspondence.
Email: info@benthamscience.net
Anvarhusein Isab
Department of Chemistry, College of Science,, King Fahd University of Petroleum and Minerals
Email: info@benthamscience.net
Abdullah Alhomida
Department of Biochemistry, College of Science, King Saud University
Email: info@benthamscience.net
Mansour Gatasheh
Department of Biochemistry, College of Science, King Saud University
Email: info@benthamscience.net
Ali Alhoshani
Department of Pharmaceutical Chemistry, College of Pharmacy,, King Fahd University of Petroleum and Minerals
Email: info@benthamscience.net
Bashayr Aldhafeeri
Department of Pharmaceutical Chemistry, College of Pharmacy,, King Saud University
Email: info@benthamscience.net
N Prasad
Department of Biochemistry and Biotechnology, Faculty of Life Sciences, Annamalai University
Email: info@benthamscience.net
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Ferlay, J.; Colombet, M.; Bray, F.; Mery, L.; Piñeros, M.; Znaor, A.; Zanetti, R. 2021. Available from: http://ci5.iarc.fr
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Key, T.J.; Verkasalo, P.K.; Banks, E. Epidemiology of breast cancer. Lancet Oncol., 2001, 2(3), 133-140. doi: 10.1016/S1470-2045(00)00254-0 PMID: 11902563
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30. doi: 10.3322/caac.21590 PMID: 31912902
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2012, 65(2), 157-170. doi: 10.1111/j.2042-7158.2012.01567.x PMID: 23278683
- Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol., 2009, 6(11), 638-647. doi: 10.1038/nrclinonc.2009.146 PMID: 19786984
- Rowinsky, E.K.; Cazenave, L.A.; Donehower, R.C. Taxol: A novel investigational antimicrotubule agent. J. Natl. Cancer Inst., 1990, 82(15), 1247-1259. doi: 10.1093/jnci/82.15.1247 PMID: 1973737
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338. doi: 10.1038/nrc1074 PMID: 12724731
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378. doi: 10.1016/j.ejphar.2014.07.025 PMID: 25058905
- Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320. doi: 10.1038/nrd1691 PMID: 15789122
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584. doi: 10.1038/nrc2167 PMID: 17625587
- Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279. doi: 10.1038/sj.onc.1206933 PMID: 14576837
- Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int., 2008, 73(9), 994-1007. doi: 10.1038/sj.ki.5002786 PMID: 18272962
- Rybak, L.P.; Mukherjea, D.; Jajoo, S.; Ramkumar, V. Cisplatin ototoxicity and protection: Clinical and experimental studies. Tohoku J. Exp. Med., 2009, 219(3), 177-186. doi: 10.1620/tjem.219.177 PMID: 19851045
- Cavaletti, G.; Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Nat. Rev. Neurol., 2010, 6(12), 657-666. doi: 10.1038/nrneurol.2010.160 PMID: 21060341
- Huaizhi, Z.; Yuantao, N. Chinas ancient gold drugs. Gold Bull., 2001, 34(1), 24-29. doi: 10.1007/BF03214805
- Benedek, T.G. The history of gold therapy for tuberculosis. J. Hist. Med. Allied Sci., 2004, 59(1), 50-89. doi: 10.1093/jhmas/jrg042 PMID: 15011812
- Sutton, B.M.; McGusty, E.; Walz, D.T.; DiMartino, M.J. Oral gold. Antiarthritic properties of alkylphosphinegold coordination complexes. J. Med. Chem., 1972, 15(11), 1095-1098. doi: 10.1021/jm00281a001 PMID: 4654656
- Mirabelli, C.K.; Johnson, R.K.; Sung, C.M.; Faucette, L.; Muirhead, K.; Crooke, S.T. Evaluation of the in vivo antitumor activity and in vitro cytotoxic properties of auranofin, a coordinated gold compound, in murine tumor models. Cancer Res., 1985, 45(1), 32-39. PMID: 3917372
- Tian, S.; Siu, F.M.; Kui, S.C.F.; Lok, C.N.; Che, C.M. Anticancer gold(i)phosphine complexes as potent autophagy-inducing agents. Chem. Commun., 2011, 47(33), 9318-9320. doi: 10.1039/c1cc11820j PMID: 21584293
- Zou, T.; Lum, C.T.; Lok, C.N.; To, W.P.; Low, K.H.; Che, C.M. A binuclear gold(I) complex with mixed bridging diphosphine and bis(N-heterocyclic carbene) ligands shows favorable thiol reactivity and inhibits tumor growth and angiogenesis in vivo. Angew. Chem. Int. Ed., 2014, 53(23), 5810-5814. doi: 10.1002/anie.201400142 PMID: 24729298
- Marzano, C.; Pellei, M.; Colavito, D.; Papini, G.; Lobbia, G.G.; Gandin, V. Anticancer potency of new gold(I) phosphine complexes containing the 5,7-dichloro-2-methyl-8-quinolinolato ligand. J. Med. Chem., 2007, 50, 4315-4321.
