Synthesis of a Novel Gold(I) Complex and Evaluation of Its Anticancer Properties in Breast Cancer Cells


Cite item

Full Text

Abstract

Background:Platinum complexes are commonly used for cancer chemotherapy; however, they are not only highly-priced but also have various side effects. It is, therefore, important to design affordable anticancer drugs with minimal side effects.

Methods:We synthesized a new gold(I) complex, PF6{(BDPEA)(TPPMS) digold(I)} (abbreviated as PBTDG) and tested its cytotoxicity in MCF-7 breast cancer cells. We also evaluated the effects of PBTDG on mitochondrial membrane potential, generation of reactive oxygen species (ROS) and apoptosis in breast cancer cells.

Results:The IC50 values for PBTDG and sorafenib were found to be 1.48 µM and 4.45 µM, respectively. Exposure to PBTDG caused significant and concentration-dependent depletion of ATP and disruption of mitochondrial membrane potential. PBTDG induced 2.6, 3.6, and 5.7-fold apoptosis for 1 µM, 3 µM, and 10 µM concentrations, respectively. The induction of apoptosis by the same concentrations of sorafenib was 1.2, 1.3, and 1.6-fold, respectively. The low concentration of PBTDG (1 µM) induced the generation of ROS by 99.83%, which was significantly higher than the ROS generation caused by the same concentration of sorafenib (73.76%). The ROS induction caused by higher concentrations (5 µM) of PBTDG and sorafenib were 104.95% and 122.11%, respectively.

Conclusion:The lower concentration of PBTDG produced similar cytotoxicity and apoptotic effects that were caused by a comparatively higher concentration of known anticancer drug (sorafenib). The anticancer effects of PBTDG are attributed to its tendency to disrupt mitochondrial membrane potential, induction of apoptosis and generation of ROS. Further studies are warranted to test the anticancer effects of PBTDG in animal models of cancer.

About the authors

Haseeb Khan

Department of Biochemistry, College of Science, King Saud University

Author for correspondence.
Email: info@benthamscience.net

Anvarhusein Isab

Department of Chemistry, College of Science,, King Fahd University of Petroleum and Minerals

Email: info@benthamscience.net

Abdullah Alhomida

Department of Biochemistry, College of Science, King Saud University

Email: info@benthamscience.net

Mansour Gatasheh

Department of Biochemistry, College of Science, King Saud University

Email: info@benthamscience.net

Ali Alhoshani

Department of Pharmaceutical Chemistry, College of Pharmacy,, King Fahd University of Petroleum and Minerals

Email: info@benthamscience.net

Bashayr Aldhafeeri

Department of Pharmaceutical Chemistry, College of Pharmacy,, King Saud University

Email: info@benthamscience.net

N Prasad

Department of Biochemistry and Biotechnology, Faculty of Life Sciences, Annamalai University

Email: info@benthamscience.net

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Ferlay, J.; Colombet, M.; Bray, F.; Mery, L.; Piñeros, M.; Znaor, A.; Zanetti, R. 2021. Available from: http://ci5.iarc.fr
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Key, T.J.; Verkasalo, P.K.; Banks, E. Epidemiology of breast cancer. Lancet Oncol., 2001, 2(3), 133-140. doi: 10.1016/S1470-2045(00)00254-0 PMID: 11902563
  5. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30. doi: 10.3322/caac.21590 PMID: 31912902
  6. Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2012, 65(2), 157-170. doi: 10.1111/j.2042-7158.2012.01567.x PMID: 23278683
  7. Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol., 2009, 6(11), 638-647. doi: 10.1038/nrclinonc.2009.146 PMID: 19786984
  8. Rowinsky, E.K.; Cazenave, L.A.; Donehower, R.C. Taxol: A novel investigational antimicrotubule agent. J. Natl. Cancer Inst., 1990, 82(15), 1247-1259. doi: 10.1093/jnci/82.15.1247 PMID: 1973737
  9. Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338. doi: 10.1038/nrc1074 PMID: 12724731
  10. Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378. doi: 10.1016/j.ejphar.2014.07.025 PMID: 25058905
  11. Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320. doi: 10.1038/nrd1691 PMID: 15789122
  12. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584. doi: 10.1038/nrc2167 PMID: 17625587
  13. Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279. doi: 10.1038/sj.onc.1206933 PMID: 14576837
  14. Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int., 2008, 73(9), 994-1007. doi: 10.1038/sj.ki.5002786 PMID: 18272962
  15. Rybak, L.P.; Mukherjea, D.; Jajoo, S.; Ramkumar, V. Cisplatin ototoxicity and protection: Clinical and experimental studies. Tohoku J. Exp. Med., 2009, 219(3), 177-186. doi: 10.1620/tjem.219.177 PMID: 19851045
  16. Cavaletti, G.; Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Nat. Rev. Neurol., 2010, 6(12), 657-666. doi: 10.1038/nrneurol.2010.160 PMID: 21060341
  17. Huaizhi, Z.; Yuantao, N. China’s ancient gold drugs. Gold Bull., 2001, 34(1), 24-29. doi: 10.1007/BF03214805
  18. Benedek, T.G. The history of gold therapy for tuberculosis. J. Hist. Med. Allied Sci., 2004, 59(1), 50-89. doi: 10.1093/jhmas/jrg042 PMID: 15011812
  19. Sutton, B.M.; McGusty, E.; Walz, D.T.; DiMartino, M.J. Oral gold. Antiarthritic properties of alkylphosphinegold coordination complexes. J. Med. Chem., 1972, 15(11), 1095-1098. doi: 10.1021/jm00281a001 PMID: 4654656
  20. Mirabelli, C.K.; Johnson, R.K.; Sung, C.M.; Faucette, L.; Muirhead, K.; Crooke, S.T. Evaluation of the in vivo antitumor activity and in vitro cytotoxic properties of auranofin, a coordinated gold compound, in murine tumor models. Cancer Res., 1985, 45(1), 32-39. PMID: 3917372
  21. Tian, S.; Siu, F.M.; Kui, S.C.F.; Lok, C.N.; Che, C.M. Anticancer gold(i)–phosphine complexes as potent autophagy-inducing agents. Chem. Commun., 2011, 47(33), 9318-9320. doi: 10.1039/c1cc11820j PMID: 21584293
  22. Zou, T.; Lum, C.T.; Lok, C.N.; To, W.P.; Low, K.H.; Che, C.M. A binuclear gold(I) complex with mixed bridging diphosphine and bis(N-heterocyclic carbene) ligands shows favorable thiol reactivity and inhibits tumor growth and angiogenesis in vivo. Angew. Chem. Int. Ed., 2014, 53(23), 5810-5814. doi: 10.1002/anie.201400142 PMID: 24729298
  23. Marzano, C.; Pellei, M.; Colavito, D.; Papini, G.; Lobbia, G.G.; Gandin, V. Anticancer potency of new gold(I) phosphine complexes containing the 5,7-dichloro-2-methyl-8-quinolinolato ligand. J. Med. Chem., 2007, 50, 4315-4321.
  24. Ott, I.; Gust, R.; Herscheid, J.D.M. Antitumor gold(I) NHC complexes derived from selenourea by oxidative addition of AuI(tht). Eur. J. Inorg. Chem., 2010, 2010, 5076-5080.
  25. Bertrand, B.; Casini, A.; Nolan, S.P. Gold (I)-mediated inhibition of VEGF(165)-induced angiogenesis: A molecular modeling approach. Chem. Commun., 2011, 47, 11146-11148.
  26. Navarro-Ranninger, C.; Vicente, C.; Pérez, J.M. Gold(I)-phosphine-thiolate complexes as protein kinase inhibitors. Dalton Trans., 2008, 33, 4400-4408.
  27. Rubbiani, R.; Kitanovic, I.; Alborzinia, H.; Can, S.; Kitanovic, A.; Onambele, L.A.; Stefanopoulou, M.; Geldmacher, Y.; Sheldrick, W.S.; Wolber, G.; Prokop, A.; Wölfl, S.; Ott, I. Benzimidazol-2-ylidene gold(I) complexes are thioredoxin reductase inhibitors with multiple antitumor properties. J. Med. Chem., 2010, 53(24), 8608-8618. doi: 10.1021/jm100801e PMID: 21082862
  28. Ott, I.; Gust, R. Non platinum metal complexes as anti-cancer drugs. Arch. Pharm., 2007, 340(3), 117-126. doi: 10.1002/ardp.200600151 PMID: 17315259
  29. Casini, A.; Messori, L.; Marcon, G. Molecular mechanisms and proposed targets for selected anticancer gold compounds. Curr. Top. Med. Chem., 2008, 8, 421-433. PMID: 22039866
  30. Marzo, T.; Massai, L.; Pratesi, A. Gold (I) NHC-based homodimers: The key role of a robust intramolecular sigma-hole interaction. New J. Chem., 2017, 41, 9443-9945.
  31. Kim, J.H.; Reeder, E.; Parkin, S.; Awuah, S.G. Gold(I/III)-phosphine complexes as potent antiproliferative agents. Sci. Rep., 2019, 9(1), 12335. doi: 10.1038/s41598-019-48584-5 PMID: 31451718
  32. Rubbiani, R.; Salassa, L.; de Almeida, A.; Casini, A.; Ott, I. Cytotoxic gold(I) N-heterocyclic carbene complexes with phosphane ligands as potent enzyme inhibitors. ChemMedChem, 2014, 9(6), 1205-1210. doi: 10.1002/cmdc.201400056 PMID: 24677779
  33. Nobili, S.; Landini, I.; Giglioni, B.; Mini, E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets, 2009, 10, 227-239. PMID: 16842217
  34. Jakupec, M.A.; Galanski, M.S.; Keppler, B.K. Tumour-inhibiting platinum complexes—state of the art and future perspectives. Rev. Physiol. Biochem. Pharmacol., 2003, 146, 1-53. doi: 10.1007/s10254-002-0001-x PMID: 12605304
  35. Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Ping, Dou Q. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des., 2010, 16(16), 1813-1825. doi: 10.2174/138161210791209009 PMID: 20337575
  36. Khan, H.A.; Al-Hoshani, A.; Isab, A.A.; Alhomida, A.S. A gold(III) complex with potential anticancer properties. ChemistrySelect, 2022, 7(45), e202202956. doi: 10.1002/slct.202202956
  37. Yang, Y.; Hall, M.D. Metal-based anticancer chemotherapeutics: Mechanisms of action and future perspectives. Chem. Asian J., 2015, 10, 1814-1834.
  38. Praveen, C.; Dupeux, A.; Michelet, V. Catalytic gold chemistry: From simple salts to complexes for regioselective C-H bond functionalization. Chemistry, 2021, 27(41), 10495-10532. doi: 10.1002/chem.202100785 PMID: 33904614
  39. Jeyaveeran, J.C.; Praveen, C.; Arun, Y.; Prince, A A M.; Perumal, P.T. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells. J. Chem. Sci., 2016, 128(5), 787-802. doi: 10.1007/s12039-016-1070-8
  40. Parthasarathy, K.; Praveen, C.; Jeyaveeran, J.C.; Prince, A.A.M. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(17), 4310-4317. doi: 10.1016/j.bmcl.2016.07.036 PMID: 27476145
  41. Praveen, C.; Ananth, D.B. Design, synthesis and cytotoxicity of pyrano4,3-bindol-1(5H)-ones: A hybrid pharmacophore approach via gold catalyzed cyclization. Bioorg. Med. Chem. Lett., 2016, 26(10), 2507-2512. doi: 10.1016/j.bmcl.2016.03.087 PMID: 27040658
  42. Khan, H.A.; Alghamdi, A.A.; Prasad, N.R.; Alrokayan, S.H.; Almansour, B.S.; Hatamilah, A.A.K. The role of mitochondrial dysfunction in cytotoxic effects of Solanum nigrum water extract on MCF-7 and MDA-MB-231 breast cancer cells. Frontiers in Bioscience-Landmark, 2023, 28(8), 180. doi: 10.31083/j.fbl2808180 PMID: 37664945
  43. Nobili, S.; Mini, E.; Landini, I.; Gabbiani, C.; Casini, A.; Messori, L. Gold compounds as anticancer agents: Chemistry, cellular pharmacology, and preclinical studies. Med. Res. Rev., 2010, 30(3), 550-580. doi: 10.1002/med.20168 PMID: 19634148
  44. Gorin, D.J.; Toste, F.D.; Toste, F.D. Relativistic effects in homogeneous gold catalysis. Nature, 2007, 446(7134), 395-403. doi: 10.1038/nature05592 PMID: 17377576
  45. Lu, Y.; Ma, X.; Chang, X.; Liang, Z.; Lv, L.; Shan, M.; Lu, Q.; Wen, Z.; Gust, R.; Liu, W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem. Soc. Rev., 2022, 51(13), 5518-5556. doi: 10.1039/D1CS00933H PMID: 35699475
  46. Haque, R.A.; Ghdhayeb, M.Z.; Budagumpi, S.; Khadeer Ahamed, M.B.; Abdul Majid, A.M.S. Synthesis, crystal structures, and in vitro anticancer properties of new N-heterocyclic carbene (NHC) silver(I)- and gold(I)/(III)-complexes: a rare example of silver(I)–NHC complex involved in redox transmetallation. RSC Advances, 2016, 6(65), 60407-60421. doi: 10.1039/C6RA09788J
  47. Bonner, J.; Fisher, R.; Wilch, E.; Schutte, D.; Schutte, B. Mitochondrial haplogroups and lifespan in a population isolate. Mitochondrion, 2020, 51, 62-67. doi: 10.1016/j.mito.2019.12.004 PMID: 31887371
  48. Marzo, T.; Cirri, D.; Pollini, S.; Pratesi, A.; Guerri, A.; Biver, T. Gold(III) porphyrin 1a-induced lnhibition of mitochondrial function in human breast-cancer cells. Chemistry-A Eur J., 2016, 22, 6517-6522.
  49. Ning, P.; Huang, L.; Bao, Y.; Fu, Y.; Xu, C.; Shen, Y.; Zhou, X.; Wen, X.; Cheng, Y.; Qin, Y. Portfolio targeting strategy to realize the assembly and membrane fusion-mediated delivery of gold nanoparticles to mitochondria for enhanced NIR photothermal therapies. Bioconjug. Chem., 2020, 31(12), 2719-2725. doi: 10.1021/acs.bioconjchem.0c00518 PMID: 33226788
  50. Mora, M.; Gimeno, M.C.; Visbal, R. N-Heterocyclic carbene gold(I) and silver(I) complexes bearing β-Diketonate ancillary ligands: synthesis, structure, and preliminary biological assessment. Organometallics, 2017, 36, 333-342.
  51. Martins, E.T.; Barros, W.A.; Alegrio, L.V.; Hausmann, R.D.S.; Andó, R.A. New Gold(I) N-heterocyclic carbene complexes: Synthesis, characterization, and antiproliferative activity. Inorganics, 2018, 6, 97.
  52. Zhang, J.J.; Abu el Maaty, M.A.; Hoffmeister, H.; Schmidt, C.; Muenzner, J.K.; Schobert, R.; Wölfl, S.; Ott, I. A multitarget gold(I) complex induces cytotoxicity related to aneuploidy in HCT-116 colorectal carcinoma cells. Angew. Chem. Int. Ed., 2020, 59(38), 16795-16800. doi: 10.1002/anie.202006212 PMID: 32529715
  53. Liang, X.; Tang, M. Research advances on cytotoxicity of cadmium-containing quantum dots. J. Nanosci. Nanotechnol., 2019, 19(9), 5375-5387. doi: 10.1166/jnn.2019.16783 PMID: 30961689
  54. Rigobello, M.P.; Folda, A.; Baldoin, M.C.; Scutari, G.; Bindoli, A. Effect of Auranofin on the mitochondrial generation of hydrogen peroxide. Role of thioredoxin reductase. Free Radic. Res., 2005, 39(7), 687-695. doi: 10.1080/10715760500135391 PMID: 16036347
  55. Meyer, A.; Bagowski, C.P.; Kokoschka, M.; Stefanopoulou, M.; Alborzinia, H.; Can, S.; Vlecken, D.H.; Sheldrick, W.S.; Wölfl, S.; Ott, I. On the biological properties of alkynyl phosphine gold(I) complexes. Angew. Chem. Int. Ed., 2012, 51(35), 8895-8899. doi: 10.1002/anie.201202939 PMID: 22848030
  56. Yan, K.; Lok, C.N.; Bierla, K.; Che, C.M. Gold(i) complex of N,N'-disubstituted cyclic thiourea with in vitro and in vivo anticancer properties—potent tight-binding inhibition of thioredoxin reductase. Chem. Commun., 2010, 46(41), 7691-7693. doi: 10.1039/c0cc01058h PMID: 20623063
  57. Zhang, J.; Zou, H.; Lei, J.; He, B.; He, X.; Sung, H.H.Y.; Kwok, R.T.K.; Lam, J.W.Y.; Zheng, L.; Tang, B.Z. Multifunctional AuI-based AIEgens: Manipulating molecular structures and boosting specific cancer cell imaging and theranostics. Angew. Chem. Int. Ed., 2020, 59(18), 7097-7105. doi: 10.1002/anie.202000048 PMID: 32049411
  58. Hikisz, P.; Szczupak, Ł.; Koceva-Chyła, A.; Guśpiel, A.; Oehninger, L.; Ott, I.; Therrien, B.; Solecka, J.; Kowalski, K. Anticancer and antibacterial activity studies of gold(I)-alkynyl chromones. Molecules, 2015, 20(11), 19699-19718. doi: 10.3390/molecules201119647 PMID: 26528965
  59. De Nisi, A.; Bergamini, C.; Leonzio, M.; Sartor, G.; Fato, R.; Naldi, M.; Monari, M.; Calonghi, N.; Bandini, M. Synthesis, cytotoxicity and anti-cancer activity of new alkynyl-gold(I) complexes. Dalton Trans., 2016, 45(4), 1546-1553. doi: 10.1039/C5DT02905H PMID: 26687209
  60. Mármol, I.; Castellnou, P.; Alvarez, R.; Gimeno, M.C.; Rodríguez-Yoldi, M.J.; Cerrada, E. Alkynyl Gold(I) complexes derived from 3-hydroxyflavones as multi-targeted drugs against colon cancer. Eur. J. Med. Chem., 2019, 183, 111661. doi: 10.1016/j.ejmech.2019.111661 PMID: 31546196
  61. Tabrizi, L.; Romanova, J. Antiproliferative Activity of Gold(I) N-Heterocyclic Carbene and triphenylphosphine complexes with ibuprofen derivatives as effective enzyme inhibitors. Appl. Organomet. Chem., 2020, 34(5), e5618. doi: 10.1002/aoc.5618
  62. Moreno-Alcántar, G.; Picchetti, P.; Casini, A. Gold complexes in anticancer therapy: From new design principles to particle-based delivery systems. Angew. Chem. Int. Ed., 2023, 62(22), e202218000. doi: 10.1002/anie.202218000 PMID: 36847211

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers