Modulation of Caco-2 Colon Cancer Cell Viability and CYP2W1 Gene Expression by Hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) Cell-free Supernatants


Cite item

Full Text

Abstract

Background and Objective:Ensuring colon homeostasis is of significant influence on colon cancer and delicate balance is maintained by a healthy human gut microbiota. Probiotics can modulate the diversity of the gut microbiome and prevent colon cancer. Metabolites/byproducts generated by microbial metabolism significantly impact the healthy colonic environment. Hesperidin is a polyphenolic plant compound well known for its anticancer properties. However, low bioavailability of hesperidin after digestion impedes its effectiveness. CYP2W1 is a newly discovered oncofetal gene with an unknown function. CYP2W1 gene expression peaks during embryonic development and is suddenly silenced immediately after birth. Only in the case of some types of cancer, particularly colorectal and hepatocellular carcinomas, this gene is reactivated and its expression is correlated with the severity of the disease. This study aimed to investigate the effects of hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) cell-free supernatants on CaCo2 colon cancer cell viability and CYP2W1 gene expression.

Methods:Alamar Blue cell viability assay was used to investigate the cytotoxic effect of cell-free supernatant of LGG grown in the presence of hesperidin on CaCo2 cells. To observe the effect of cell-free supernatants of LGG on the expression of CYP2W1 gene, qRT-PCR was performed.

Results:Five times diluted hesperidin treated cell-free supernatant (CFS) concentration considerably reduced CaCo2 colon cancer cell viability. Furthermore, CYP2W1 gene expression was similarly reduced following CFS treatments and nearly silenced under probiotic bacteria CFS treatment.

Conclusion:The CYP2W1 gene expression was strongly reduced by cell-free supernatants derived from LGG culture, with or without hesperidin. This suggests that the suppression may be due to bacterial byproducts rather than hesperidin. Therefore, the CYP2W1 gene in the case of deregulation of these metabolites may cause CYP2W1-related colon cancer cell proliferation.

About the authors

Merve Akkulak

Department of Biological Sciences, Faculty of Science,, Middle East Technical University

Email: info@benthamscience.net

Emre Evin

Department of Biological Sciences, Faculty of Science,, Middle East Technical University

Email: info@benthamscience.net

Ozlem Durukan

Department of Biological Sciences, Faculty of Science,, Middle East Technical University

Email: info@benthamscience.net

Hasan Celebioglu

Department of Biotechnology, Faculty of Science, Bartin University

Email: info@benthamscience.net

Orhan Adali

Department of Biological Sciences, Faculty of Science, Middle East Technical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174. doi: 10.1016/j.tranon.2021.101174 PMID: 34243011
  2. dos Reis, S.A.; da Conceição, L.L.; Siqueira, N.P.; Rosa, D.D.; da Silva, L.L.; Peluzio, M.C.G. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res., 2017, 37, 1-19. doi: 10.1016/j.nutres.2016.11.009 PMID: 28215310
  3. Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers, 2019, 11(1), 38. doi: 10.3390/cancers11010038 PMID: 30609850
  4. Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis., 2015, 26, 26191. PMID: 25651997
  5. Ambalam, P.; Raman, M.; Purama, R.K.; Doble, M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract. Res. Clin. Gastroenterol., 2016, 30(1), 119-131. doi: 10.1016/j.bpg.2016.02.009 PMID: 27048903
  6. Fong, W.; Li, Q.; Yu, J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene, 2020, 39(26), 4925-4943. doi: 10.1038/s41388-020-1341-1 PMID: 32514151
  7. Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek, 2020, 113(12), 2019-2040. doi: 10.1007/s10482-020-01474-7 PMID: 33136284
  8. Zhong, L.; Zhang, X.; Covasa, M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol., 2014, 20(24), 7878-7886. doi: 10.3748/wjg.v20.i24.7878 PMID: 24976724
  9. Banna, G.L.; Torino, F.; Marletta, F.; Santagati, M.; Salemi, R.; Cannarozzo, E.; Falzone, L.; Ferraù, F.; Libra, M. Lactobacillus rhamnosus GG: An overview to explore the rationale of its use in cancer. Front. Pharmacol., 2017, 8, 603. doi: 10.3389/fphar.2017.00603 PMID: 28919861
  10. Behzadi, E.; Mahmoodzadeh, H.H.; Imani, F.A.A. The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells. Microb. Pathog., 2017, 110, 1-6. doi: 10.1016/j.micpath.2017.06.016 PMID: 28634130
  11. Cheng, Z.; Xu, H.; Wang, X.; Liu, Z. Lactobacillus raises in vitro anticancer effect of geniposide in HSC 3 human oral squamous cell carcinoma cells. Exp. Ther. Med., 2017, 14(5), 4586-4594. doi: 10.3892/etm.2017.5105 PMID: 29104666
  12. Si, W.; Liang, H.; Bugno, J.; Xu, Q.; Ding, X.; Yang, K.; Fu, Y.; Weichselbaum, R.R.; Zhao, X.; Wang, L. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade. Gut, 2022, 71(3), 521-533. doi: 10.1136/gutjnl-2020-323426 PMID: 33685966
  13. Peng, M.; Lee, S.H.; Rahaman, S.O.; Biswas, D. Dietary probiotic and metabolites improve intestinal homeostasis and prevent colorectal cancer. Food Funct., 2020, 11(12), 10724-10735. doi: 10.1039/D0FO02652B PMID: 33231228
  14. Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol., 2018, 75, 105-114. doi: 10.1016/j.tifs.2018.03.009
  15. Maghsood, F.; Johari, B.; Rohani, M.; Madanchi, H.; Saltanatpour, Z.; Kadivar, M. Anti-proliferative and anti-metastatic potential of high molecular weight secretory molecules from probiotic lactobacillus reuteri cell-free supernatant against human colon cancer stem-like cells (HT29-ShE). Int. J. Pept. Res. Ther., 2020, 26(4), 2619-2631. doi: 10.1007/s10989-020-10049-z
  16. Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother., 2021, 140, 111596. doi: 10.1016/j.biopha.2021.111596 PMID: 34126315
  17. Ponte, L.G.S.; Pavan, I.C.B.; Mancini, M.C.S.; da Silva, L.G.S.; Morelli, A.P.; Severino, M.B.; Bezerra, R.M.N.; Simabuco, F.M. The hallmarks of flavonoids in cancer. Molecules, 2021, 26(7), 2029. doi: 10.3390/molecules26072029 PMID: 33918290
  18. Tiwari, A.K. Imbalance in antioxidant defence and human diseases: Multiple approach of natural antioxidants therapy. Curr. Sci., 2001, 81(9), 1179-1187.
  19. Aggarwal, V.; Tuli, H.S.; Thakral, F.; Singhal, P.; Aggarwal, D.; Srivastava, S.; Pandey, A.; Sak, K.; Varol, M.; Khan, M.A.; Sethi, G. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp. Biol. Med., 2020, 245(5), 486-497. doi: 10.1177/1535370220903671 PMID: 32050794
  20. Mas-Capdevila, A.; Teichenne, J.; Domenech-Coca, C.; Caimari, A.; Del Bas, J.M.; Escoté, X.; Crescenti, A. Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. Nutrients, 2020, 12(5), 1488. doi: 10.3390/nu12051488 PMID: 32443766
  21. Hollenberg, P.F.; Hager, L.P. The P-450 nature of the carbon monoxide complex of ferrous chloroperoxidase. J. Biol. Chem., 1973, 248(7), 2630-2633. doi: 10.1016/S0021-9258(19)44155-0 PMID: 4698233
  22. Nebert, D.W.; Russell, D.W. Clinical importance of the cytochromes P450. Lancet, 2002, 360(9340), 1155-1162. doi: 10.1016/S0140-6736(02)11203-7 PMID: 12387968
  23. Nebert, D.W.; Dalton, T.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer, 2006, 6(12), 947-960. doi: 10.1038/nrc2015 PMID: 17128211
  24. Omura, T. Mitochondrial P450s. Chem. Biol. Interact., 2006, 163(1-2), 86-93. doi: 10.1016/j.cbi.2006.06.008 PMID: 16884708
  25. Hafner, M.; Rezen, T.; Rozman, D. Regulation of hepatic cytochromes p450 by lipids and cholesterol. Curr. Drug Metab., 2011, 12(2), 173-185. doi: 10.2174/138920011795016890 PMID: 21395540
  26. Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141. doi: 10.1016/j.pharmthera.2012.12.007 PMID: 23333322
  27. Choudhary, D.; Jansson, I.; Stoilov, I.; Sarfarazi, M.; Schenkman, J.B. Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch. Biochem. Biophys., 2005, 436(1), 50-61. doi: 10.1016/j.abb.2005.02.001 PMID: 15752708
  28. Girault, I.; Rougier, N.; Chesné, C.; Lidereau, R.; Beaune, P.; Bieche, I.; de Waziers, I. Simultaneous measurement of 23 isoforms from the human cytochrome P450 families 1 to 3 by quantitative reverse transcriptase-polymerase chain reaction. Drug Metab. Dispos., 2005, 33(12), 1803-1810. PMID: 16135659
  29. Choong, E.; Guo, J.; Persson, A.; Virding, S.; Johansson, I.; Mkrtchian, S.; Ingelman-Sundberg, M. Developmental regulation and induction of cytochrome P450 2W1, an enzyme expressed in colon tumors. PLoS One, 2015, 10(4), e0122820. doi: 10.1371/journal.pone.0122820 PMID: 25844926
  30. Karlgren, M.; Gomez, A.; Stark, K.; Svärd, J.; Rodriguez-Antona, C.; Oliw, E.; Bernal, M.L.; y Cajal, S.R.; Johansson, I.; Ingelman-Sundberg, M. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun., 2006, 341(2), 451-458. doi: 10.1016/j.bbrc.2005.12.200 PMID: 16426568
  31. Gomez, A.; Karlgren, M.; Edler, D.; Bernal, M.L.; Mkrtchian, S.; Ingelman-Sundberg, M. Expression of CYP2W1 in colon tumors: Regulation by gene methylation. Pharmacogenomics, 2007, 8(10), 1315-1325. doi: 10.2217/14622416.8.10.1315 PMID: 17979506
  32. Zhang, K.; Jiang, L.; He, R.; Li, B.L.; Jia, Z.; Huang, R.H.; Mu, Y. Prognostic value of CYP2W1 expression in patients with human hepatocellular carcinoma. Tumour Biol., 2014, 35(8), 7669-7673. doi: 10.1007/s13277-014-2023-9 PMID: 24801906
  33. Fei-Lei Chung, F.; Wai, M. C.; Yuen Ng, P.; Leong, C.O. Cytochrome P450 2W1 (CYP2W1) in colorectal cancers. Curr. Cancer Drug Targets, 2015, 16(1), 71-78. doi: 10.2174/1568009616888151112095948 PMID: 26563883
  34. Edler, D.; Stenstedt, K.; Öhrling, K.; Hallström, M.; Karlgren, M.; Ingelman-Sundberg, M.; Ragnhammar, P. The expression of the novel CYP2W1 enzyme is an independent prognostic factor in colorectal cancer – A pilot study. Eur. J. Cancer, 2009, 45(4), 705-712. doi: 10.1016/j.ejca.2008.11.031 PMID: 19118998
  35. Stenstedt, K.; Hallstrom, M.; Johansson, I.; Ingelman-Sundberg, M.; Ragnhammar, P.; Edler, D. The expression of CYP2W1: A prognostic marker in colon cancer. Anticancer Res., 2012, 32(9), 3869-3874. PMID: 22993331
  36. Stenstedt, K.; Hallstrom, M.; Lédel, F.; Ragnhammar, P.; Ingelman-Sundberg, M.; Johansson, I.; Edler, D. The expression of CYP2W1 in colorectal primary tumors, corresponding lymph node metastases and liver metastases. Acta Oncol., 2014, 53(7), 885-891. doi: 10.3109/0284186X.2014.887224 PMID: 24625228
  37. Celebioglu, H.U.; Delsoglio, M.; Brix, S.; Pessione, E.; Svensson, B. Plant polyphenols stimulate adhesion to intestinal mucosa and induce proteome changes in the probiotic Lactobacillus acidophilus NCFM. Mol. Nutr. Food Res., 2018, 62(4), 1700638. doi: 10.1002/mnfr.201700638 PMID: 29205785
  38. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408. doi: 10.1006/meth.2001.1262 PMID: 11846609
  39. Rendic, S.; Guengerich, F.P. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem. Res. Toxicol., 2015, 28(1), 38-42. doi: 10.1021/tx500444e PMID: 25485457
  40. Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; Qin, S. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci., 2021, 22(23), 12808. doi: 10.3390/ijms222312808 PMID: 34884615
  41. Kyselova, Z. Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip. Toxicol., 2011, 4(4), 173-183. doi: 10.2478/v10102-011-0027-5 PMID: 22319251
  42. Doostdar, H.; Burke, M.D.; Mayer, R.T. Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology, 2000, 144(1-3), 31-38. doi: 10.1016/S0300-483X(99)00215-2 PMID: 10781868
  43. Danneskiold-Samsøe, N.B.; Dias de Freitas Queiroz Barros, H.; Santos, R.; Bicas, J.L.; Cazarin, C.B.B.; Madsen, L.; Kristiansen, K.; Pastore, G.M.; Brix, S.; Maróstica, J.M.R. Interplay between food and gut microbiota in health and disease. Food Res. Int., 2019, 115, 23-31. doi: 10.1016/j.foodres.2018.07.043 PMID: 30599936
  44. Anhê, F.F.; Nachbar, R.T.; Varin, T.V.; Trottier, J.; Dudonné, S.; Le Barz, M.; Feutry, P.; Pilon, G.; Barbier, O.; Desjardins, Y.; Roy, D.; Marette, A. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut, 2019, 68(3), 453-464. doi: 10.1136/gutjnl-2017-315565 PMID: 30064988
  45. Chmykhalo, V.; Zolotukhin, P.; Pakhomov, V.; Prutskov, A.; Khairullina, S.; Zubtsov, V.; Egyan, M. Approaches to probiotics properties testing using CaCo2 cells. E3S Web of Conferences, 2020, 175, 03024.
  46. Yi, Z.; Yu, Y.; Liang, Y.; Zeng, B. In vitro antioxidant and antimicrobial activities of the extract of Pericarpium citri reticulatae of a new citrus cultivar and its main flavonoids. Lebensm. Wiss. Technol., 2008, 41(4), 597-603. doi: 10.1016/j.lwt.2007.04.008
  47. Perche, O.; Vergnaud-Gauduchon, J.; Morand, C.; Dubray, C.; Mazur, A.; Vasson, M.P. Orange juice and its major polyphenol hesperidin consumption do not induce immunomodulation in healthy well-nourished humans. Clin. Nutr., 2014, 33(1), 130-135. doi: 10.1016/j.clnu.2013.03.012 PMID: 23602614
  48. Pla-Pagà, L.; Companys, J.; Calderón-Pérez, L.; Llauradó, E.; Solà, R.; Valls, R.M.; Pedret, A. Effects of hesperidin consumption on cardiovascular risk biomarkers: A systematic review of animal studies and human randomized clinical trials. Nutr. Rev., 2019, 77(12), 845-864. doi: 10.1093/nutrit/nuz036 PMID: 31271436
  49. Takahashi, K.; Sugi, Y.; Nakano, K.; Tsuda, M.; Kurihara, K.; Hosono, A.; Kaminogawa, S. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J. Biol. Chem., 2011, 286(41), 35755-35762. doi: 10.1074/jbc.M111.271007 PMID: 21862578
  50. Bhat, M.I.; Kapila, R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr. Rev., 2017, 75(5), 374-389. doi: 10.1093/nutrit/nux001 PMID: 28444216
  51. Dashwood, R.; Ho, E. Dietary histone deacetylase inhibitors: From cells to mice to man. Semin. Cancer Biol., 2007, 17(5), 363-369. doi: 10.1016/j.semcancer.2007.04.001 PMID: 17555985

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers