Anti-lung Cancer Activity of Synthesized Substituted 1,4-Benzothiazines: An Insight from Molecular Docking and Experimental Studies

  • Authors: Amin A.1, Zubaid-Ul-Khazir 2, Ji A.3, Bhat B.4, Murtaza D.5, Hurrah A.6, Bhat I.7, Parveen S.8, Nisar S.9, Sharma P.K.10
  • Affiliations:
    1. Department of Chemistry, School of Chemical Engineering and Physical Sciences,, Lovely Professional University
    2. Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology
    3. Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology,
    4. Department of Bioresources, School of Biological Sciences,, University of Kashmir
    5. Transcriptomics Laboratory, Division of Plant Biotechnology,, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir
    6. Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir
    7. Department of Endocrinology,, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir
    8. Department of Gastroenterology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir
    9. Department of Medical Oncology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir
    10. Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University
  • Issue: Vol 24, No 5 (2024)
  • Pages: 358-371
  • Section: Oncology
  • URL: https://snv63.ru/1871-5206/article/view/644186
  • DOI: https://doi.org/10.2174/0118715206276737231103114924
  • ID: 644186

Cite item

Full Text

Abstract

Background:Thiazine, a 6-membered distinctive heterocyclic motif with sulfur and nitrogen atoms, is one of the heterocyclic compounds that functions as a core scaffold in a number of medicinally significant molecules. Small thiazine-based compounds may operate simultaneously on numerous therapeutic targets and by employing a variety of methods to halt the development, proliferation, and vasculature of cancer cells. We have, herein, reported a series of substituted 1,4 benzothiazines as potential anticancer agents for the treatment of lung cancer.

Methods:In order to synthesize 2,3-disubstituted-1,4 benzothiazines in good yield, a facile green approach for the oxidative cycloaddition of 2-amino benzenethiol and 1,3-dicarbonyls employing a catalytic amount of ceric ammonium nitrate has been devised. All the molecules have been characterized by spectral analysis and tested for anticancer activity against the A-549 lung cancer cell line using various functional assays. Further in silico screening of compound 3c against six crucial inflammatory molecular targets, such as Il1-α (PDB ID: 5UC6), Il1- β (PDB ID: 6Y8I), Il6 (PDB ID: 1P9M), vimentin (PDB ID: 3TRT), COX-2 (PDB ID: 5KIR), Il8 (PDB ID: 5D14), and TNF-α (PDB ID: 2AZ5), was done using AutoDock tool.

Results:Among the synthesized compounds, propyl 3-methyl-3,4-dihydro-2H-benzo[b][1,4]thiazine-2- carboxylate (3c) was found to be most active based on cell viability assays using A-549 lung cancer cell line and was found to effectively downregulate various pro-inflammatory genes, like Il1-α, Il1-β, Il6, vimentin, COX-2, Il8, and TNF-α in vitro. The ability of the molecule to effectively suppress the proliferation and migration of lung cancer cells in vitro has been further demonstrated by the colony formation unit assay and wound healing assay. Molecular docking analysis showed the maximal binding affinity (− 7.54 kcal/mol) to be exhibited by compound 3c against IL8.

Conclusion:A green unconventional route for the synthesis of 2,3-disubstituted-1,4 benzothiazines has been developed. All the molecules were screened for their activity against lung cancer and the data suggested that the presence of an additional unbranched alkyl group attached to the thiazine ring increased their activity. Also, in vitro and in silico modeling confirmed the anti-cancer efficiency of compound 3c, encouraging the exploration of such small molecules against cancer.

About the authors

Andleeb Amin

Department of Chemistry, School of Chemical Engineering and Physical Sciences,, Lovely Professional University

Email: info@benthamscience.net

Zubaid-Ul-Khazir

Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology

Email: info@benthamscience.net

Arfa Ji

Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology,

Email: info@benthamscience.net

Basharat Bhat

Department of Bioresources, School of Biological Sciences,, University of Kashmir

Email: info@benthamscience.net

Dar Murtaza

Transcriptomics Laboratory, Division of Plant Biotechnology,, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir

Email: info@benthamscience.net

Aaqib Hurrah

Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir

Email: info@benthamscience.net

Imtiyaz Bhat

Department of Endocrinology,, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir

Email: info@benthamscience.net

Shaheena Parveen

Department of Gastroenterology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir

Email: info@benthamscience.net

Syed Nisar

Department of Medical Oncology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir

Email: info@benthamscience.net

Praveen Kumar Sharma

Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Moserle, L.; Amadori, A.; Indraccolo, S. The angiogenic switch: Implications in the regulation of tumor dormancy. Curr. Mol. Med., 2009, 9(8), 935-941. doi: 10.2174/156652409789712800 PMID: 19925406
  2. Bakavoli, M.; Nikpour, M.; Rahimizadeh, M.; Saberi, M.R.; Sadeghian, H. Design and synthesis of pyrimido4,5-b1,4benzothiazine derivatives, as potent 15-lipoxygenase inhibitors. Bioorg. Med. Chem., 2007, 15(5), 2120-2126. doi: 10.1016/j.bmc.2006.12.022 PMID: 17210254
  3. Matysiak, J. Synthesis, antiproliferative and antifungal activities of some 2-(2,4-dihydroxyphenyl)-4H-3,1-benzothiazines. Bioorg. Med. Chem., 2006, 14(8), 2613-2619. doi: 10.1016/j.bmc.2005.11.053 PMID: 16377195
  4. Ohlow, M.J.; Moosmann, B. Phenothiazine: The seven lives of pharmacology’s first lead structure. Drug Discov. Today, 2011, 16(3-4), 119-131. doi: 10.1016/j.drudis.2011.01.001 PMID: 21237283
  5. Gupta, S.S.; Kumari, S.; Kumar, I.; Sharma, U. Eco-friendly and sustainable synthetic approaches to biologically significant fused N-heterocycles. Chem. Heterocycl. Compd., 2020, 56(4), 433-444. doi: 10.1007/s10593-020-02678-5
  6. Kaur, N. Ionic liquid promoted eco-friendly and efficient synthesis of six-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15(8), 1124-1146. doi: 10.2174/1570179415666180903102542
  7. Karmakar, R.; Mukhopadhyay, C. Green synthetic approach: A well-organized eco-friendly tool for synthesis of bio-active fused heterocyclic compounds. Curr. Green Chem., 2023, 10(1), 5-24. doi: 10.2174/2213346110666230120154516
  8. Nasiriani, T.; Javanbakht, S.; Nazeri, M.T.; Farhid, H.; Khodkari, V.; Shaabani, A. Isocyanide-based multicomponent reactions in water: Advanced green tools for the synthesis of heterocyclic compounds. Top. Curr. Chem., 2022, 380(6), 50. doi: 10.1007/s41061-022-00403-8 PMID: 36136281
  9. Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. Photochem. Rev., 2005, 6(2-3), 139-167. doi: 10.1016/j.jphotochemrev.2005.07.001
  10. Felicetti, T.; Cannalire, R.; Burali, M.S.; Massari, S.; Manfroni, G.; Barreca, M.L.; Tabarrini, O.; Schindler, B.D.; Sabatini, S.; Kaatz, G.W.; Cecchetti, V. Searching for novel inhibitors of the S. aureus NorA efflux pump: synthesis and biological evaluation of the 3phenyl-1, 4-benzothiazine analogues. ChemMedChem, 2017, 12(16), 1293-1302. doi: 10.1002/cmdc.201700286 PMID: 28598572
  11. Chaucer, P.; Sharma, P.K. Study of thiazines as potential anticancer agents. Plant Arch., 2020, 20(2), 3199-3202.
  12. Lombardino, J.G.; Wiseman, E.H. Antiinflammatory 3,4-dihydro-2-alkyl-3-oxo-2H-1,2-benzothiazine-4-carboxamide 1,1-dioxides. J. Med. Chem., 1971, 14(10), 973-977. doi: 10.1021/jm00292a022 PMID: 5115698
  13. Ukrainets, I.V.; Petrushova, L.A.; Dzyubenko, S.P. 2, 1-Benzothiazine 2, 2-dioxides. 1. Synthesis, structure, and analgesic activity of 1-R-4-hydroxy-2, 2-dioxo-1 H-2λ 6, 1-benzothiazine-3-carboxylic acid esters. Chem. Heterocycl. Compd., 2013, 49(9), 1378-1383. doi: 10.1007/s10593-013-1388-9
  14. Prashanth, M.; Revanasiddappa, H. Synthesis and antioxidant activity of novel quinazolinones functionalized with urea/thiourea/thiazole derivatives as 5-lipoxygenase inhibitors. Lett. Drug Des. Discov., 2014, 11(6), 712-720. doi: 10.2174/1570180811666131230235157
  15. Tanaka, T.; Yajima, N.; Tanitame, A.; Kiyoshi, T.; Miura, Y. Discovery of benzothiazine derivatives as novel, orally-active anti-epileptic drug candidates with broad anticonvulsant effect. Bioorg. Med. Chem. Lett., 2015, 25(20), 4518-4521. doi: 10.1016/j.bmcl.2015.08.071 PMID: 26364945
  16. Tawada, H.; Sugiyama, Y.; Ikeda, H.; Yamamoto, Y.; Meguro, K. Studies on antidiabetic agents. IX. A new aldose reductase inhibitor, AD-5467, and related 1,4-benzoxazine and 1,4-benzothiazine derivatives: Synthesis and biological activity. Chem. Pharm. Bull., 1990, 38(5), 1238-1245. doi: 10.1248/cpb.38.1238 PMID: 2118427
  17. Amin, A.; Qadir, T.; Salhotra, A.; Sharma, P.K.; Jeelani, I.; Abe, H. Pharmacological significance of synthetic bioactive thiazole derivatives. Curr. Bioact. Compd., 2022, 18(9), e030322201633. doi: 10.2174/1573407218666220303100501
  18. Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280. doi: 10.2174/18741045-v16-e2202280
  19. Qadir, T.; Amin, A.; Salhotra, A.; Sharma, P.K.; Jeelani, I.; Abe, H. Recent advances in the synthesis of benzothiazole and its derivatives. Curr. Org. Chem., 2022, 26(2), 189-214. doi: 10.2174/1385272826666211229144446
  20. Ali, T.E.S.; El-Kazak, A.M. Synthesis and antimicrobial activity of some new 1,3-thiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and 1,3-thiazines incorporating acridine and 1,2,3,4-tetrahydroacridine moieties. Eur. J. Chem., 2010, 1(1), 6-11. doi: 10.5155/eurjchem.1.1.6-11.12
  21. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  22. Inamura, K. Lung cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol., 2017, 7, 193. doi: 10.3389/fonc.2017.00193 PMID: 28894699
  23. Hasegawa, Y.; Kawaguchi, T.; Kubo, A.; Ando, M.; Shiraishi, J.; Isa, S.; Tsuji, T.; Tsujino, K.; Ou, S.H.I.; Nakagawa, K.; Takada, M. Ethnic difference in hematological toxicity in patients with non-small cell lung cancer treated with chemotherapy: A pooled analysis on Asian versus non-Asian in phase II and III clinical trials. J. Thorac. Oncol., 2011, 6(11), 1881-1888. doi: 10.1097/JTO.0b013e31822722b6 PMID: 21841503
  24. Han, Y.; Li, H. miRNAs as biomarkers and for the early detection of non-small cell lung cancer (NSCLC). J. Thorac. Dis., 2018, 10(5), 3119-3131. doi: 10.21037/jtd.2018.05.32 PMID: 29997981
  25. Scagliotti, G.; Stahel, R.A.; Rosell, R.; Thatcher, N.; Soria, J.C. ALK translocation and crizotinib in non-small cell lung cancer: An evolving paradigm in oncology drug development. Eur. J. Cancer, 2012, 48(7), 961-973. doi: 10.1016/j.ejca.2012.02.001 PMID: 22397764
  26. Sequist, L.V.; Bell, D.W.; Lynch, T.J.; Haber, D.A. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol., 2007, 25(5), 587-595. doi: 10.1200/JCO.2006.07.3585 PMID: 17290067
  27. Woodman, C. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. In: Seminars in cancer biology; Elsevier, 2021. doi: 10.1016/j.semcancer.2020.02.009
  28. Karki, R.; Kanneganti, T.D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer, 2019, 19(4), 197-214. doi: 10.1038/s41568-019-0123-y PMID: 30842595
  29. Müzes, G.; Sipos, F. Inflammasome, inflammation and cancer: An interrelated pathobiological triad. Curr. Drug Targets, 2015, 16(3), 249-257. doi: 10.2174/1389450115666141229154157 PMID: 25547909
  30. He, Q.; Fu, Y.; Tian, D.; Yan, W. The contrasting roles of inflammasomes in cancer. Am. J. Cancer Res., 2018, 8(4), 566-583. PMID: 29736304
  31. Litmanovich, A.; Khazim, K.; Cohen, I. The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice. Oncol. Ther., 2018, 6(2), 109-127. doi: 10.1007/s40487-018-0089-z PMID: 32700032
  32. Apte, R.N.; Krelin, Y.; Song, X.; Dotan, S.; Recih, E.; Elkabets, M.; Carmi, Y.; Dvorkin, T.; White, R.M.; Gayvoronsky, L.; Segal, S.; Voronov, E. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour–host interactions. Eur. J. Cancer, 2006, 42(6), 751-759. doi: 10.1016/j.ejca.2006.01.010 PMID: 16530403
  33. Voronov, E.; Apte, R.N. Targeting the tumor microenvironment by intervention in interleukin-1 biology. Curr. Pharm. Des., 2017, 23(32), 4893-4905. doi: 10.2174/1381612823666170613080919 PMID: 28606052
  34. Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol., 2012, 2, 98. doi: 10.3389/fimmu.2011.00098 PMID: 22566887
  35. Vendramini-Costa, D.B.; Carvalho, J.E. Molecular link mechanisms between inflammation and cancer. Curr. Pharm. Des., 2012, 18(26), 3831-3852. doi: 10.2174/138161212802083707 PMID: 22632748
  36. Spiekstra, S.W.; Toebak, M.J.; Sampat-Sardjoepersad, S.; Van Beek, P.J.; Boorsma, D.M.; Stoof, T.J.; Von Blomberg, B.M.E.; Scheper, R.J.; Bruynzeel, D.P.; Rustemeyer, T.; Gibbs, S. Induction of cytokine (interleukin-1α and tumor necrosis factor-α) and chemokine (CCL20, CCL27, and CXCL8) alarm signals after allergen and irritant exposure. Exp. Dermatol., 2005, 14(2), 109-116. doi: 10.1111/j.0906-6705.2005.00226.x PMID: 15679580
  37. Koj, A. Initiation of acute phase response and synthesis of cytokines. Biochim. Biophys. Acta Mol. Basis Dis., 1996, 1317(2), 84-94. doi: 10.1016/S0925-4439(96)00048-8
  38. Dinarello, C.A.; van der Meer, J.W. Treating inflammation by blocking interleukin-1 in humans. In: Seminars in immunology; Elsevier, 2013. doi: 10.1016/j.smim.2013.10.008
  39. Gabay, C.; Lamacchia, C.; Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol., 2010, 6(4), 232-241. doi: 10.1038/nrrheum.2010.4 PMID: 20177398
  40. Lin, A.; Wang, G.; Zhao, H.; Zhang, Y.; Han, Q.; Zhang, C.; Tian, Z.; Zhang, J. TLR4 signaling promotes a COX-2/PGE 2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells. OncoImmunology, 2016, 5(2), e1074376. doi: 10.1080/2162402X.2015.1074376 PMID: 27057441
  41. Tadokoro, A.; Kanaji, N.; Liu, D.; Yokomise, H.; Haba, R.; Ishii, T.; Takagi, T.; Watanabe, N.; Kita, N.; Kadowaki, N.; Bandoh, S. Vimentin regulates invasiveness and is a poor prognostic marker in non-small cell lung cancer. Anticancer Res., 2016, 36(4), 1545-1551. PMID: 27069130
  42. Fang, T.; Zhang, L.; Yin, X.; Wang, Y.; Zhang, X.; Bian, X.; Jiang, X.; Yang, S.; Xue, Y. The prognostic marker elastin correlates with EPITHELIAL–MESENCHYMAL transition and VIMENTIN POSITIVE fibroblasts in gastric cancer. J. Pathol. Clin. Res., 2023, 9(1), 56-72. doi: 10.1002/cjp2.298 PMID: 36226731
  43. Thomas, P.A.; Kirschmann, D.A.; Cerhan, J.R.; Folberg, R.; Seftor, E.A.; Sellers, T.A.; Hendrix, M.J. Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients. Clin. Cancer Res., 1999, 5(10), 2698-2703. PMID: 10537332
  44. Castro, D.; Moreira, M.; Gouveia, A.M.; Pozza, D.H.; De Mello, R.A. MicroRNAs in lung cancer. Oncotarget, 2017, 8(46), 81679-81685. doi: 10.18632/oncotarget.20955 PMID: 29113423
  45. Stolina, M.; Sharma, S.; Lin, Y.; Dohadwala, M.; Gardner, B.; Luo, J.; Zhu, L.; Kronenberg, M.; Miller, P.W.; Portanova, J.; Lee, J.C.; Dubinett, S.M. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J. Immunol., 2000, 164(1), 361-370. doi: 10.4049/jimmunol.164.1.361 PMID: 10605031
  46. Millares, L.; Barreiro, E.; Cortes, R.; Martinez-Romero, A.; Balcells, C.; Cascante, M.; Enguita, A.B.; Alvarez, C.; Rami-Porta, R.; Sánchez de Cos, J.; Seijo, L.; Monsó, E. Tumor-associated metabolic and inflammatory responses in early stage non-small cell lung cancer: Local patterns and prognostic significance. Lung Cancer, 2018, 122, 124-130. doi: 10.1016/j.lungcan.2018.06.015 PMID: 30032820
  47. Dohadwala, M.; Yang, S.C.; Luo, J.; Sharma, S.; Batra, R.K.; Huang, M.; Lin, Y.; Goodglick, L.; Krysan, K.; Fishbein, M.C.; Hong, L.; Lai, C.; Cameron, R.B.; Gemmill, R.M.; Drabkin, H.A.; Dubinett, S.M. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res., 2006, 66(10), 5338-5345. doi: 10.1158/0008-5472.CAN-05-3635 PMID: 16707460
  48. Shen, F. Yuedong, Wang; Yuan, L.; Lei, Y.; Xishi, L.; Sun-Wei, G. Immunoreactivity of progesterone receptor isoform B and nuclear factor kappa-B as biomarkers for recurrence of ovarian endometriomas. Am. J. Obstet. Gynecol., 2008, 199(5), 486.e1-486.e10. doi: 10.1016/j.ajog.2008.04.040
  49. Li, Y.; Zhang, J.; Ma, H. Chronic inflammation and gallbladder cancer. Cancer Lett., 2014, 345(2), 242-248. doi: 10.1016/j.canlet.2013.08.034 PMID: 23981574
  50. Sharma, J.; Gray, K.P.; Harshman, L.C.; Evan, C.; Nakabayashi, M.; Fichorova, R.; Rider, J.; Mucci, L.; Kantoff, P.W.; Sweeney, C.J. Elevated IL-8, TNFα and MCP1 in men with metastatic prostate cancer starting androgen-deprivation therapy (ADT) are associated with shorter time to castration resistance and overall survival. Prostate, 2014, 74(8), 820-828. doi: 10.1002/pros.22788 PMID: 24668612
  51. Landvik, N.E.; Hart, K.; Skaug, V.; Stangeland, L.B.; Haugen, A.; Zienolddiny, S. A specific interleukin-1B haplotype correlates with high levels of IL1B mRNA in the lung and increased risk of non-small cell lung cancer. Carcinogenesis, 2009, 30(7), 1186-1192. doi: 10.1093/carcin/bgp122 PMID: 19461122
  52. Apte, R.N.; Dotan, S.; Elkabets, M.; White, M.R.; Reich, E.; Carmi, Y.; Song, X.; Dvozkin, T.; Krelin, Y.; Voronov, E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev., 2006, 25(3), 387-408. doi: 10.1007/s10555-006-9004-4 PMID: 17043764
  53. Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood, 1996, 87(6), 2095-20147. doi: 10.1182/blood.V87.6.2095.bloodjournal8762095
  54. Isomäki, P.; Punnonen, J. Pro- and anti-inflammatory cytokines in rheumatoid arthritis. Ann. Med., 1997, 29(6), 499-507. doi: 10.3109/07853899709007474 PMID: 9562516
  55. Tan, Z.; Xue, H.; Sun, Y.; Zhang, C.; Song, Y.; Qi, Y. The role of tumor inflammatory microenvironment in lung cancer. Front. Pharmacol., 2021, 12, 688625. doi: 10.3389/fphar.2021.688625 PMID: 34079469
  56. Kidd, M.E.; Shumaker, D.K.; Ridge, K.M. The role of vimentin intermediate filaments in the progression of lung cancer. Am. J. Respir. Cell Mol. Biol., 2014, 50(1), 1-6. doi: 10.1165/rcmb.2013-0314TR PMID: 23980547
  57. Bhat, I.A.; Naykoo, N.A.; Qasim, I.; Ganie, F.A.; Yousuf, Q.; Bhat, B.A.; Rasool, R.; Aziz, S.A.; Shah, Z.A. Association of interleukin 1 beta (IL-1β) polymorphism with mRNA expression and risk of non small cell lung cancer. Meta Gene, 2014, 2, 123-133. doi: 10.1016/j.mgene.2013.12.002 PMID: 25606396
  58. Bhat, I.A.; Mir, I.R.; Malik, G.H.; Mir, J.I.; Dar, T.A.; Nisar, S.; Naik, N.A.; Sabah, Z.U.; Shah, Z.A. Comparative study of TNF-α and vitamin D reveals a significant role of TNF-α in NSCLC in an ethnically conserved vitamin D deficient population. Cytokine, 2022, 160, 156039. doi: 10.1016/j.cyto.2022.156039 PMID: 36201891
  59. Dandia, A.; Arya, K.; Sati, M.; Gautam, S. Microwave assisted green chemical synthesis of novel spiroindole-pyrido thiazines: a system reluctant to be formed under thermal conditions. Tetrahedron, 2004, 60(24), 5253-5258. doi: 10.1016/j.tet.2004.04.018
  60. Ramya Sucharitha, E.; Krishna, T.M.; Manchal, R.; Ramesh, G.; Narsimha, S. Fused benzo1,3thiazine-1,2,3-triazole hybrids: Microwave-assisted one-pot synthesis, in vitro antibacterial, antibiofilm, and in silico ADME studies. Bioorg. Med. Chem. Lett., 2021, 47, 128201. doi: 10.1016/j.bmcl.2021.128201 PMID: 34139328
  61. Ahmad, N.; Zia-ur-Rehman, M.; Siddiqui, H.L.; Ullah, M.F.; Parvez, M. Microwave assisted synthesis and structure–activity relationship of 4-hydroxy-N'-1-phenylethylidene-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents. Eur. J. Med. Chem., 2011, 46(6), 2368-2377. doi: 10.1016/j.ejmech.2011.03.020 PMID: 21470723
  62. Pratap, U.R.; Jawale, D.V.; Londhe, B.S.; Mane, R.A. Baker’s yeast catalyzed synthesis of 1,4-benzothiazines, performed under ultrasonication. J. Mol. Catal., B Enzym., 2011, 68(1), 94-97. doi: 10.1016/j.molcatb.2010.09.018
  63. Chu, C.M.; Gao, S.; Sastry, M.N.V.; Kuo, C-W.; Lu, C.; Liu, J-T.; Yao, C-F. Ceric ammonium nitrate (CAN) as a green and highly efficient promoter for the 1,4-addition of thiols and benzeneselenol to αβ-unsaturated ketones. Tetrahedron, 2007, 63(8), 1863-1871. doi: 10.1016/j.tet.2006.12.018
  64. Comin, M.J.; Elhalem, E.; Rodriguez, J.B. Cerium ammonium nitrate: a new catalyst for regioselective protection of glycols. Tetrahedron, 2004, 60(51), 11851-11860. doi: 10.1016/j.tet.2004.09.097
  65. Shelke, K.F.; Sapkal, S.B.; Shingare, M.S. Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media. Chin. Chem. Lett., 2009, 20(3), 283-287. doi: 10.1016/j.cclet.2008.11.033
  66. Verma, M.; Thakur, A.; Kapil, S.; Sharma, R.; Sharma, A.; Bharti, R. Antibacterial and antioxidant assay of novel heteroaryl-substituted methane derivatives synthesized via ceric ammonium nitrate (CAN) catalyzed one-pot green approach. Mol. Divers., 2023, 27(2), 889-900. doi: 10.1007/s11030-022-10461-1 PMID: 35781657
  67. Kidwai, M.; Jahan, A.; Bhatnagar, D. Polyethylene glycol: A recyclable solvent system for the synthesis of benzimidazole derivatives using CAN as catalyst. J. Chem. Sci., 2010, 122(4), 607-612. doi: 10.1007/s12039-010-0095-7
  68. Grotjahn, D.B.; Brown, D.B.; Martin, J.K.; Marelius, D.C.; Abadjian, M.C.; Tran, H.N.; Kalyuzhny, G.; Vecchio, K.S.; Specht, Z.G.; Cortes-Llamas, S.A.; Miranda-Soto, V.; van Niekerk, C.; Moore, C.E.; Rheingold, A.L. Evolution of iridium-based molecular catalysts during water oxidation with ceric ammonium nitrate. J. Am. Chem. Soc., 2011, 133(47), 19024-19027. doi: 10.1021/ja203095k PMID: 22059883
  69. Tongkhan, S.; Radchatawedchakoon, W.; Kruanetr, S.; Sakee, U. Silica-supported ceric ammonium nitrate catalyzed chemoselective formylation of indoles. Tetrahedron Lett., 2014, 55(29), 3909-3912. doi: 10.1016/j.tetlet.2014.04.124
  70. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  71. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
  72. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  73. Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341. doi: 10.1016/j.ddtec.2004.11.007 PMID: 24981612
  74. Majumdar, K.C.; Ghosh, D. An efficient ligand-free ferric chloride catalyzed synthesis of annulated 1,4-thiazine-3-one derivatives. Tetrahedron Lett., 2014, 55(19), 3108-3110. doi: 10.1016/j.tetlet.2014.04.005
  75. Singh, U.P.; Bhat, H.R.; Singh, R.K. Ceric ammonium nitrate (CAN) catalysed expeditious one-pot synthesis of 1,3-thiazine as IspE kinase inhibitor of Gram-negative bacteria using polyethylene glycol (PEG-400) as an efficient recyclable reaction medium. C. R. Chim., 2013, 16(5), 462-468. doi: 10.1016/j.crci.2012.11.019
  76. Xia, L.; Lee, Y.R. A novel and efficient synthesis of diverse dihydronaphtho1,2-bfurans using the ceric ammonium nitrate-catalyzed formal 3 + 2 cycloaddition of 1,4-naphthoquinones to olefins and its application to furomollugin. Org. Biomol. Chem., 2013, 11(36), 6097-6107. doi: 10.1039/c3ob40977e PMID: 23963248
  77. Hwu, J.R.; Jain, M.L.; Tsay, S-C.; Hakimelahi, G.H. New detritylation method for nucleosides and nucleotides by ceric ammonium nitrate. Chem. Commun., 1996, (4), 545-546. doi: 10.1039/cc9960000545
  78. Iqbal, Z.; Joshi, A.; De, S.R. Ceric ammonium nitrate promoted highly chemo- and regioselective ortho-nitration of anilines under mild conditions. Eur. J. Org. Chem., 2022, 2022(31), e202200746. doi: 10.1002/ejoc.202200746
  79. Roy, R.; Béha, S.; Giguère, D.; Patnam, R. Formation of isoxazoles using cerium ammonium nitrate (CAN): A one-pot synthesis of glycomimetics. Synlett, 2006, 2006(11), 1739-1743. doi: 10.1055/s-2006-947330
  80. Karimi Zarchi, M.A.; Banihashemi, R. Thiocyanation of aromatic and heteroaromatic compounds using polymer-supported thiocyanate ion as the versatile reagent and ceric ammonium nitrate as the versatile single-electron oxidant. J. Sulfur Chem., 2016, 37(3), 282-295. doi: 10.1080/17415993.2015.1137919
  81. Kuttan, A.; Nowshudin, S.; Rao, M.N.A. Ceric ammonium nitrate (CAN) mediated esterification of N-Boc amino acids allows either retention or removal of the N-Boc group. Tetrahedron Lett., 2004, 45(12), 2663-2665. doi: 10.1016/j.tetlet.2004.01.136
  82. Penta, S.; Vedula, R.R. Synthesis of 2,4,6-tri-substituted pyridine derivatives in aqueous medium via hantzsch multi-component reaction catalyzed by cerium (IV) ammonium nitrate. J. Heterocycl. Chem., 2013, 50(4), 859-862. doi: 10.1002/jhet.1589
  83. Raslan, R.R.; Hessein, S.A.; Fouad, S.A.; Shmiess, N.A.M. Synthesis and antitumor evaluation of some new thiazolopyridine, nicotinonitrile, pyrazolopyridine, and polyhydroquinoline derivatives using ceric ammonium nitrate as a green catalyst. J. Heterocycl. Chem., 2022, 59(5), 832-846. doi: 10.1002/jhet.4423
  84. Nagendra Prasad, T.; Eeda, K.R.; Gudise, V.B.; Basha, S.F.; Anwar, S. Design, synthesis and biological evaluation of substituted 2-amino-1,3-thiazine derivatives as antituberculosis and anti-cancer agents. Synth. Commun., 2019, 49(10), 1277-1285. doi: 10.1080/00397911.2019.1597125
  85. Caetano, M.S.; Zhang, H.; Cumpian, A.M.; Gong, L.; Unver, N.; Ostrin, E.J.; Daliri, S.; Chang, S.H.; Ochoa, C.E.; Hanash, S.; Behrens, C.; Wistuba, I.I.; Sternberg, C.; Kadara, H.; Ferreira, C.G.; Watowich, S.S.; Moghaddam, S.J. IL6 blockade reprograms the lung tumor microenvironment to limit the development and progression of k-ras–mutant lung cancer. Cancer Res., 2016, 76(11), 3189-3199. doi: 10.1158/0008-5472.CAN-15-2840 PMID: 27197187

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers