Karanjin, A Promising Bioactive Compound Possessing Anti-cancer Activity against Experimental Model of Non-small Cell Lung Cancer Cells
- 作者: Kumar G.1, Pandey D.M.2, Ghosh M.3, Dall'Acqua S.4, Gupta R.5, Tiwari N.2, Mohd Siddique U.6, Vishwakrama L.7, Guleri S.K.8, Lal U.9, Dubey S.10
-
隶属关系:
- Department of Bioengineering and Biotechnology,, Birla Institute of Technology
- Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra
- Department of Pharmaceutical Sciences and Technology,, Birla Institute of Technology, Mesra
- Department of Pharmaceutical Science and Pharmacology, University of Padua
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra
- Department of Pharmaceutical Sciences and Technology,, Birla Institute of Technology,
- Department of Microbiology, Government Medical College & Hospital
- Department of Community Medicine, Government Medical College & Hospital
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Birla Institute of Technology, Mesra
- Department of Chemistry, Kanya Gurukul Campus, Gurukul Kangri (Deemed to be University),
- 期: 卷 24, 编号 5 (2024)
- 页面: 317-333
- 栏目: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644173
- DOI: https://doi.org/10.2174/0118715206255557231024095245
- ID: 644173
如何引用文章
全文:
详细
Aims:The aim of this study is to isolate the Millettia pinnata (Karanj) leaf extract for pure compound with anticancer properties and to study the molecular target of the isolates in non-small cell lung cancer cell lines.
Background:In our earlier research Millettia pinnata leaf extract has demonstrated potential anticancer activities. Thus, in pursuit of the bioactive compounds, the most potential active extract from our previous study was purified. Furthermore, the anticancer properties of the isolated compound karanjin was studied and aimed for apoptosis and restraining growth
Methods:A novel method was developed through column chromatography for isolation and purification of the compound karanjin from leaf chloroform extract. The purified component was then characterised using FTIR, mass spectrometry, and NMR. An MTT-based cytotoxicity assay was used to analyse cell cytotoxicity, whereas fluorescence staining was used for apoptosis and reactive oxygen species inhibition quantification. Furthermore, the real-time PCR assay was used to determine the molecular mechanism of action in cells causing cytotoxicity induced by karanjin dosing
Results:The anticancer activity of karanjin in A549 cell line exhibited prominent activity revealing IC50 value of 4.85 µM. Conferring the predicted molecular pathway study, karanjin restrains the proliferation of cancer cells through apoptosis, which is controlled by extrinsic pathway proteins FAS/FADD/Caspases 8/3/9. Downregulation of KRAS and dependent gene expression also stopped cell proliferation.
Conclusion:Karanjin has been identified as a compound with potential effect in non-small cell lung cancer cells. Molecular mechanism for apoptosis and inhibition of reactive oxygen species induced through H2O2 were observed, concluding karanjin have medicinal and antioxidant properties.
作者简介
Gourav Kumar
Department of Bioengineering and Biotechnology,, Birla Institute of Technology
编辑信件的主要联系方式.
Email: info@benthamscience.net
Dev Pandey
Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra
Email: info@benthamscience.net
Manik Ghosh
Department of Pharmaceutical Sciences and Technology,, Birla Institute of Technology, Mesra
Email: info@benthamscience.net
Stefano Dall'Acqua
Department of Pharmaceutical Science and Pharmacology, University of Padua
Email: info@benthamscience.net
Rashmi Gupta
Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra
Email: info@benthamscience.net
Nishi Tiwari
Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra
Email: info@benthamscience.net
Usman Mohd Siddique
Department of Pharmaceutical Sciences and Technology,, Birla Institute of Technology,
Email: info@benthamscience.net
Leena Vishwakrama
Department of Microbiology, Government Medical College & Hospital
Email: info@benthamscience.net
Sunil Guleri
Department of Community Medicine, Government Medical College & Hospital
Email: info@benthamscience.net
Uma Lal
Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Birla Institute of Technology, Mesra
Email: info@benthamscience.net
Supriya Dubey
Department of Chemistry, Kanya Gurukul Campus, Gurukul Kangri (Deemed to be University),
Email: info@benthamscience.net
参考
- Kumar, G.; Ghosh, M.; Pandey, D.M. Method development for optimised green synthesis of gold nanoparticles from Millettia pinnata and their activity in non-small cell lung cancer cell lines. IET Nanobiotechnol., 2019, 13(6), 626-633. doi: 10.1049/iet-nbt.2018.5410 PMID: 31432797
- Aggarwal, V.; Tuli, H.S.; Kaur, J.; Aggarwal, D.; Parashar, G.; Chaturvedi Parashar, N.; Kulkarni, S.; Kaur, G.; Sak, K.; Kumar, M.; Ahn, K.S. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicines, 2020, 8(5), 103. doi: 10.3390/biomedicines8050103 PMID: 32365899
- Kumar, G.; Gupta, R.; Sharan, S.; Roy, P.; Pandey, D.M. Anticancer activity of plant leaves extract collected from a tribal region of India. BioTech, 2019, 9(11), 1-16.
- Eipeson, W.S.; Manjunatha, J.R.; Srinivas, P.; Kanya, T.S. Extraction and recovery of karanjin: A value addition to karanja (Pongamia pinnata) seed oil. Ind. Crops Prod., 2010, 32(2), 118-122. doi: 10.1016/j.indcrop.2010.03.011
- Roy, R.; Pal, D.; Sur, S.; Mandal, S.; Saha, P.; Panda, C.K. Pongapin and Karanjin, furanoflavanoids of PONGAMIA PINNATA, induce G2/M arrest and apoptosis in cervical cancer cells by differential reactive oxygen species modulation, DNA damage, and nuclear factor kappa-light-chain-enhancer of activated B cell signaling. Phytother. Res., 2019, 33(4), 1084-1094. doi: 10.1002/ptr.6302 PMID: 30834631
- Tong, D.; Wang, X.; Liu, L.; Wen, T.; Chen, Q.; Huang, C. LAMC2 promotes EGFR cell membrane localization and acts as a novel biomarker for tyrosine kinase inhibitors (TKIs) sensitivity in lung cancer. Cancer Gene Ther., 2023, 1-15. doi: 10.1038/s41417-023-00654-7 PMID: 37542131
- Guo, J.R.; Chen, Q.Q.; Lam, C.W.K.; Zhang, W. Effects of karanjin on cell cycle arrest and apoptosis in human A549, HepG2 and HL-60 cancer cells. Biol. Res., 2015, 48(1), 40. doi: 10.1186/s40659-015-0031-x PMID: 26209237
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Liu, G.; Pei, F.; Yang, F.; Li, L.; Amin, A.; Liu, S.; Buchan, J.; Cho, W. Role of autophagy and apoptosis in non-small-cell lung cancer. Int. J. Mol. Sci., 2017, 18(2), 367. doi: 10.3390/ijms18020367 PMID: 28208579
- Nimesh, S.; Akram, M.; Chishti, M.A.; Ahmad, M.I.; Dhama, S.; Lal, M. Pongamia pinnata: An updated review on its phytochemistry, & pharmacological uses. Pharm. Pharmacol. Int. J., 2021, 9(5), 194-199. doi: 10.15406/ppij.2021.09.00344
- Kerr, J F R.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257. doi: 10.1038/bjc.1972.33 PMID: 4561027
- Vogelstein, B.; Kinzler, K.W. p53 function and dysfunction. Cell, 1992, 70(4), 523-526. doi: 10.1016/0092-8674(92)90421-8 PMID: 1505019
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, 25(1), 104-113. doi: 10.1038/cdd.2017.169 PMID: 29149101
- Inamura, K. Lung cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol., 2017, 7, 193. doi: 10.3389/fonc.2017.00193 PMID: 28894699
- Wang, R.A.; Li, Q.L.; Li, Z.S.; Zheng, P.J.; Zhang, H.Z.; Huang, X.F.; Chi, S.M.; Yang, A.G.; Cui, R. Apoptosis drives cancer cells proliferate and metastasize. J. Cell. Mol. Med., 2013, 17(1), 205-211. doi: 10.1111/j.1582-4934.2012.01663.x PMID: 23305095
- Jan, R.; Chaudhry, G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull., 2019, 9(2), 205-218. doi: 10.15171/apb.2019.024 PMID: 31380246
- Wachmann, K.; Pop, C.; van Raam, B.J.; Drag, M.; Mace, P.D.; Snipas, S.J.; Zmasek, C.; Schwarzenbacher, R.; Salvesen, G.S.; Riedl, S.J. Activation and specificity of human caspase-10. Biochemistry, 2010, 49(38), 8307-8315. doi: 10.1021/bi100968m PMID: 20795673
- Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
- Wagner, H.; Bladt, S. Plant drug analysis: A thin layer chromatography atlas; Springer Science & Business Media, 1996, pp. 195-245. doi: 10.1007/978-3-642-00574-9_8
- Rekha, M.J.; Bettadaiah, B.K.; Muthukumar, S.P.; Govindaraju, K. Synthesis, characterization and anti-inflammatory properties of karanjin (Pongamia pinnata seed) and its derivatives. Bioorg. Chem., 2021, 106, 104471. doi: 10.1016/j.bioorg.2020.104471 PMID: 33257003
- Targett, N.M.; Kilcoyne, J.P.; Green, B. Vacuum liquid chromatography: An alternative to common chromatographic methods. J. Org. Chem., 1979, 44(26), 4962-4964. doi: 10.1021/jo00394a045
- Ahmed, H.; Moawad, A.; Owis, A.; AbouZid, S.; Ahmed, O. Flavonoids of Calligonum polygonoides and their cytotoxicity. Pharm. Biol., 2016, 54(10), 2119-2126. doi: 10.3109/13880209.2016.1146778 PMID: 26922854
- Chen, L.; Jiang, J.; Cheng, C.; Yang, A.; He, Q.; Li, D.; Wang, Z. P53 dependent and independent apoptosis induced by lidamycin in human colorectal cancer cells. Cancer Biol. Ther., 2007, 6(6), 965-973. doi: 10.4161/cbt.6.6.4193 PMID: 17534142
- Pandey, A.; Bajpai, A.K.; Kumar, A.; Pal, M.; Baboo, V.; Dwivedi, A. Isolation, identification, molecular and electronic structure, vibrational spectroscopic investigation, and anti-HIV-1 activity of karanjin using density functional theory. J. Theor. Chem., 2014, 2014(680987), 1-13. doi: 10.1155/2014/680987
- Singh, A.; Mukhopadhyay, K.; Ghosh Sachan, S. Biotransformation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003. Biocatal. Biotransform., 2019, 37(4), 291-303. doi: 10.1080/10242422.2018.1544245
- Ginting, C.N.; Lister, I.N.E.; Girsang, E.; Widowati, W.; Yusepany, D.T.; Azizah, A.M.; Kusuma, H.S.W. Hepatotoxicity prevention in Acetaminophen-induced HepG2 cells by red betel (Piper crocatum Ruiz and Pav) extract from Indonesia via antioxidant, anti-inflammatory, and anti-necrotic. Heliyon, 2021, 7(1), e05620. doi: 10.1016/j.heliyon.2020.e05620 PMID: 33474504
- Rio, D.C.; Ares, M., Jr; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc., 2010, 2010(6), pdb.prot5439. doi: 10.1101/pdb.prot5439 PMID: 20516177
- Skrypina, N.A.; Timofeeva, A.V.; Khaspekov, G.L.; Savochkina, L.P.; Beabealashvilli, R.S.H. Total RNA suitable for molecular biology analysis. J. Biotechnol., 2003, 105(1-2), 1-9. doi: 10.1016/S0168-1656(03)00140-8
- Mroczek, T.; Dymek, A.; Widelski, J.; Wojtanowski, K.K. The bioassay-guided fractionation and identification of potent acetylcholinesterase inhibitors from narcissus c.v. Hawera using optimized vacuum liquid chromatography, high resolution mass spectrometry and bioautography. Metabolites, 2020, 10(10), 395. doi: 10.3390/metabo10100395 PMID: 33020380
- Eroğlu, C.; Seçme, M.; Bağcı, G.; Dodurga, Y. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumour Biol., 2015, 36(12), 9437-9446. doi: 10.1007/s13277-015-3689-3 PMID: 26124008
- Mottaghipisheh, J.; Iriti, M. Sephadex® LH-20, isolation, and purification of flavonoids from plant species: A comprehensive review. Molecules, 2020, 25(18), 4146. doi: 10.3390/molecules25184146 PMID: 32927822
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-∆ ∆ C(T)). Method. Methods, 2001, 25(4), 402-408. doi: 10.1006/meth.2001.1262 PMID: 11846609
- Marima, R.; Hull, R.; Dlamini, Z.; Penny, C. Efavirenz induces DNA damage response pathway in lung cancer. Oncotarget, 2020, 11(41), 3737-3748. doi: 10.18632/oncotarget.27725 PMID: 33110481
- Pajaniradje, S.; Mohankumar, K.; Pamidimukkala, R.; Subramanian, S.; Rajagopalan, R. Antiproliferative and apoptotic effects of Sesbania grandiflora leaves in human cancer cells. BioMed Res. Int., 2014, 2014, 1-11. doi: 10.1155/2014/474953 PMID: 24949454
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
- Patel, H.M.; Shaikh, M.; Ahmad, I.; Lokwani, D.; Surana, S.J. BREED based de novo hybridization approach: Generating novel T790M/C797S-EGFR tyrosine kinase inhibitors to overcome the problem of mutation and resistance in non small cell lung cancer (NSCLC). J. Biomol. Struct. Dyn., 2021, 39(8), 2838-2856. doi: 10.1080/07391102.2020.1754918 PMID: 32276580
- Shivanika, C.; Kumar, D.; Ragunathan, V.; Tiwari, P.; Sumitha, A. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn., 2022, 40(2), 585-611. doi: 10.1080/07391102.2020.1815584
- Kumar, B.K.; Faheem, N.; Sekhar, K.V.G.C.; Ojha, R.; Prajapati, V.K.; Pai, A.; Murugesan, S. Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. J. Biomol. Struct. Dyn., 2022, 40(3), 1363-1386. doi: 10.1080/07391102.2020.1824814 PMID: 32981461
- Subhani, S.; Jamil, K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer. Biomed. Pharmacother., 2015, 73, 65-74. doi: 10.1016/j.biopha.2015.05.018 PMID: 26211584
- Bergdorf, M.; Kim, E.T.; Rendleman, C.A.; Shaw, D.E. Desmond/GPU Performance as of November 2014. In: DE Shaw Research Technical Report DESRES/TR2014-01; , 2014.
- Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods Mol. Biol., 2017, 1, 607-627-641. doi: 10.1007/978
- Bao, X.; Zhang, Y.; Zhang, H.; Xia, L. Molecular mechanism of β-sitosterol and its derivatives in tumor progression. Front. Oncol., 2022, 12, 926975. doi: 10.3389/fonc.2022.926975 PMID: 35756648
- Coates, J. Interpretation of infrared spectra, a practical approach. In: Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd: Chichester, 2000.
- Harris, L.A.; Frick, P.L.; Garbett, S.P.; Hardeman, K.N.; Paudel, B.B.; Lopez, C.F.; Quaranta, V.; Tyson, D.R. An unbiased metric of antiproliferative drug effect in vitro. Nat. Methods, 2016, 13(6), 497-500. doi: 10.1038/nmeth.3852 PMID: 27135974
- Wang, R.; Zhang, Q.; Peng, X.; Zhou, C.; Zhong, Y.; Chen, X.; Qiu, Y.; Jin, M.; Gong, M.; Kong, D. Stellettin B induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway. Sci. Rep., 2016, 6(1), 27071. doi: 10.1038/srep27071 PMID: 27243769
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950. doi: 10.1152/physrev.00026.2013 PMID: 24987008
- Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer, 2005, 5(11), 876-885. doi: 10.1038/nrc1736 PMID: 16239906
- Vigneswara, V.; Ahmed, Z. The role of caspase-2 in regulating cell fate. Cells, 2020, 9(5), 1259. doi: 10.3390/cells9051259 PMID: 32438737
- Ponder, K.G.; Boise, L.H. The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov., 2019, 5(1), 56. doi: 10.1038/s41420-019-0142-1 PMID: 30701088
- Leverson, J.D.; Zhang, H.; Chen, J.; Tahir, S.K.; Phillips, D.C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; Kovar, P.; Tanaka, A.; Bruncko, M.; Sheppard, G.S.; Wang, L.; Gierke, S.; Kategaya, L.; Anderson, D.J.; Wong, C.; Eastham-Anderson, J.; Ludlam, M.J.C.; Sampath, D.; Fairbrother, W.J.; Wertz, I.; Rosenberg, S.H.; Tse, C.; Elmore, S.W.; Souers, A.J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 2015, 6(1), e1590-e1590. doi: 10.1038/cddis.2014.561 PMID: 25590800
- Román, M.; Baraibar, I.; López, I.; Nadal, E.; Rolfo, C.; Vicent, S.; Gil-Bazo, I. KRAS oncogene in non-small cell lung cancer: Clinical perspectives on the treatment of an old target. Mol. Cancer, 2018, 17(1), 33. doi: 10.1186/s12943-018-0789-x PMID: 29455666
- Jingwen, B.; Yaochen, L.; Guojun, Z. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med., 2017, 14(4), 348-362. doi: 10.20892/j.issn.2095-3941.2017.0033 PMID: 29372101
- Plenchette, S.; Romagny, S.; Laurens, V.; Bettaieb, A. S-nitrosylation in TNF superfamily signaling pathway: Implication in cancer. Redox Biol., 2015, 6, 507-515. doi: 10.1016/j.redox.2015.08.019 PMID: 26448396
- McArthur, K.; Whitehead, L.W.; Heddleston, J.M.; Li, L.; Padman, B.S.; Oorschot, V.; Geoghegan, N.D.; Chappaz, S.; Davidson, S.; San Chin, H.; Lane, R.M.; Dramicanin, M.; Saunders, T.L.; Sugiana, C.; Lessene, R.; Osellame, L.D.; Chew, T.L.; Dewson, G.; Lazarou, M.; Ramm, G.; Lessene, G.; Ryan, M.T.; Rogers, K.L.; van Delft, M.F.; Kile, B.T. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 2018, 359(6378), eaao6047. doi: 10.1126/science.aao6047 PMID: 29472455
- Zhang, J.; Ming, C.; Zhang, W.; Okechukwu, P.N.; Morak-Młodawska, B.; Pluta, K.; Jeleń, M.; Akim, A.M.; Ang, K.P.; Ooi, K.K. 10H-3,6-Diazaphenothiazine induces G2/M phase cell cycle arrest and caspase-dependent apoptosis and inhibits cell invasion of A2780 ovarian carcinoma cells through the regulation of NF-κB and (BIRC6-XIAP) complexes. Drug Des. Devel. Ther., 2017, 11, 3045-3063. doi: 10.2147/DDDT.S144415 PMID: 29123378
- Polosukhina, D.; Love, H.D.; Correa, H.; Su, Z.; Dahlman, K.B.; Pao, W.; Moses, H.L.; Arteaga, C.L.; Lovvorn, H.N., III; Zent, R.; Clark, P.E. Functional KRAS mutations and a potential role for PI3K/AKT activation in Wilms tumors. Mol. Oncol., 2017, 11(4), 405-421. doi: 10.1002/1878-0261.12044 PMID: 28188683
- Hiraki, M.; Nishimura, J.; Takahashi, H.; Wu, X.; Takahashi, Y.; Miyo, M.; Nishida, N.; Uemura, M.; Hata, T.; Takemasa, I.; Mizushima, T.; Soh, J.W.; Doki, Y.; Mori, M.; Yamamoto, H. Concurrent targeting of KRAS and AKT by MiR-4689 is a novel treatment against mutant KRAS colorectal cancer. Mol. Ther. Nucleic Acids, 2015, 4(3), e231. doi: 10.1038/mtna.2015.5 PMID: 25756961
- Unni, A.M.; Lockwood, W.W.; Zejnullahu, K.; Lee-Lin, S.Q.; Varmus, H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. eLife, 2015, 4, e06907. doi: 10.7554/eLife.06907 PMID: 26047463
- Martínez-Pérez, C.; Ward, C.; Turnbull, A.K.; Mullen, P.; Cook, G.; Meehan, J.; Jarman, E.J.; Thomson, P.I.T.; Campbell, C.J.; McPhail, D.; Harrison, D.J.; Langdon, S.P. Antitumour activity of the novel flavonoid Oncamex in preclinical breast cancer models. Br. J. Cancer, 2016, 114(8), 905-916. doi: 10.1038/bjc.2016.6 PMID: 27031849
- Priness, I.; Maimon, O.; Ben-Gal, I. Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics, 2007, 8(1), 111. doi: 10.1186/1471-2105-8-111 PMID: 17397530
- Ganesan, R.; Jelakovic, S.; Mittl, P.R.E.; Caflisch, A.; Grütter, M.G. In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2011, 67(8), 842-850. doi: 10.1107/S1744309111018604 PMID: 21821879
- Dwivedi, P.S.R.; Shastry, C.S. Anti-tumor potential and mode of action of karanjin against breast cancer; an in-silico approach. Arab. J. Chem., 2023, 16(6), 104778. doi: 10.1016/j.arabjc.2023.104778
- Ni, C.Z.; Li, C.; Wu, J.C.; Spada, A.P.; Ely, K.R. Conformational restrictions in the active site of unliganded human caspase-3. J. Mol. Recognit., 2003, 16(3), 121-124. doi: 10.1002/jmr.615 PMID: 12833566
- Sulpizi, M.; Rothlisberger, U.; Carloni, P. Molecular dynamics studies of caspase-3. Biophys. J., 2003, 84(4), 2207-2215. doi: 10.1016/S0006-3495(03)75026-7 PMID: 12668429
- Yao, L.; Swartz, P.; Hamilton, P.T.; Clark, A.C. Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3. Biosci. Rep., 2021, 41(1), BSR20203495. doi: 10.1042/BSR20203495 PMID: 33448281
- Arnittali, M.; Rissanou, A.N.; Harmandaris, V. Structure of biomolecules through molecular dynamics simulations. Procedia Comput. Sci., 2019, 156, 69-78. doi: 10.1016/j.procs.2019.08.181
- Ahmadi, A.; Mohammadnejadi, E.; Razzaghi-Asl, N. Gefitinib derivatives and drug-resistance: A perspective from molecular dynamics simulations. Comput. Biol. Med., 2023, 163, 107204. doi: 10.1016/j.compbiomed.2023.107204 PMID: 37421739
- Karnik, K.S.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Wakte, P.S. Molecular dynamic simulations based discovery and development of thiazolidin-4-one derivatives as EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC). J. Biomol. Struct. Dyn., 2023, 41(10), 4696-4710. doi: 10.1080/07391102.2022.2071339 PMID: 35532095
- Moradihaghgou, L.; Schneider, R.; Zanjani, B.M.; Harkinezhad, T. Comparative computational screening of natural-based partial agonists for PPARγ receptor. Med. Chem., 2023, 19(6), 594-618. doi: 10.2174/1573406419666230103142021 PMID: 36597601
- Gnanaraj, C.; Sekar, M.; Fuloria, S.; Swain, S.S.; Gan, S.H.; Chidambaram, K.; Rani, N.N.I.M.; Balan, T.; Stephenie, S.; Lum, P.T.; Jeyabalan, S.; Begum, M.Y.; Chandramohan, V.; Thangavelu, L.; Subramaniyan, V.; Fuloria, N.K. In silico molecular docking analysis of karanjin against alzheimers and parkinsons diseases as a potential natural lead molecule for new drug design, development and therapy. Molecules, 2022, 27(9), 2834. doi: 10.3390/molecules27092834 PMID: 35566187
- Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47. PMID: 26604800
- Binder, K.; Horbach, J.; Kob, W.; Paul, W.; Varnik, F. Molecular dynamics simulations. J. Phys. Condens. Matter, 2004, 16(5), S429-S453. doi: 10.1088/0953-8984/16/5/006
- Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9(1), 71. doi: 10.1186/1741-7007-9-71 PMID: 22035460
- Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(4), 1518-1524. doi: 10.1021/acs.jctc.7b00028 PMID: 28267328
- da Fonseca, A.M.; Caluaco, B.J.; Madureira, J.M.C.; Cabongo, S.Q.; Gaieta, E.M.; Djata, F.; Colares, R.P.; Neto, M.M.; Fernandes, C.F.C.; Marinho, G.S.; dos Santos, H.S.; Marinho, E.S. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA. Mol. Biotechnol., 2023, 1-15. doi: 10.1007/s12033-023-00831-x PMID: 37490200
补充文件
