Ivermectin Inhibits Bladder Cancer Cell Growth and Induces Oxidative Stress and DNA Damage


Cite item

Full Text

Abstract

Background:Bladder cancer is the most common malignant tumor of the urinary system. Nevertheless, current therapies do not provide satisfactory results. It is imperative that novel strategies should be developed for treating bladder cancer.

Objective:To evaluate the effect of a broad-spectrum anti-parasitic agent, Ivermectin, on bladder cancer cells in vitro and in vivo.

Methods:CCK-8 and EdU incorporation assays were used to evaluate cell proliferation. Apoptosis was detected by flow cytometry, TUNEL assay, and western blotting. Flow cytometry and DCFH-DA assay were used to analyze the reactive oxygen species (ROS) levels. DNA damage was determined by Neutral COMET assay and γ H2AX expression. Proteins related to apoptosis and DNA damage pathways were determined by WB assay. Xenograft tumor models in nude mice were used to investigate the anti-cancer effect of Ivermectin in vivo.

Results:Our study showed that in vitro and in vivo, Ivermectin inhibited the growth of bladder cancer cells. In addition, Ivermectin could induce apoptosis, ROS production, DNA damage, and activate ATM/P53 pathwayrelated proteins in bladder cancer cells.

Conclusion:According to these findings, Ivermectin may be a potential therapeutic candidate against bladder cancer due to its significant anti-cancer effect.

About the authors

Ning Fan

Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital

Email: info@benthamscience.net

Lixiu Zhang

Department of Clinical Laboratory,, Gansu Provincial Maternal and Child Health Hospital

Email: info@benthamscience.net

Zhiping Wang

Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital

Author for correspondence.
Email: info@benthamscience.net

Hui Ding

Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital

Author for correspondence.
Email: info@benthamscience.net

Zhongjin Yue

Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmström, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet, 2016, 388(10061), 2796-2810. doi: 10.1016/S0140-6736(16)30512-8 PMID: 27345655
  2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  3. Tan, W.S.; Tan, W.P.; Tan, M.Y.; Khetrapal, P.; Dong, L.; deWinter, P.; Feber, A.; Kelly, J.D. Novel urinary biomarkers for the detection of bladder cancer: A systematic review. Cancer Treat. Rev., 2018, 69, 39-52. doi: 10.1016/j.ctrv.2018.05.012 PMID: 29902678
  4. Abufaraj, M.; Dalbagni, G.; Daneshmand, S.; Horenblas, S.; Kamat, A.M.; Kanzaki, R.; Zlotta, A.R.; Shariat, S.F. The role of surgery in metastatic bladder cancer: A systematic review. Eur. Urol., 2018, 73(4), 543-557. doi: 10.1016/j.eururo.2017.09.030 PMID: 29122377
  5. Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol., 2017, 71(1), 96-108. doi: 10.1016/j.eururo.2016.06.010 PMID: 27370177
  6. Rizzo, A.; Mollica, V.; Massari, F. Expression of programmed cell death ligand 1 as a predictive biomarker in metastatic urothelial carcinoma patients treated with first-line Immune checkpoint inhibitors versus chemotherapy: A systematic review and meta-analysis. Eur. Urol. Focus, 2022, 8(1), 152-159. doi: 10.1016/j.euf.2021.01.003 PMID: 33516645
  7. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
  8. Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol., 2020, 72(9), 1145-1151. doi: 10.1111/jphp.13273 PMID: 32301512
  9. Crump, A.; Ōmura, S. Ivermectin, ‘Wonder drug’ from Japan: the human use perspective. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2011, 87(2), 13-28. doi: 10.2183/pjab.87.13 PMID: 21321478
  10. Molyneux, D.H.; Ward, S.A. Reflections on the Nobel Prize for Medicine 2015 – The Public Health Legacy and Impact of Avermectin and Artemisinin. Trends Parasitol., 2015, 31(12), 605-607. doi: 10.1016/j.pt.2015.10.008 PMID: 26552892
  11. Dou, Q.; Chen, H.N.; Wang, K.; Yuan, K.; Lei, Y.; Li, K.; Lan, J.; Chen, Y.; Huang, Z.; Xie, N.; Zhang, L.; Xiang, R.; Nice, E.C.; Wei, Y.; Huang, C. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res., 2016, 76(15), 4457-4469. doi: 10.1158/0008-5472.CAN-15-2887 PMID: 27302166
  12. Liu, Y.; Fang, S.; Sun, Q.; Liu, B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2016, 480(3), 415-421. doi: 10.1016/j.bbrc.2016.10.064 PMID: 27771251
  13. Sharmeen, S.; Skrtic, M.; Sukhai, M.A.; Hurren, R.; Gronda, M.; Wang, X.; Fonseca, S.B.; Sun, H.; Wood, T.E.; Ward, R.; Minden, M.D.; Batey, R.A.; Datti, A.; Wrana, J.; Kelley, S.O.; Schimmer, A.D. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood, 2010, 116(18), 3593-3603. doi: 10.1182/blood-2010-01-262675 PMID: 20644115
  14. Hashimoto, H.; Messerli, S.M.; Sudo, T.; Maruta, H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov. Ther., 2009, 3(6), 243-246. PMID: 22495656
  15. Zhang, P.; Zhang, Y.; Liu, K.; Liu, B.; Xu, W.; Gao, J.; Ding, L.; Tao, L. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif., 2019, 52(2), e12543. doi: 10.1111/cpr.12543 PMID: 30515909
  16. Nambara, S.; Masuda, T.; Nishio, M.; Kuramitsu, S.; Tobo, T.; Ogawa, Y.; Hu, Q.; Iguchi, T.; Kuroda, Y.; Ito, S.; Eguchi, H.; Sugimachi, K.; Saeki, H.; Oki, E.; Maehara, Y.; Suzuki, A.; Mimori, K. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget, 2017, 8(64), 107666-107677. doi: 10.18632/oncotarget.22587 PMID: 29296196
  17. Melotti, A.; Mas, C.; Kuciak, M.; Lorente-Trigos, A.; Borges, I.; Ruiz i Altaba, A. The river blindness drug I vermectin and related macrocyclic lactones inhibit WNT - TCF pathway responses in human cancer. EMBO Mol. Med., 2014, 6(10), 1263-1278. doi: 10.15252/emmm.201404084 PMID: 25143352
  18. Liu, J.; Zhang, K.; Cheng, L.; Zhu, H.; Xu, T. Progress in understanding the molecular mechanisms underlying the antitumour effects of ivermectin. Drug Des. Devel. Ther., 2020, 14, 285-296. doi: 10.2147/DDDT.S237393 PMID: 32021111
  19. Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462. doi: 10.1016/j.cub.2014.03.034 PMID: 24845678
  20. Dhuppar, S.; Roy, S.; Mazumder, A. γ H2AX in the S Phase after UV irradiation corresponds to DNA replication and does not report on the extent of DNA damage. Mol. Cell. Biol., 2020, 40(20), e00328-e20. doi: 10.1128/MCB.00328-20 PMID: 32778572
  21. Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191. doi: 10.1016/0014-4827(88)90265-0 PMID: 3345800
  22. Yin, J.; Park, G.; Lee, J.E.; Choi, E.Y.; Park, J.Y.; Kim, T.H.; Park, N.; Jin, X.; Jung, J.E.; Shin, D.; Hong, J.H.; Kim, H.; Yoo, H.; Lee, S.H.; Kim, Y.J.; Park, J.B.; Kim, J.H. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain, 2015, 138(9), 2553-2570. doi: 10.1093/brain/awv167 PMID: 26121981
  23. Juarez, M.; Schcolnik-Cabrera, A.; Dueñas-Gonzalez, A. The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer Res., 2018, 8(2), 317-331. PMID: 29511601
  24. Guzzo, C.A.; Furtek, C.I.; Porras, A.G.; Chen, C.; Tipping, R.; Clineschmidt, C.M.; Sciberras, D.G.; Hsieh, J.Y.K.; Lasseter, K.C. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol., 2002, 42(10), 1122-1133. doi: 10.1177/009127002237994 PMID: 12362927
  25. Cotter, T.G.; Al-Rubeai, M. Cell death (apoptosis) in cell culture systems. Trends Biotechnol., 1995, 13(4), 150-155. doi: 10.1016/S0167-7799(00)88926-X PMID: 7766111
  26. Call, J.A.; Eckhardt, S.G.; Camidge, D.R. Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol., 2008, 9(10), 1002-1011. doi: 10.1016/S1470-2045(08)70209-2 PMID: 18760670
  27. Zhang, Y.; Yang, X.; Ge, X.; Zhang, F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed. Pharmacother., 2019, 109, 726-733. doi: 10.1016/j.biopha.2018.10.161 PMID: 30551525
  28. Chen, C.M.; Chung, Y.P.; Liu, C.H.; Huang, K.T.; Guan, S.S.; Chiang, C.K.; Wu, C.T.; Liu, S.H. Withaferin A protects against endoplasmic reticulum stress-associated apoptosis, inflammation, and fibrosis in the kidney of a mouse model of unilateral ureteral obstruction. Phytomedicine, 2020, 79, 153352. doi: 10.1016/j.phymed.2020.153352 PMID: 33007732
  29. Mazumder, S.; Plesca, D.; Almasan, A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol. Biol., 2008, 414, 13-21. doi: 10.1007/978-1-59745-339-4_2 PMID: 18175808
  30. Oliver, F.J.; de la Rubia, G.; Rolli, V.; Ruiz-Ruiz, M.C.; de Murcia, G.; Murcia, J.M. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J. Biol. Chem., 1998, 273(50), 33533-33539. doi: 10.1074/jbc.273.50.33533 PMID: 9837934
  31. Soldani, C.; Lazzè, M.C.; Bottone, M.G.; Tognon, G.; Biggiogera, M.; Pellicciari, C.E.; Scovassi, A.I. Poly(ADP-ribose) polymerase cleavage during apoptosis: When and where? Exp. Cell Res., 2001, 269(2), 193-201. doi: 10.1006/excr.2001.5293 PMID: 11570811
  32. Song, D.; Liang, H.; Qu, B.; Li, Y.; Liu, J.; Zhang, Y.; Li, L.; Hu, L.; Zhang, X.; Gao, A. Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo. J. Cell. Biochem., 2019, 120(1), 622-633. doi: 10.1002/jcb.27420 PMID: 30596403
  33. Xu, N.; Lu, M.; Wang, J.; Li, Y.; Yang, X.; Wei, X.; Si, J.; Han, J.; Yao, X.; Zhang, J.; Liu, J.; Li, Y.; Yang, H.; Bao, D. Ivermectin induces apoptosis of esophageal squamous cell carcinoma via mitochondrial pathway. BMC Cancer, 2021, 21(1), 1307. doi: 10.1186/s12885-021-09021-x PMID: 34876051
  34. Wu, W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev., 2012, 25, 695-705. doi: 10.1007/s10555-006-9037-8
  35. Mercer, J.R.; Gray, K.; Figg, N.; Kumar, S.; Bennett, M.R. The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE(-/-) mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(10), 2461-2467. doi: 10.1161/ATVBAHA.112.251322 PMID: 22859494
  36. Wang, J.; Xu, Y.; Wan, H.; Hu, J. Antibiotic ivermectin selectively induces apoptosis in chronic myeloid leukemia through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2018, 497(1), 241-247. doi: 10.1016/j.bbrc.2018.02.063 PMID: 29428725
  37. Zhu, M.; Li, Y.; Zhou, Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochem. Biophys. Res. Commun., 2017, 492(3), 373-378. doi: 10.1016/j.bbrc.2017.08.097 PMID: 28847725
  38. Zhou, S.; Wu, H.; Ning, W.; Wu, X.; Xu, X.; Ma, Y.; Li, X.; Hu, J.; Wang, C.; Wang, J. Ivermectin has new application in inhibiting colorectal cancer cell growth. Front. Pharmacol., 2021, 12, 717529. doi: 10.3389/fphar.2021.717529 PMID: 34483925
  39. Zhang, P.; Ni, H.; Zhang, Y.; Xu, W.; Gao, J.; Cheng, J.; Tao, L. Ivermectin confers its cytotoxic effects by inducing AMPK/mTOR-mediated autophagy and DNA damage. Chemosphere, 2020, 259, 127448. doi: 10.1016/j.chemosphere.2020.127448 PMID: 32593828
  40. Lv, S.; Wu, Z.; Luo, M.; Zhang, Y.; Zhang, J.; Pascal, L.E.; Wang, Z.; Wei, Q. Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death Dis., 2022, 13(9), 754. doi: 10.1038/s41419-022-05182-0 PMID: 36050295
  41. Natale, F.; Rapp, A.; Yu, W.; Maiser, A.; Harz, H.; Scholl, A.; Grulich, S.; Anton, T.; Hörl, D.; Chen, W.; Durante, M.; Taucher-Scholz, G.; Leonhardt, H.; Cardoso, M.C. Identification of the elementary structural units of the DNA damage response. Nat. Commun., 2017, 8(1), 15760. doi: 10.1038/ncomms15760 PMID: 28604675
  42. Ogawa, L.M.; Baserga, S.J. Crosstalk between the nucleolus and the DNA damage response. Mol. Biosyst., 2017, 13(3), 443-455. doi: 10.1039/C6MB00740F PMID: 28112326
  43. Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov., 2017, 7(7), 675-693. doi: 10.1158/2159-8290.CD-17-0226 PMID: 28630051
  44. Georgakilas, A.G.; Martin, O.A.; Bonner, W.M. p21: A two-faced genome guardian. Trends Mol. Med., 2017, 23(4), 310-319. doi: 10.1016/j.molmed.2017.02.001 PMID: 28279624
  45. Speidel, D. The role of DNA damage responses in p53 biology. Arch. Toxicol., 2015, 89(4), 501-517. doi: 10.1007/s00204-015-1459-z PMID: 25618545
  46. Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3), a026104. doi: 10.1101/cshperspect.a026104 PMID: 26931810
  47. Jiang, L.; Wang, P.; Sun, Y.J.; Wu, Y.J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 265. doi: 10.1186/s13046-019-1251-7 PMID: 31215501
  48. Intuyod, K.; Hahnvajanawong, C.; Pinlaor, P.; Pinlaor, S. Anti-parasitic drug ivermectin exhibits potent anticancer activity against gemcitabine-resistant cholangiocarcinoma in vitro. Anticancer Res., 2019, 39(9), 4837-4843. doi: 10.21873/anticanres.13669 PMID: 31519586

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers