Ivermectin Inhibits Bladder Cancer Cell Growth and Induces Oxidative Stress and DNA Damage
- Authors: Fan N.1, Zhang L.2, Wang Z.1, Ding H.1, Yue Z.1
-
Affiliations:
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital
- Department of Clinical Laboratory,, Gansu Provincial Maternal and Child Health Hospital
- Issue: Vol 24, No 5 (2024)
- Pages: 348-357
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644181
- DOI: https://doi.org/10.2174/0118715206274095231106042833
- ID: 644181
Cite item
Full Text
Abstract
Background:Bladder cancer is the most common malignant tumor of the urinary system. Nevertheless, current therapies do not provide satisfactory results. It is imperative that novel strategies should be developed for treating bladder cancer.
Objective:To evaluate the effect of a broad-spectrum anti-parasitic agent, Ivermectin, on bladder cancer cells in vitro and in vivo.
Methods:CCK-8 and EdU incorporation assays were used to evaluate cell proliferation. Apoptosis was detected by flow cytometry, TUNEL assay, and western blotting. Flow cytometry and DCFH-DA assay were used to analyze the reactive oxygen species (ROS) levels. DNA damage was determined by Neutral COMET assay and γ H2AX expression. Proteins related to apoptosis and DNA damage pathways were determined by WB assay. Xenograft tumor models in nude mice were used to investigate the anti-cancer effect of Ivermectin in vivo.
Results:Our study showed that in vitro and in vivo, Ivermectin inhibited the growth of bladder cancer cells. In addition, Ivermectin could induce apoptosis, ROS production, DNA damage, and activate ATM/P53 pathwayrelated proteins in bladder cancer cells.
Conclusion:According to these findings, Ivermectin may be a potential therapeutic candidate against bladder cancer due to its significant anti-cancer effect.
Keywords
About the authors
Ning Fan
Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital
Email: info@benthamscience.net
Lixiu Zhang
Department of Clinical Laboratory,, Gansu Provincial Maternal and Child Health Hospital
Email: info@benthamscience.net
Zhiping Wang
Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital
Author for correspondence.
Email: info@benthamscience.net
Hui Ding
Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital
Author for correspondence.
Email: info@benthamscience.net
Zhongjin Yue
Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmström, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet, 2016, 388(10061), 2796-2810. doi: 10.1016/S0140-6736(16)30512-8 PMID: 27345655
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Tan, W.S.; Tan, W.P.; Tan, M.Y.; Khetrapal, P.; Dong, L.; deWinter, P.; Feber, A.; Kelly, J.D. Novel urinary biomarkers for the detection of bladder cancer: A systematic review. Cancer Treat. Rev., 2018, 69, 39-52. doi: 10.1016/j.ctrv.2018.05.012 PMID: 29902678
- Abufaraj, M.; Dalbagni, G.; Daneshmand, S.; Horenblas, S.; Kamat, A.M.; Kanzaki, R.; Zlotta, A.R.; Shariat, S.F. The role of surgery in metastatic bladder cancer: A systematic review. Eur. Urol., 2018, 73(4), 543-557. doi: 10.1016/j.eururo.2017.09.030 PMID: 29122377
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol., 2017, 71(1), 96-108. doi: 10.1016/j.eururo.2016.06.010 PMID: 27370177
- Rizzo, A.; Mollica, V.; Massari, F. Expression of programmed cell death ligand 1 as a predictive biomarker in metastatic urothelial carcinoma patients treated with first-line Immune checkpoint inhibitors versus chemotherapy: A systematic review and meta-analysis. Eur. Urol. Focus, 2022, 8(1), 152-159. doi: 10.1016/j.euf.2021.01.003 PMID: 33516645
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
- Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol., 2020, 72(9), 1145-1151. doi: 10.1111/jphp.13273 PMID: 32301512
- Crump, A.; Ōmura, S. Ivermectin, Wonder drug from Japan: the human use perspective. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2011, 87(2), 13-28. doi: 10.2183/pjab.87.13 PMID: 21321478
- Molyneux, D.H.; Ward, S.A. Reflections on the Nobel Prize for Medicine 2015 The Public Health Legacy and Impact of Avermectin and Artemisinin. Trends Parasitol., 2015, 31(12), 605-607. doi: 10.1016/j.pt.2015.10.008 PMID: 26552892
- Dou, Q.; Chen, H.N.; Wang, K.; Yuan, K.; Lei, Y.; Li, K.; Lan, J.; Chen, Y.; Huang, Z.; Xie, N.; Zhang, L.; Xiang, R.; Nice, E.C.; Wei, Y.; Huang, C. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res., 2016, 76(15), 4457-4469. doi: 10.1158/0008-5472.CAN-15-2887 PMID: 27302166
- Liu, Y.; Fang, S.; Sun, Q.; Liu, B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2016, 480(3), 415-421. doi: 10.1016/j.bbrc.2016.10.064 PMID: 27771251
- Sharmeen, S.; Skrtic, M.; Sukhai, M.A.; Hurren, R.; Gronda, M.; Wang, X.; Fonseca, S.B.; Sun, H.; Wood, T.E.; Ward, R.; Minden, M.D.; Batey, R.A.; Datti, A.; Wrana, J.; Kelley, S.O.; Schimmer, A.D. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood, 2010, 116(18), 3593-3603. doi: 10.1182/blood-2010-01-262675 PMID: 20644115
- Hashimoto, H.; Messerli, S.M.; Sudo, T.; Maruta, H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov. Ther., 2009, 3(6), 243-246. PMID: 22495656
- Zhang, P.; Zhang, Y.; Liu, K.; Liu, B.; Xu, W.; Gao, J.; Ding, L.; Tao, L. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif., 2019, 52(2), e12543. doi: 10.1111/cpr.12543 PMID: 30515909
- Nambara, S.; Masuda, T.; Nishio, M.; Kuramitsu, S.; Tobo, T.; Ogawa, Y.; Hu, Q.; Iguchi, T.; Kuroda, Y.; Ito, S.; Eguchi, H.; Sugimachi, K.; Saeki, H.; Oki, E.; Maehara, Y.; Suzuki, A.; Mimori, K. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget, 2017, 8(64), 107666-107677. doi: 10.18632/oncotarget.22587 PMID: 29296196
- Melotti, A.; Mas, C.; Kuciak, M.; Lorente-Trigos, A.; Borges, I.; Ruiz i Altaba, A. The river blindness drug I vermectin and related macrocyclic lactones inhibit WNT - TCF pathway responses in human cancer. EMBO Mol. Med., 2014, 6(10), 1263-1278. doi: 10.15252/emmm.201404084 PMID: 25143352
- Liu, J.; Zhang, K.; Cheng, L.; Zhu, H.; Xu, T. Progress in understanding the molecular mechanisms underlying the antitumour effects of ivermectin. Drug Des. Devel. Ther., 2020, 14, 285-296. doi: 10.2147/DDDT.S237393 PMID: 32021111
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462. doi: 10.1016/j.cub.2014.03.034 PMID: 24845678
- Dhuppar, S.; Roy, S.; Mazumder, A. γ H2AX in the S Phase after UV irradiation corresponds to DNA replication and does not report on the extent of DNA damage. Mol. Cell. Biol., 2020, 40(20), e00328-e20. doi: 10.1128/MCB.00328-20 PMID: 32778572
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191. doi: 10.1016/0014-4827(88)90265-0 PMID: 3345800
- Yin, J.; Park, G.; Lee, J.E.; Choi, E.Y.; Park, J.Y.; Kim, T.H.; Park, N.; Jin, X.; Jung, J.E.; Shin, D.; Hong, J.H.; Kim, H.; Yoo, H.; Lee, S.H.; Kim, Y.J.; Park, J.B.; Kim, J.H. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain, 2015, 138(9), 2553-2570. doi: 10.1093/brain/awv167 PMID: 26121981
- Juarez, M.; Schcolnik-Cabrera, A.; Dueñas-Gonzalez, A. The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer Res., 2018, 8(2), 317-331. PMID: 29511601
- Guzzo, C.A.; Furtek, C.I.; Porras, A.G.; Chen, C.; Tipping, R.; Clineschmidt, C.M.; Sciberras, D.G.; Hsieh, J.Y.K.; Lasseter, K.C. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol., 2002, 42(10), 1122-1133. doi: 10.1177/009127002237994 PMID: 12362927
- Cotter, T.G.; Al-Rubeai, M. Cell death (apoptosis) in cell culture systems. Trends Biotechnol., 1995, 13(4), 150-155. doi: 10.1016/S0167-7799(00)88926-X PMID: 7766111
- Call, J.A.; Eckhardt, S.G.; Camidge, D.R. Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol., 2008, 9(10), 1002-1011. doi: 10.1016/S1470-2045(08)70209-2 PMID: 18760670
- Zhang, Y.; Yang, X.; Ge, X.; Zhang, F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed. Pharmacother., 2019, 109, 726-733. doi: 10.1016/j.biopha.2018.10.161 PMID: 30551525
- Chen, C.M.; Chung, Y.P.; Liu, C.H.; Huang, K.T.; Guan, S.S.; Chiang, C.K.; Wu, C.T.; Liu, S.H. Withaferin A protects against endoplasmic reticulum stress-associated apoptosis, inflammation, and fibrosis in the kidney of a mouse model of unilateral ureteral obstruction. Phytomedicine, 2020, 79, 153352. doi: 10.1016/j.phymed.2020.153352 PMID: 33007732
- Mazumder, S.; Plesca, D.; Almasan, A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol. Biol., 2008, 414, 13-21. doi: 10.1007/978-1-59745-339-4_2 PMID: 18175808
- Oliver, F.J.; de la Rubia, G.; Rolli, V.; Ruiz-Ruiz, M.C.; de Murcia, G.; Murcia, J.M. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J. Biol. Chem., 1998, 273(50), 33533-33539. doi: 10.1074/jbc.273.50.33533 PMID: 9837934
- Soldani, C.; Lazzè, M.C.; Bottone, M.G.; Tognon, G.; Biggiogera, M.; Pellicciari, C.E.; Scovassi, A.I. Poly(ADP-ribose) polymerase cleavage during apoptosis: When and where? Exp. Cell Res., 2001, 269(2), 193-201. doi: 10.1006/excr.2001.5293 PMID: 11570811
- Song, D.; Liang, H.; Qu, B.; Li, Y.; Liu, J.; Zhang, Y.; Li, L.; Hu, L.; Zhang, X.; Gao, A. Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo. J. Cell. Biochem., 2019, 120(1), 622-633. doi: 10.1002/jcb.27420 PMID: 30596403
- Xu, N.; Lu, M.; Wang, J.; Li, Y.; Yang, X.; Wei, X.; Si, J.; Han, J.; Yao, X.; Zhang, J.; Liu, J.; Li, Y.; Yang, H.; Bao, D. Ivermectin induces apoptosis of esophageal squamous cell carcinoma via mitochondrial pathway. BMC Cancer, 2021, 21(1), 1307. doi: 10.1186/s12885-021-09021-x PMID: 34876051
- Wu, W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev., 2012, 25, 695-705. doi: 10.1007/s10555-006-9037-8
- Mercer, J.R.; Gray, K.; Figg, N.; Kumar, S.; Bennett, M.R. The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE(-/-) mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(10), 2461-2467. doi: 10.1161/ATVBAHA.112.251322 PMID: 22859494
- Wang, J.; Xu, Y.; Wan, H.; Hu, J. Antibiotic ivermectin selectively induces apoptosis in chronic myeloid leukemia through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2018, 497(1), 241-247. doi: 10.1016/j.bbrc.2018.02.063 PMID: 29428725
- Zhu, M.; Li, Y.; Zhou, Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochem. Biophys. Res. Commun., 2017, 492(3), 373-378. doi: 10.1016/j.bbrc.2017.08.097 PMID: 28847725
- Zhou, S.; Wu, H.; Ning, W.; Wu, X.; Xu, X.; Ma, Y.; Li, X.; Hu, J.; Wang, C.; Wang, J. Ivermectin has new application in inhibiting colorectal cancer cell growth. Front. Pharmacol., 2021, 12, 717529. doi: 10.3389/fphar.2021.717529 PMID: 34483925
- Zhang, P.; Ni, H.; Zhang, Y.; Xu, W.; Gao, J.; Cheng, J.; Tao, L. Ivermectin confers its cytotoxic effects by inducing AMPK/mTOR-mediated autophagy and DNA damage. Chemosphere, 2020, 259, 127448. doi: 10.1016/j.chemosphere.2020.127448 PMID: 32593828
- Lv, S.; Wu, Z.; Luo, M.; Zhang, Y.; Zhang, J.; Pascal, L.E.; Wang, Z.; Wei, Q. Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death Dis., 2022, 13(9), 754. doi: 10.1038/s41419-022-05182-0 PMID: 36050295
- Natale, F.; Rapp, A.; Yu, W.; Maiser, A.; Harz, H.; Scholl, A.; Grulich, S.; Anton, T.; Hörl, D.; Chen, W.; Durante, M.; Taucher-Scholz, G.; Leonhardt, H.; Cardoso, M.C. Identification of the elementary structural units of the DNA damage response. Nat. Commun., 2017, 8(1), 15760. doi: 10.1038/ncomms15760 PMID: 28604675
- Ogawa, L.M.; Baserga, S.J. Crosstalk between the nucleolus and the DNA damage response. Mol. Biosyst., 2017, 13(3), 443-455. doi: 10.1039/C6MB00740F PMID: 28112326
- Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; DAndrea, A.D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov., 2017, 7(7), 675-693. doi: 10.1158/2159-8290.CD-17-0226 PMID: 28630051
- Georgakilas, A.G.; Martin, O.A.; Bonner, W.M. p21: A two-faced genome guardian. Trends Mol. Med., 2017, 23(4), 310-319. doi: 10.1016/j.molmed.2017.02.001 PMID: 28279624
- Speidel, D. The role of DNA damage responses in p53 biology. Arch. Toxicol., 2015, 89(4), 501-517. doi: 10.1007/s00204-015-1459-z PMID: 25618545
- Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3), a026104. doi: 10.1101/cshperspect.a026104 PMID: 26931810
- Jiang, L.; Wang, P.; Sun, Y.J.; Wu, Y.J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 265. doi: 10.1186/s13046-019-1251-7 PMID: 31215501
- Intuyod, K.; Hahnvajanawong, C.; Pinlaor, P.; Pinlaor, S. Anti-parasitic drug ivermectin exhibits potent anticancer activity against gemcitabine-resistant cholangiocarcinoma in vitro. Anticancer Res., 2019, 39(9), 4837-4843. doi: 10.21873/anticanres.13669 PMID: 31519586
Supplementary files
