Karanjin, A Promising Bioactive Compound Possessing Anti-cancer Activity against Experimental Model of Non-small Cell Lung Cancer Cells

  • 作者: Kumar G.1, Pandey D.M.2, Ghosh M.3, Dall'Acqua S.4, Gupta R.5, Tiwari N.2, Mohd Siddique U.6, Vishwakrama L.7, Guleri S.K.8, Lal U.9, Dubey S.10
  • 隶属关系:
    1. Department of Bioengineering and Biotechnology,, Birla Institute of Technology
    2. Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra
    3. Department of Pharmaceutical Sciences and Technology,, Birla Institute of Technology, Mesra
    4. Department of Pharmaceutical Science and Pharmacology, University of Padua
    5. Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra
    6. Department of Pharmaceutical Sciences and Technology,, Birla Institute of Technology,
    7. Department of Microbiology, Government Medical College & Hospital
    8. Department of Community Medicine, Government Medical College & Hospital
    9. Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Birla Institute of Technology, Mesra
    10. Department of Chemistry, Kanya Gurukul Campus, Gurukul Kangri (Deemed to be University),
  • 期: 卷 24, 编号 5 (2024)
  • 页面: 317-333
  • 栏目: Oncology
  • URL: https://snv63.ru/1871-5206/article/view/644173
  • DOI: https://doi.org/10.2174/0118715206255557231024095245
  • ID: 644173

如何引用文章

全文:

详细

Aims:The aim of this study is to isolate the Millettia pinnata (Karanj) leaf extract for pure compound with anticancer properties and to study the molecular target of the isolates in non-small cell lung cancer cell lines.

Background:In our earlier research Millettia pinnata leaf extract has demonstrated potential anticancer activities. Thus, in pursuit of the bioactive compounds, the most potential active extract from our previous study was purified. Furthermore, the anticancer properties of the isolated compound karanjin was studied and aimed for apoptosis and restraining growth

Methods:A novel method was developed through column chromatography for isolation and purification of the compound karanjin from leaf chloroform extract. The purified component was then characterised using FTIR, mass spectrometry, and NMR. An MTT-based cytotoxicity assay was used to analyse cell cytotoxicity, whereas fluorescence staining was used for apoptosis and reactive oxygen species inhibition quantification. Furthermore, the real-time PCR assay was used to determine the molecular mechanism of action in cells causing cytotoxicity induced by karanjin dosing

Results:The anticancer activity of karanjin in A549 cell line exhibited prominent activity revealing IC50 value of 4.85 µM. Conferring the predicted molecular pathway study, karanjin restrains the proliferation of cancer cells through apoptosis, which is controlled by extrinsic pathway proteins FAS/FADD/Caspases 8/3/9. Downregulation of KRAS and dependent gene expression also stopped cell proliferation.

Conclusion:Karanjin has been identified as a compound with potential effect in non-small cell lung cancer cells. Molecular mechanism for apoptosis and inhibition of reactive oxygen species induced through H2O2 were observed, concluding karanjin have medicinal and antioxidant properties.

作者简介

Gourav Kumar

Department of Bioengineering and Biotechnology,, Birla Institute of Technology

编辑信件的主要联系方式.
Email: info@benthamscience.net

Dev Pandey

Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra

Email: info@benthamscience.net

Manik Ghosh

Department of Pharmaceutical Sciences and Technology,, Birla Institute of Technology, Mesra

Email: info@benthamscience.net

Stefano Dall'Acqua

Department of Pharmaceutical Science and Pharmacology, University of Padua

Email: info@benthamscience.net

Rashmi Gupta

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra

Email: info@benthamscience.net

Nishi Tiwari

Department of Bio-Engineering and Biotechnology, Birla Institute of Technology, Mesra

Email: info@benthamscience.net

Usman Mohd Siddique

Department of Pharmaceutical Sciences and Technology,, Birla Institute of Technology,

Email: info@benthamscience.net

Leena Vishwakrama

Department of Microbiology, Government Medical College & Hospital

Email: info@benthamscience.net

Sunil Guleri

Department of Community Medicine, Government Medical College & Hospital

Email: info@benthamscience.net

Uma Lal

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Birla Institute of Technology, Mesra

Email: info@benthamscience.net

Supriya Dubey

Department of Chemistry, Kanya Gurukul Campus, Gurukul Kangri (Deemed to be University),

Email: info@benthamscience.net

参考

  1. Kumar, G.; Ghosh, M.; Pandey, D.M. Method development for optimised green synthesis of gold nanoparticles from Millettia pinnata and their activity in non-small cell lung cancer cell lines. IET Nanobiotechnol., 2019, 13(6), 626-633. doi: 10.1049/iet-nbt.2018.5410 PMID: 31432797
  2. Aggarwal, V.; Tuli, H.S.; Kaur, J.; Aggarwal, D.; Parashar, G.; Chaturvedi Parashar, N.; Kulkarni, S.; Kaur, G.; Sak, K.; Kumar, M.; Ahn, K.S. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicines, 2020, 8(5), 103. doi: 10.3390/biomedicines8050103 PMID: 32365899
  3. Kumar, G.; Gupta, R.; Sharan, S.; Roy, P.; Pandey, D.M. Anticancer activity of plant leaves extract collected from a tribal region of India. BioTech, 2019, 9(11), 1-16.
  4. Eipeson, W.S.; Manjunatha, J.R.; Srinivas, P.; Kanya, T.S. Extraction and recovery of karanjin: A value addition to karanja (Pongamia pinnata) seed oil. Ind. Crops Prod., 2010, 32(2), 118-122. doi: 10.1016/j.indcrop.2010.03.011
  5. Roy, R.; Pal, D.; Sur, S.; Mandal, S.; Saha, P.; Panda, C.K. Pongapin and Karanjin, furanoflavanoids of PONGAMIA PINNATA, induce G2/M arrest and apoptosis in cervical cancer cells by differential reactive oxygen species modulation, DNA damage, and nuclear factor kappa-light-chain-enhancer of activated B cell signaling. Phytother. Res., 2019, 33(4), 1084-1094. doi: 10.1002/ptr.6302 PMID: 30834631
  6. Tong, D.; Wang, X.; Liu, L.; Wen, T.; Chen, Q.; Huang, C. LAMC2 promotes EGFR cell membrane localization and acts as a novel biomarker for tyrosine kinase inhibitors (TKIs) sensitivity in lung cancer. Cancer Gene Ther., 2023, 1-15. doi: 10.1038/s41417-023-00654-7 PMID: 37542131
  7. Guo, J.R.; Chen, Q.Q.; Lam, C.W.K.; Zhang, W. Effects of karanjin on cell cycle arrest and apoptosis in human A549, HepG2 and HL-60 cancer cells. Biol. Res., 2015, 48(1), 40. doi: 10.1186/s40659-015-0031-x PMID: 26209237
  8. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  9. Liu, G.; Pei, F.; Yang, F.; Li, L.; Amin, A.; Liu, S.; Buchan, J.; Cho, W. Role of autophagy and apoptosis in non-small-cell lung cancer. Int. J. Mol. Sci., 2017, 18(2), 367. doi: 10.3390/ijms18020367 PMID: 28208579
  10. Nimesh, S.; Akram, M.; Chishti, M.A.; Ahmad, M.I.; Dhama, S.; Lal, M. Pongamia pinnata: An updated review on its phytochemistry, & pharmacological uses. Pharm. Pharmacol. Int. J., 2021, 9(5), 194-199. doi: 10.15406/ppij.2021.09.00344
  11. Kerr, J F R.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257. doi: 10.1038/bjc.1972.33 PMID: 4561027
  12. Vogelstein, B.; Kinzler, K.W. p53 function and dysfunction. Cell, 1992, 70(4), 523-526. doi: 10.1016/0092-8674(92)90421-8 PMID: 1505019
  13. Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, 25(1), 104-113. doi: 10.1038/cdd.2017.169 PMID: 29149101
  14. Inamura, K. Lung cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol., 2017, 7, 193. doi: 10.3389/fonc.2017.00193 PMID: 28894699
  15. Wang, R.A.; Li, Q.L.; Li, Z.S.; Zheng, P.J.; Zhang, H.Z.; Huang, X.F.; Chi, S.M.; Yang, A.G.; Cui, R. Apoptosis drives cancer cells proliferate and metastasize. J. Cell. Mol. Med., 2013, 17(1), 205-211. doi: 10.1111/j.1582-4934.2012.01663.x PMID: 23305095
  16. Jan, R.; Chaudhry, G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull., 2019, 9(2), 205-218. doi: 10.15171/apb.2019.024 PMID: 31380246
  17. Wachmann, K.; Pop, C.; van Raam, B.J.; Drag, M.; Mace, P.D.; Snipas, S.J.; Zmasek, C.; Schwarzenbacher, R.; Salvesen, G.S.; Riedl, S.J. Activation and specificity of human caspase-10. Biochemistry, 2010, 49(38), 8307-8315. doi: 10.1021/bi100968m PMID: 20795673
  18. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
  19. Wagner, H.; Bladt, S. Plant drug analysis: A thin layer chromatography atlas; Springer Science & Business Media, 1996, pp. 195-245. doi: 10.1007/978-3-642-00574-9_8
  20. Rekha, M.J.; Bettadaiah, B.K.; Muthukumar, S.P.; Govindaraju, K. Synthesis, characterization and anti-inflammatory properties of karanjin (Pongamia pinnata seed) and its derivatives. Bioorg. Chem., 2021, 106, 104471. doi: 10.1016/j.bioorg.2020.104471 PMID: 33257003
  21. Targett, N.M.; Kilcoyne, J.P.; Green, B. Vacuum liquid chromatography: An alternative to common chromatographic methods. J. Org. Chem., 1979, 44(26), 4962-4964. doi: 10.1021/jo00394a045
  22. Ahmed, H.; Moawad, A.; Owis, A.; AbouZid, S.; Ahmed, O. Flavonoids of Calligonum polygonoides and their cytotoxicity. Pharm. Biol., 2016, 54(10), 2119-2126. doi: 10.3109/13880209.2016.1146778 PMID: 26922854
  23. Chen, L.; Jiang, J.; Cheng, C.; Yang, A.; He, Q.; Li, D.; Wang, Z. P53 dependent and independent apoptosis induced by lidamycin in human colorectal cancer cells. Cancer Biol. Ther., 2007, 6(6), 965-973. doi: 10.4161/cbt.6.6.4193 PMID: 17534142
  24. Pandey, A.; Bajpai, A.K.; Kumar, A.; Pal, M.; Baboo, V.; Dwivedi, A. Isolation, identification, molecular and electronic structure, vibrational spectroscopic investigation, and anti-HIV-1 activity of karanjin using density functional theory. J. Theor. Chem., 2014, 2014(680987), 1-13. doi: 10.1155/2014/680987
  25. Singh, A.; Mukhopadhyay, K.; Ghosh Sachan, S. Biotransformation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003. Biocatal. Biotransform., 2019, 37(4), 291-303. doi: 10.1080/10242422.2018.1544245
  26. Ginting, C.N.; Lister, I.N.E.; Girsang, E.; Widowati, W.; Yusepany, D.T.; Azizah, A.M.; Kusuma, H.S.W. Hepatotoxicity prevention in Acetaminophen-induced HepG2 cells by red betel (Piper crocatum Ruiz and Pav) extract from Indonesia via antioxidant, anti-inflammatory, and anti-necrotic. Heliyon, 2021, 7(1), e05620. doi: 10.1016/j.heliyon.2020.e05620 PMID: 33474504
  27. Rio, D.C.; Ares, M., Jr; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc., 2010, 2010(6), pdb.prot5439. doi: 10.1101/pdb.prot5439 PMID: 20516177
  28. Skrypina, N.A.; Timofeeva, A.V.; Khaspekov, G.L.; Savochkina, L.P.; Beabealashvilli, R.S.H. Total RNA suitable for molecular biology analysis. J. Biotechnol., 2003, 105(1-2), 1-9. doi: 10.1016/S0168-1656(03)00140-8
  29. Mroczek, T.; Dymek, A.; Widelski, J.; Wojtanowski, K.K. The bioassay-guided fractionation and identification of potent acetylcholinesterase inhibitors from narcissus c.v. ‘Hawera’ using optimized vacuum liquid chromatography, high resolution mass spectrometry and bioautography. Metabolites, 2020, 10(10), 395. doi: 10.3390/metabo10100395 PMID: 33020380
  30. Eroğlu, C.; Seçme, M.; Bağcı, G.; Dodurga, Y. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumour Biol., 2015, 36(12), 9437-9446. doi: 10.1007/s13277-015-3689-3 PMID: 26124008
  31. Mottaghipisheh, J.; Iriti, M. Sephadex® LH-20, isolation, and purification of flavonoids from plant species: A comprehensive review. Molecules, 2020, 25(18), 4146. doi: 10.3390/molecules25184146 PMID: 32927822
  32. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-∆ ∆ C(T)). Method. Methods, 2001, 25(4), 402-408. doi: 10.1006/meth.2001.1262 PMID: 11846609
  33. Marima, R.; Hull, R.; Dlamini, Z.; Penny, C. Efavirenz induces DNA damage response pathway in lung cancer. Oncotarget, 2020, 11(41), 3737-3748. doi: 10.18632/oncotarget.27725 PMID: 33110481
  34. Pajaniradje, S.; Mohankumar, K.; Pamidimukkala, R.; Subramanian, S.; Rajagopalan, R. Antiproliferative and apoptotic effects of Sesbania grandiflora leaves in human cancer cells. BioMed Res. Int., 2014, 2014, 1-11. doi: 10.1155/2014/474953 PMID: 24949454
  35. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
  36. Patel, H.M.; Shaikh, M.; Ahmad, I.; Lokwani, D.; Surana, S.J. BREED based de novo hybridization approach: Generating novel T790M/C797S-EGFR tyrosine kinase inhibitors to overcome the problem of mutation and resistance in non small cell lung cancer (NSCLC). J. Biomol. Struct. Dyn., 2021, 39(8), 2838-2856. doi: 10.1080/07391102.2020.1754918 PMID: 32276580
  37. Shivanika, C.; Kumar, D.; Ragunathan, V.; Tiwari, P.; Sumitha, A. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn., 2022, 40(2), 585-611. doi: 10.1080/07391102.2020.1815584
  38. Kumar, B.K.; Faheem, N.; Sekhar, K.V.G.C.; Ojha, R.; Prajapati, V.K.; Pai, A.; Murugesan, S. Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. J. Biomol. Struct. Dyn., 2022, 40(3), 1363-1386. doi: 10.1080/07391102.2020.1824814 PMID: 32981461
  39. Subhani, S.; Jamil, K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer. Biomed. Pharmacother., 2015, 73, 65-74. doi: 10.1016/j.biopha.2015.05.018 PMID: 26211584
  40. Bergdorf, M.; Kim, E.T.; Rendleman, C.A.; Shaw, D.E. Desmond/GPU Performance as of November 2014. In: DE Shaw Research Technical Report DESRES/TR—2014-01; , 2014.
  41. Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods Mol. Biol., 2017, 1, 607-627-641. doi: 10.1007/978
  42. Bao, X.; Zhang, Y.; Zhang, H.; Xia, L. Molecular mechanism of β-sitosterol and its derivatives in tumor progression. Front. Oncol., 2022, 12, 926975. doi: 10.3389/fonc.2022.926975 PMID: 35756648
  43. Coates, J. Interpretation of infrared spectra, a practical approach. In: Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd: Chichester, 2000.
  44. Harris, L.A.; Frick, P.L.; Garbett, S.P.; Hardeman, K.N.; Paudel, B.B.; Lopez, C.F.; Quaranta, V.; Tyson, D.R. An unbiased metric of antiproliferative drug effect in vitro. Nat. Methods, 2016, 13(6), 497-500. doi: 10.1038/nmeth.3852 PMID: 27135974
  45. Wang, R.; Zhang, Q.; Peng, X.; Zhou, C.; Zhong, Y.; Chen, X.; Qiu, Y.; Jin, M.; Gong, M.; Kong, D. Stellettin B induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway. Sci. Rep., 2016, 6(1), 27071. doi: 10.1038/srep27071 PMID: 27243769
  46. Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950. doi: 10.1152/physrev.00026.2013 PMID: 24987008
  47. Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer, 2005, 5(11), 876-885. doi: 10.1038/nrc1736 PMID: 16239906
  48. Vigneswara, V.; Ahmed, Z. The role of caspase-2 in regulating cell fate. Cells, 2020, 9(5), 1259. doi: 10.3390/cells9051259 PMID: 32438737
  49. Ponder, K.G.; Boise, L.H. The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov., 2019, 5(1), 56. doi: 10.1038/s41420-019-0142-1 PMID: 30701088
  50. Leverson, J.D.; Zhang, H.; Chen, J.; Tahir, S.K.; Phillips, D.C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; Kovar, P.; Tanaka, A.; Bruncko, M.; Sheppard, G.S.; Wang, L.; Gierke, S.; Kategaya, L.; Anderson, D.J.; Wong, C.; Eastham-Anderson, J.; Ludlam, M.J.C.; Sampath, D.; Fairbrother, W.J.; Wertz, I.; Rosenberg, S.H.; Tse, C.; Elmore, S.W.; Souers, A.J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 2015, 6(1), e1590-e1590. doi: 10.1038/cddis.2014.561 PMID: 25590800
  51. Román, M.; Baraibar, I.; López, I.; Nadal, E.; Rolfo, C.; Vicent, S.; Gil-Bazo, I. KRAS oncogene in non-small cell lung cancer: Clinical perspectives on the treatment of an old target. Mol. Cancer, 2018, 17(1), 33. doi: 10.1186/s12943-018-0789-x PMID: 29455666
  52. Jingwen, B.; Yaochen, L.; Guojun, Z. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med., 2017, 14(4), 348-362. doi: 10.20892/j.issn.2095-3941.2017.0033 PMID: 29372101
  53. Plenchette, S.; Romagny, S.; Laurens, V.; Bettaieb, A. S-nitrosylation in TNF superfamily signaling pathway: Implication in cancer. Redox Biol., 2015, 6, 507-515. doi: 10.1016/j.redox.2015.08.019 PMID: 26448396
  54. McArthur, K.; Whitehead, L.W.; Heddleston, J.M.; Li, L.; Padman, B.S.; Oorschot, V.; Geoghegan, N.D.; Chappaz, S.; Davidson, S.; San Chin, H.; Lane, R.M.; Dramicanin, M.; Saunders, T.L.; Sugiana, C.; Lessene, R.; Osellame, L.D.; Chew, T.L.; Dewson, G.; Lazarou, M.; Ramm, G.; Lessene, G.; Ryan, M.T.; Rogers, K.L.; van Delft, M.F.; Kile, B.T. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 2018, 359(6378), eaao6047. doi: 10.1126/science.aao6047 PMID: 29472455
  55. Zhang, J.; Ming, C.; Zhang, W.; Okechukwu, P.N.; Morak-Młodawska, B.; Pluta, K.; Jeleń, M.; Akim, A.M.; Ang, K.P.; Ooi, K.K. 10H-3,6-Diazaphenothiazine induces G2/M phase cell cycle arrest and caspase-dependent apoptosis and inhibits cell invasion of A2780 ovarian carcinoma cells through the regulation of NF-κB and (BIRC6-XIAP) complexes. Drug Des. Devel. Ther., 2017, 11, 3045-3063. doi: 10.2147/DDDT.S144415 PMID: 29123378
  56. Polosukhina, D.; Love, H.D.; Correa, H.; Su, Z.; Dahlman, K.B.; Pao, W.; Moses, H.L.; Arteaga, C.L.; Lovvorn, H.N., III; Zent, R.; Clark, P.E. Functional KRAS mutations and a potential role for PI3K/AKT activation in Wilms tumors. Mol. Oncol., 2017, 11(4), 405-421. doi: 10.1002/1878-0261.12044 PMID: 28188683
  57. Hiraki, M.; Nishimura, J.; Takahashi, H.; Wu, X.; Takahashi, Y.; Miyo, M.; Nishida, N.; Uemura, M.; Hata, T.; Takemasa, I.; Mizushima, T.; Soh, J.W.; Doki, Y.; Mori, M.; Yamamoto, H. Concurrent targeting of KRAS and AKT by MiR-4689 is a novel treatment against mutant KRAS colorectal cancer. Mol. Ther. Nucleic Acids, 2015, 4(3), e231. doi: 10.1038/mtna.2015.5 PMID: 25756961
  58. Unni, A.M.; Lockwood, W.W.; Zejnullahu, K.; Lee-Lin, S.Q.; Varmus, H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. eLife, 2015, 4, e06907. doi: 10.7554/eLife.06907 PMID: 26047463
  59. Martínez-Pérez, C.; Ward, C.; Turnbull, A.K.; Mullen, P.; Cook, G.; Meehan, J.; Jarman, E.J.; Thomson, P.I.T.; Campbell, C.J.; McPhail, D.; Harrison, D.J.; Langdon, S.P. Antitumour activity of the novel flavonoid Oncamex in preclinical breast cancer models. Br. J. Cancer, 2016, 114(8), 905-916. doi: 10.1038/bjc.2016.6 PMID: 27031849
  60. Priness, I.; Maimon, O.; Ben-Gal, I. Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics, 2007, 8(1), 111. doi: 10.1186/1471-2105-8-111 PMID: 17397530
  61. Ganesan, R.; Jelakovic, S.; Mittl, P.R.E.; Caflisch, A.; Grütter, M.G. In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2011, 67(8), 842-850. doi: 10.1107/S1744309111018604 PMID: 21821879
  62. Dwivedi, P.S.R.; Shastry, C.S. Anti-tumor potential and mode of action of karanjin against breast cancer; an in-silico approach. Arab. J. Chem., 2023, 16(6), 104778. doi: 10.1016/j.arabjc.2023.104778
  63. Ni, C.Z.; Li, C.; Wu, J.C.; Spada, A.P.; Ely, K.R. Conformational restrictions in the active site of unliganded human caspase-3. J. Mol. Recognit., 2003, 16(3), 121-124. doi: 10.1002/jmr.615 PMID: 12833566
  64. Sulpizi, M.; Rothlisberger, U.; Carloni, P. Molecular dynamics studies of caspase-3. Biophys. J., 2003, 84(4), 2207-2215. doi: 10.1016/S0006-3495(03)75026-7 PMID: 12668429
  65. Yao, L.; Swartz, P.; Hamilton, P.T.; Clark, A.C. Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3. Biosci. Rep., 2021, 41(1), BSR20203495. doi: 10.1042/BSR20203495 PMID: 33448281
  66. Arnittali, M.; Rissanou, A.N.; Harmandaris, V. Structure of biomolecules through molecular dynamics simulations. Procedia Comput. Sci., 2019, 156, 69-78. doi: 10.1016/j.procs.2019.08.181
  67. Ahmadi, A.; Mohammadnejadi, E.; Razzaghi-Asl, N. Gefitinib derivatives and drug-resistance: A perspective from molecular dynamics simulations. Comput. Biol. Med., 2023, 163, 107204. doi: 10.1016/j.compbiomed.2023.107204 PMID: 37421739
  68. Karnik, K.S.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Wakte, P.S. Molecular dynamic simulations based discovery and development of thiazolidin-4-one derivatives as EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC). J. Biomol. Struct. Dyn., 2023, 41(10), 4696-4710. doi: 10.1080/07391102.2022.2071339 PMID: 35532095
  69. Moradihaghgou, L.; Schneider, R.; Zanjani, B.M.; Harkinezhad, T. Comparative computational screening of natural-based partial agonists for PPARγ receptor. Med. Chem., 2023, 19(6), 594-618. doi: 10.2174/1573406419666230103142021 PMID: 36597601
  70. Gnanaraj, C.; Sekar, M.; Fuloria, S.; Swain, S.S.; Gan, S.H.; Chidambaram, K.; Rani, N.N.I.M.; Balan, T.; Stephenie, S.; Lum, P.T.; Jeyabalan, S.; Begum, M.Y.; Chandramohan, V.; Thangavelu, L.; Subramaniyan, V.; Fuloria, N.K. In silico molecular docking analysis of karanjin against alzheimer’s and parkinson’s diseases as a potential natural lead molecule for new drug design, development and therapy. Molecules, 2022, 27(9), 2834. doi: 10.3390/molecules27092834 PMID: 35566187
  71. Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47. PMID: 26604800
  72. Binder, K.; Horbach, J.; Kob, W.; Paul, W.; Varnik, F. Molecular dynamics simulations. J. Phys. Condens. Matter, 2004, 16(5), S429-S453. doi: 10.1088/0953-8984/16/5/006
  73. Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9(1), 71. doi: 10.1186/1741-7007-9-71 PMID: 22035460
  74. Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(4), 1518-1524. doi: 10.1021/acs.jctc.7b00028 PMID: 28267328
  75. da Fonseca, A.M.; Caluaco, B.J.; Madureira, J.M.C.; Cabongo, S.Q.; Gaieta, E.M.; Djata, F.; Colares, R.P.; Neto, M.M.; Fernandes, C.F.C.; Marinho, G.S.; dos Santos, H.S.; Marinho, E.S. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA. Mol. Biotechnol., 2023, 1-15. doi: 10.1007/s12033-023-00831-x PMID: 37490200

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024