- Ott, I.; Gust, R.; Herscheid, J.D.M. Antitumor gold(I) NHC complexes derived from selenourea by oxidative addition of AuI(tht). Eur. J. Inorg. Chem., 2010, 2010, 5076-5080.
- Bertrand, B.; Casini, A.; Nolan, S.P. Gold (I)-mediated inhibition of VEGF(165)-induced angiogenesis: A molecular modeling approach. Chem. Commun., 2011, 47, 11146-11148.
- Navarro-Ranninger, C.; Vicente, C.; Pérez, J.M. Gold(I)-phosphine-thiolate complexes as protein kinase inhibitors. Dalton Trans., 2008, 33, 4400-4408.
- Rubbiani, R.; Kitanovic, I.; Alborzinia, H.; Can, S.; Kitanovic, A.; Onambele, L.A.; Stefanopoulou, M.; Geldmacher, Y.; Sheldrick, W.S.; Wolber, G.; Prokop, A.; Wölfl, S.; Ott, I. Benzimidazol-2-ylidene gold(I) complexes are thioredoxin reductase inhibitors with multiple antitumor properties. J. Med. Chem., 2010, 53(24), 8608-8618. doi: 10.1021/jm100801e PMID: 21082862
- Ott, I.; Gust, R. Non platinum metal complexes as anti-cancer drugs. Arch. Pharm., 2007, 340(3), 117-126. doi: 10.1002/ardp.200600151 PMID: 17315259
- Casini, A.; Messori, L.; Marcon, G. Molecular mechanisms and proposed targets for selected anticancer gold compounds. Curr. Top. Med. Chem., 2008, 8, 421-433. PMID: 22039866
- Marzo, T.; Massai, L.; Pratesi, A. Gold (I) NHC-based homodimers: The key role of a robust intramolecular sigma-hole interaction. New J. Chem., 2017, 41, 9443-9945.
- Kim, J.H.; Reeder, E.; Parkin, S.; Awuah, S.G. Gold(I/III)-phosphine complexes as potent antiproliferative agents. Sci. Rep., 2019, 9(1), 12335. doi: 10.1038/s41598-019-48584-5 PMID: 31451718
- Rubbiani, R.; Salassa, L.; de Almeida, A.; Casini, A.; Ott, I. Cytotoxic gold(I) N-heterocyclic carbene complexes with phosphane ligands as potent enzyme inhibitors. ChemMedChem, 2014, 9(6), 1205-1210. doi: 10.1002/cmdc.201400056 PMID: 24677779
- Nobili, S.; Landini, I.; Giglioni, B.; Mini, E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets, 2009, 10, 227-239. PMID: 16842217
- Jakupec, M.A.; Galanski, M.S.; Keppler, B.K. Tumour-inhibiting platinum complexesstate of the art and future perspectives. Rev. Physiol. Biochem. Pharmacol., 2003, 146, 1-53. doi: 10.1007/s10254-002-0001-x PMID: 12605304
- Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Ping, Dou Q. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des., 2010, 16(16), 1813-1825. doi: 10.2174/138161210791209009 PMID: 20337575
- Khan, H.A.; Al-Hoshani, A.; Isab, A.A.; Alhomida, A.S. A gold(III) complex with potential anticancer properties. ChemistrySelect, 2022, 7(45), e202202956. doi: 10.1002/slct.202202956
- Yang, Y.; Hall, M.D. Metal-based anticancer chemotherapeutics: Mechanisms of action and future perspectives. Chem. Asian J., 2015, 10, 1814-1834.
- Praveen, C.; Dupeux, A.; Michelet, V. Catalytic gold chemistry: From simple salts to complexes for regioselective C-H bond functionalization. Chemistry, 2021, 27(41), 10495-10532. doi: 10.1002/chem.202100785 PMID: 33904614
- Jeyaveeran, J.C.; Praveen, C.; Arun, Y.; Prince, A A M.; Perumal, P.T. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells. J. Chem. Sci., 2016, 128(5), 787-802. doi: 10.1007/s12039-016-1070-8
- Parthasarathy, K.; Praveen, C.; Jeyaveeran, J.C.; Prince, A.A.M. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4310-4317. doi: 10.1016/j.bmcl.2016.07.036 PMID: 27476145
- Praveen, C.; Ananth, D.B. Design, synthesis and cytotoxicity of pyrano4,3-bindol-1(5H)-ones: A hybrid pharmacophore approach via gold catalyzed cyclization. Bioorg. Med. Chem. Lett., 2016, 26(10), 2507-2512. doi: 10.1016/j.bmcl.2016.03.087 PMID: 27040658
- Khan, H.A.; Alghamdi, A.A.; Prasad, N.R.; Alrokayan, S.H.; Almansour, B.S.; Hatamilah, A.A.K. The role of mitochondrial dysfunction in cytotoxic effects of Solanum nigrum water extract on MCF-7 and MDA-MB-231 breast cancer cells. Frontiers in Bioscience-Landmark, 2023, 28(8), 180. doi: 10.31083/j.fbl2808180 PMID: 37664945
- Nobili, S.; Mini, E.; Landini, I.; Gabbiani, C.; Casini, A.; Messori, L. Gold compounds as anticancer agents: Chemistry, cellular pharmacology, and preclinical studies. Med. Res. Rev., 2010, 30(3), 550-580. doi: 10.1002/med.20168 PMID: 19634148
- Gorin, D.J.; Toste, F.D.; Toste, F.D. Relativistic effects in homogeneous gold catalysis. Nature, 2007, 446(7134), 395-403. doi: 10.1038/nature05592 PMID: 17377576
- Lu, Y.; Ma, X.; Chang, X.; Liang, Z.; Lv, L.; Shan, M.; Lu, Q.; Wen, Z.; Gust, R.; Liu, W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem. Soc. Rev., 2022, 51(13), 5518-5556. doi: 10.1039/D1CS00933H PMID: 35699475
- Haque, R.A.; Ghdhayeb, M.Z.; Budagumpi, S.; Khadeer Ahamed, M.B.; Abdul Majid, A.M.S. Synthesis, crystal structures, and in vitro anticancer properties of new N-heterocyclic carbene (NHC) silver(I)- and gold(I)/(III)-complexes: a rare example of silver(I)NHC complex involved in redox transmetallation. RSC Advances, 2016, 6(65), 60407-60421. doi: 10.1039/C6RA09788J
- Bonner, J.; Fisher, R.; Wilch, E.; Schutte, D.; Schutte, B. Mitochondrial haplogroups and lifespan in a population isolate. Mitochondrion, 2020, 51, 62-67. doi: 10.1016/j.mito.2019.12.004 PMID: 31887371
- Marzo, T.; Cirri, D.; Pollini, S.; Pratesi, A.; Guerri, A.; Biver, T. Gold(III) porphyrin 1a-induced lnhibition of mitochondrial function in human breast-cancer cells. Chemistry-A Eur J., 2016, 22, 6517-6522.
- Ning, P.; Huang, L.; Bao, Y.; Fu, Y.; Xu, C.; Shen, Y.; Zhou, X.; Wen, X.; Cheng, Y.; Qin, Y. Portfolio targeting strategy to realize the assembly and membrane fusion-mediated delivery of gold nanoparticles to mitochondria for enhanced NIR photothermal therapies. Bioconjug. Chem., 2020, 31(12), 2719-2725. doi: 10.1021/acs.bioconjchem.0c00518 PMID: 33226788
- Mora, M.; Gimeno, M.C.; Visbal, R. N-Heterocyclic carbene gold(I) and silver(I) complexes bearing β-Diketonate ancillary ligands: synthesis, structure, and preliminary biological assessment. Organometallics, 2017, 36, 333-342.
- Martins, E.T.; Barros, W.A.; Alegrio, L.V.; Hausmann, R.D.S.; Andó, R.A. New Gold(I) N-heterocyclic carbene complexes: Synthesis, characterization, and antiproliferative activity. Inorganics, 2018, 6, 97.
- Zhang, J.J.; Abu el Maaty, M.A.; Hoffmeister, H.; Schmidt, C.; Muenzner, J.K.; Schobert, R.; Wölfl, S.; Ott, I. A multitarget gold(I) complex induces cytotoxicity related to aneuploidy in HCT-116 colorectal carcinoma cells. Angew. Chem. Int. Ed., 2020, 59(38), 16795-16800. doi: 10.1002/anie.202006212 PMID: 32529715
- Liang, X.; Tang, M. Research advances on cytotoxicity of cadmium-containing quantum dots. J. Nanosci. Nanotechnol., 2019, 19(9), 5375-5387. doi: 10.1166/jnn.2019.16783 PMID: 30961689
- Rigobello, M.P.; Folda, A.; Baldoin, M.C.; Scutari, G.; Bindoli, A. Effect of Auranofin on the mitochondrial generation of hydrogen peroxide. Role of thioredoxin reductase. Free Radic. Res., 2005, 39(7), 687-695. doi: 10.1080/10715760500135391 PMID: 16036347
- Meyer, A.; Bagowski, C.P.; Kokoschka, M.; Stefanopoulou, M.; Alborzinia, H.; Can, S.; Vlecken, D.H.; Sheldrick, W.S.; Wölfl, S.; Ott, I. On the biological properties of alkynyl phosphine gold(I) complexes. Angew. Chem. Int. Ed., 2012, 51(35), 8895-8899. doi: 10.1002/anie.201202939 PMID: 22848030
- Yan, K.; Lok, C.N.; Bierla, K.; Che, C.M. Gold(i) complex of N,N'-disubstituted cyclic thiourea with in vitro and in vivo anticancer propertiespotent tight-binding inhibition of thioredoxin reductase. Chem. Commun., 2010, 46(41), 7691-7693. doi: 10.1039/c0cc01058h PMID: 20623063
- Zhang, J.; Zou, H.; Lei, J.; He, B.; He, X.; Sung, H.H.Y.; Kwok, R.T.K.; Lam, J.W.Y.; Zheng, L.; Tang, B.Z. Multifunctional AuI-based AIEgens: Manipulating molecular structures and boosting specific cancer cell imaging and theranostics. Angew. Chem. Int. Ed., 2020, 59(18), 7097-7105. doi: 10.1002/anie.202000048 PMID: 32049411
- Hikisz, P.; Szczupak, Ł.; Koceva-Chyła, A.; Guśpiel, A.; Oehninger, L.; Ott, I.; Therrien, B.; Solecka, J.; Kowalski, K. Anticancer and antibacterial activity studies of gold(I)-alkynyl chromones. Molecules, 2015, 20(11), 19699-19718. doi: 10.3390/molecules201119647 PMID: 26528965
- De Nisi, A.; Bergamini, C.; Leonzio, M.; Sartor, G.; Fato, R.; Naldi, M.; Monari, M.; Calonghi, N.; Bandini, M. Synthesis, cytotoxicity and anti-cancer activity of new alkynyl-gold(I) complexes. Dalton Trans., 2016, 45(4), 1546-1553. doi: 10.1039/C5DT02905H PMID: 26687209
- Mármol, I.; Castellnou, P.; Alvarez, R.; Gimeno, M.C.; Rodríguez-Yoldi, M.J.; Cerrada, E. Alkynyl Gold(I) complexes derived from 3-hydroxyflavones as multi-targeted drugs against colon cancer. Eur. J. Med. Chem., 2019, 183, 111661. doi: 10.1016/j.ejmech.2019.111661 PMID: 31546196
- Tabrizi, L.; Romanova, J. Antiproliferative Activity of Gold(I) N-Heterocyclic Carbene and triphenylphosphine complexes with ibuprofen derivatives as effective enzyme inhibitors. Appl. Organomet. Chem., 2020, 34(5), e5618. doi: 10.1002/aoc.5618
- Moreno-Alcántar, G.; Picchetti, P.; Casini, A. Gold complexes in anticancer therapy: From new design principles to particle-based delivery systems. Angew. Chem. Int. Ed., 2023, 62(22), e202218000. doi: 10.1002/anie.202218000 PMID: 36847211
Supplementary files
