Exploring the Synergistic Effect of Sildenafil and Green Tea Polyphenols on Breast Cancer Stem Cell-like Cells and their Parental Cells: A Potential Novel Therapeutic Approach


Cite item

Full Text

Abstract

Background::Many cancer studies have intensely focused on the role of diet, among other factors involved in cancer establishment. The positive effect of green tea polyphenols (GTP) on controlling breast cancer cells has been reported in several studies. Cancer stem cell-like cells (CSC-LCs) possessing self-renewal, metastatic, and drug-resistant capacities are considered prominent therapeutic targets. In many tumors, inducible nitric oxide synthase (iNOS) expression levels are high; however, they have a dual effect on breast cancer pathogenesis.

Objective::This study aimed to investigate the cytotoxicity of the iNOS agonist (Sildenafil) and antagonist (LNAME), both alone and in combination with GTP, on MDA-MB-231, CD44+/CD24- CSC-LCs, and their parental cells (MCF-7).

Methods::The cell viability assay has been studied using the MTT assay. To analyze drug-drug combinations, CompuSyn and Combenefit software were used. The cytotoxicity mechanism was determined using flow cytometric analysis.

Results::L-NAME and GTP showed a synergistic effect on MDA-MB-231 and CSC-LCs. Such an effect was not observed on MCF-7. Sildenafil and GTP, on the other hand, showed synergistic cytotoxicity in all the cells mentioned above. Flow cytometric tests resulted in more than 70% apoptosis in MDA-MB-231 and MCF-7. Also, sub-G1 arrest among MCF-7 cells and a considerable decrease in ROS production by MDA-MB-231 cells following treatment with Sildenafil and GTP were observed.

Conclusion::Sildenafil, in combination with flavonoids, may be considered a novel strategy for cancer treatment.

About the authors

Marzie Salari Sharif

Department of Toxicology and Pharmacology, International Campus, School of Pharmacy, Tehran University of Medical Sciences

Email: info@benthamscience.net

Habibeh Sadat Mohseni

Department of Toxicology and Pharmacology, Faculty of Pharmacy,, Tehran University of Medical Sciences

Email: info@benthamscience.net

Mahnaz Khanavi

Department of Pharmacognosy, Faculty of Pharmacy,, Tehran University of Medical Sciences

Email: info@benthamscience.net

Shima Ghadami

Department of Pharmacognosy, Faculty of Pharmacy,, Tehran University of Medical Sciences

Email: info@benthamscience.net

Emad Jafarzadeh

Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences

Email: info@benthamscience.net

Shohreh Tavajohi

Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences

Email: info@benthamscience.net

Shima Aliebrahimi

Department of Artificial Intelligence,, Smart University of Medical Sciences,

Author for correspondence.
Email: info@benthamscience.net

Seyed Nasser Ostad

oxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Faculty of Pharmacy,, Tehran University of Medical Sciences,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
  2. Dawson, S.J.; Rueda, O.M.; Aparicio, S.; Caldas, C. A new genome-driven integrated classification of breast cancer and its implications. EMBO J., 2013, 32(5), 617-628. doi: 10.1038/emboj.2013.19 PMID: 23395906
  3. Anderson, W.F.; Rosenberg, P.S.; Prat, A.; Perou, C.M.; Sherman, M.E. How many etiological subtypes of breast cancer: Two, three, four, or more? J. Natl. Cancer Inst., 2014, 106(8), dju165. doi: 10.1093/jnci/dju165 PMID: 25118203
  4. Scioli, M.G.; Storti, G.; D’Amico, F.; Gentile, P.; Fabbri, G.; Cervelli, V.; Orlandi, A. The role of breast cancer stem cells as a prognostic marker and a target to improve the efficacy of breast cancer therapy. Cancers (Basel), 2019, 11(7), 1021. doi: 10.3390/cancers11071021 PMID: 31330794
  5. Akbarzadeh, M.; Maroufi, N.F.; Tazehkand, A.P.; Akbarzadeh, M.; Bastani, S.; Safdari, R.; Farzane, A.; Fattahi, A.; Nejabati, H.R.; Nouri, M.; Samadi, N. Current approaches in identification and isolation of cancer stem cells. J. Cell. Physiol., 2019, 234(9), 14759-14772. doi: 10.1002/jcp.28271 PMID: 30741412
  6. Li, W.; Ma, H.; Zhang, J.; Zhu, L.; Wang, C.; Yang, Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci. Rep., 2017, 7(1), 13856. doi: 10.1038/s41598-017-14364-2 PMID: 29062075
  7. Liu, X.; Zhang, Y.; Wang, Y.; Yang, M.; Hong, F.; Yang, S. Protein phosphorylation in cancer: Role of nitric oxide signaling pathway. Biomolecules, 2021, 11(7), 1009. doi: 10.3390/biom11071009 PMID: 34356634
  8. Zhang, L.; Wu, J.; Ling, M.T.; Zhao, L.; Zhao, K.N. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol. Cancer, 2015, 14(1), 87. doi: 10.1186/s12943-015-0361-x PMID: 26022660
  9. Förstermann, U. Nitric oxide synthases: Regulation and function. Eur. Heart J., 2012, 33(7), 829-837.
  10. Chatterjee, A.; Catravas, J.D.; Catravas, J.D. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul. Pharmacol., 2008, 49(4-6), 134-140. doi: 10.1016/j.vph.2008.06.008 PMID: 18692595
  11. Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol., 2015, 6, 334-343. doi: 10.1016/j.redox.2015.08.009 PMID: 26335399
  12. Kashfi, K.; Kannikal, J.; Nath, N. Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO. Cells, 2021, 10(11), 3194. doi: 10.3390/cells10113194 PMID: 34831416
  13. Garrido, P.; Shalaby, A.; Walsh, E.M.; Keane, N.; Webber, M.; Keane, M.M.; Sullivan, F.J.; Kerin, M.J.; Callagy, G.; Ryan, A.E.; Glynn, S.A. Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget, 2017, 8(46), 80568-80588. doi: 10.18632/oncotarget.19631 PMID: 29113326
  14. J Prud’homme, G. Cancer stem cells and novel targets for antitumor strategies. Curr. Pharm. Des., 2017, 18(19), 2838-2849.
  15. Ignarro, L.J.; Napoli, C.; Loscalzo, J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: An overview. Circ. Res., 2002, 90(1), 21-28. doi: 10.1161/hh0102.102330 PMID: 11786514
  16. Geller, D.A.; Billiar, T.R. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev., 1998, 17(1), 7-23. doi: 10.1023/A:1005940202801 PMID: 9544420
  17. Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199. doi: 10.7150/ijms.3635 PMID: 22408567
  18. Kerschbaum, E.; Nüssler, V. Cancer prevention with nutrition and lifestyle. Visc. Med., 2019, 35(4), 204-209. doi: 10.1159/000501776 PMID: 31602380
  19. Patra, S.; Nayak, R.; Patro, S.; Pradhan, B.; Sahu, B.; Behera, C.; Bhutia, S.K.; Jena, M. Chemical diversity of dietary phytochemicals and their mode of chemoprevention. Biotechnol. Rep., 2021, 30, e00633. doi: 10.1016/j.btre.2021.e00633 PMID: 34094892
  20. Rastegar-Pouyani, N.; Montazeri, V.; Marandi, N.; Aliebrahimi, S.; Andalib, M.; Jafarzadeh, E.; Montazeri, H.; Ostad, S.N. The impact of Cancer-Associated Fibroblasts on drug resistance, stemness, and epithelial-mesenchymal transition in Bladder Cancer: A comparison between recurrent and non-recurrent patient-derived CAFs. Cancer Invest., 2023, 41(7), 656-671. doi: 10.1080/07357907.2023.2237576 PMID: 37462514
  21. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47. doi: 10.1017/jns.2016.41 PMID: 28620474
  22. Torrens-Mas, M.; Roca, P. Phytoestrogens for cancer prevention and treatment. Biology, 2020, 9(12), 427. doi: 10.3390/biology9120427 PMID: 33261116
  23. Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharma.l Sci., 2018, 13(1), 12-23. doi: 10.1016/j.ajps.2017.08.004 PMID: 32104374
  24. Sarma, A.; Bania, R.; Das, M.K. Green tea: Current trends and prospects in nutraceutical and pharmaceutical aspects. J. Herb. Med., 2023, 41, 100694. doi: 10.1016/j.hermed.2023.100694
  25. Butt, M.S.; Sultan, M.T. Green tea: Nature’s defense against malignancies. Crit. Rev. Food Sci. Nutr., 2009, 49(5), 463-473. doi: 10.1080/10408390802145310 PMID: 19399671
  26. Farhan, M. Insights on the role of polyphenols in combating cancer drug resistance. Biomedicines, 2023, 11(6), 1709. doi: 10.3390/biomedicines11061709 PMID: 37371804
  27. Romano, A.; Martel, F. The role of EGCG in breast cancer prevention and therapy. Mini Rev. Med. Chem., 2021, 21(7), 883-898. doi: 10.2174/18755607MTEyrMzcq0 PMID: 33319659
  28. Kuban-Jankowska, A.; Kostrzewa, T.; Musial, C.; Barone, G.; Lo-Bosco, G.; Lo-Celso, F.; Gorska-Ponikowska, M. Green tea catechins induce inhibition of PTP1B phosphatase in breast cancer cells with potent anti-cancer properties: in vitro assay, molecular docking, and dynamics studies. Antioxidants, 2020, 9(12), 1208. doi: 10.3390/antiox9121208 PMID: 33266280
  29. Kciuk, M.; Alam, M.; Ali, N.; Rashid, S. Głowacka, P.; Sundaraj, R.; Celik, I.; Yahya, E.B.; Dubey, A.; Zerroug, E.; Kontek, R. Epigallocatechin-3-gallate therapeutic potential in cancer: Mechanism of action and clinical implications. Molecules, 2023, 28(13), 5246. doi: 10.3390/molecules28135246 PMID: 37446908
  30. Van Aller, G.S.; Carson, J.D.; Tang, W.; Peng, H.; Zhao, L.; Copeland, R.A.; Tummino, P.J.; Luo, L. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem. Biophys. Res. Commun., 2011, 406(2), 194-199. doi: 10.1016/j.bbrc.2011.02.010 PMID: 21300025
  31. Yap, T.A.; Omlin, A.; de Bono, J.S. Development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol., 2013, 31(12), 1592-1605. doi: 10.1200/JCO.2011.37.6418 PMID: 23509311
  32. Jafarzadeh, E.; Montazeri, V.; Aliebrahimi, S.; Sezavar, A.H.; Ghahremani, M.H.; Ostad, S.N. Combined regimens of cisplatin and metformin in cancer therapy: A systematic review and meta-analysis. Life Sci., 2022, 304, 120680. doi: 10.1016/j.lfs.2022.120680 PMID: 35662589
  33. Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4), 46. doi: 10.3390/pharmaceutics9040046 PMID: 29036899
  34. Sarighieh, M.A.; Montazeri, V.; Shadboorestan, A.; Ghahremani, M.H.; Ostad, S.N. The inhibitory effect of curcumin on hypoxia inducer factors (Hifs) as a regulatory factor in the growth of tumor cells in breast cancer stem-like cells. Drug Res., 2020, 70(11), 512-518. doi: 10.1055/a-1201-2602 PMID: 32961574
  35. Majdzadeh, M.; Aliebrahimi, S.; Vatankhah, M.; Ostad, S.N. Effects of celecoxib and L-NAME on apoptosis and cell cycle ofMCF-7 CD44+/CD24–/low subpopulation. Turk. J. Biol., 2017, 41(5), 826-834. doi: 10.3906/biy-1703-101
  36. Chou, T-C. The combination index (CP< 0) as the definition of synergism and of synergy claims; Elsevier, 2018, Vol. 7, pp. 49-50.
  37. Chou, T.-C. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: Experimental design and data analysis using the combination index method. Am. J. Cancer Res., 2006, 6(1), 97-104.
  38. Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 2016, 32(18), 2866-2868. doi: 10.1093/bioinformatics/btw230 PMID: 27153664
  39. Ianevski, A.; He, L.; Aittokallio, T.; Tang, J. SynergyFinder: A web application for analyzing drug combination dose–response matrix data. Bioinformatics, 2017, 33(15), 2413-2415. doi: 10.1093/bioinformatics/btx162 PMID: 28379339
  40. Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446. doi: 10.1158/0008-5472.CAN-09-1947 PMID: 20068163
  41. Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735. doi: 10.3390/biom9110735 PMID: 31766246
  42. Faustova, M.; Nikolskaya, E.; Sokol, M.; Zabolotsky, A.; Mollaev, M.; Zhunina, O.; Fomicheva, M.; Lobanov, A.; Severin, E.; Yabbarov, N. High-effective reactive oxygen species inducer based on Mn-tetraphenylporphyrin loaded PLGA nanoparticles in binary catalyst therapy. Free Radic. Biol. Med., 2019, 143, 522-533. doi: 10.1016/j.freeradbiomed.2019.09.008 PMID: 31520768
  43. Thangapazham, R.L.; Passi, N.; Maheshwari, R.K. Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biol. Ther., 2007, 6(12), 1938-1943. doi: 10.4161/cbt.6.12.4974 PMID: 18059161
  44. Moslehi, M.; Rezaei, S.; Talebzadeh, P.; Ansari, M.J.; Jawad, M.A.; Jalil, A.T. Rastegar‐Pouyani, N.; Jafarzadeh, E.; Taeb, S.; Najafi, M. Apigenin in cancer therapy; prevention of genomic instability and anti‐cancer mechanisms. Clin. Exp. Pharmacol. Physiol., 2023, 50(1), 3-18. PMID: 36111951
  45. Reya, T.; Morrison, S. J.; Clarke, M. F.; Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
  46. Van Bambeke, F.; Balzi, E.; Tulkens, P.M. Antibiotic efflux pumps. Biochem. Pharmacol., 2000, 60(4), 457-470. doi: 10.1016/S0006-2952(00)00291-4 PMID: 10874120
  47. Yoon, S.Y.; Lee, Y.J.; Seo, J.H.; Sung, H.J.; Park, K.H.; Choi, I.K.; Kim, S.J.; Oh, S.C.; Choi, C.W.; Kim, B.S.; Shin, S.W.; Kim, Y.H.; Kim, J.S. uPAR expression under hypoxic conditions depends on iNOS modulated ERK phosphorylation in the MDA-MB-231 breast carcinoma cell line. Cell Res., 2006, 16(1), 75-81. doi: 10.1038/sj.cr.7310010 PMID: 16467878
  48. Zhai, B.T.; Tian, H.; Sun, J.; Zou, J.B.; Zhang, X.F.; Cheng, J.X.; Shi, Y.J.; Fan, Y.; Guo, D.Y. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J. Transl. Med., 2022, 20(1), 135. doi: 10.1186/s12967-022-03329-3 PMID: 35303878
  49. Tao, L.; Forester, S.C.; Lambert, J.D. The role of the mitochondrial oxidative stress in the cytotoxic effects of the green tea catechin, (-)‐epigallocatechin‐3‐gallate, in oral cells. Mol. Nutr. Food Res., 2014, 58(4), 665-676. doi: 10.1002/mnfr.201300427 PMID: 24249144
  50. Wu, A.H.; Yu, M.C.; Tseng, C.C.; Hankin, J.; Pike, M.C. Green tea and risk of breast cancer in asian americans. Int. J. Cancer, 2003, 106(4), 574-579. doi: 10.1002/ijc.11259 PMID: 12845655
  51. Li, M.; Tse, L.A.; Chan, W.; Kwok, C.; Leung, S.; Wu, C.; Yu, W.; Yu, I.T.; Yu, C.H.T.; Wang, F.; Sung, H.; Yang, X.R. Evaluation of breast cancer risk associated with tea consumption by menopausal and estrogen receptor status among Chinese women in Hong Kong. Cancer Epidemiol., 2016, 40, 73-78. doi: 10.1016/j.canep.2015.11.013 PMID: 26680603
  52. Miyazaki, T.; Reed, J.C. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat. Immunol., 2001, 2(6), 493-500. doi: 10.1038/88684 PMID: 11376335
  53. Liu, S-m. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis. J. Zhejiang Univ. Sci., 2017, 18(2), 89-98.
  54. Xu, P.; Yan, F.; Zhao, Y.; Chen, X.; Sun, S.; Wang, Y.; Ying, L. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients, 2020, 12(4), 1042. doi: 10.3390/nu12041042 PMID: 32290071
  55. Cruz-Burgos, M.; Losada-Garcia, A.; Cruz-Hernández, C.D.; Cortés-Ramírez, S.A.; Camacho-Arroyo, I.; Gonzalez-Covarrubias, V.; Morales-Pacheco, M.; Trujillo-Bornios, S.I.; Rodríguez-Dorantes, M. New approaches in oncology for repositioning drugs: the case of PDE5 inhibitor sildenafil. Front. Oncol., 2021, 11, 627229. doi: 10.3389/fonc.2021.627229 PMID: 33718200
  56. Di Iorio, P.; Ronci, M.; Giuliani, P.; Caciagli, F.; Ciccarelli, R.; Caruso, V.; Beggiato, S.; Zuccarini, M. Pros and cons of pharmacological manipulation of cGMP-PDEs in the prevention and treatment of breast cancer. Int. J. Mol. Sci., 2021, 23(1), 262. doi: 10.3390/ijms23010262 PMID: 35008687
  57. Iratni, R.; Ayoub, M.A. Sildenafil in combination therapy against cancer: A literature review. Curr. Med. Chem., 2021, 28(11), 2248-2259. doi: 10.2174/0929867327666200730165338 PMID: 32744956
  58. Durrant, D.E.; Das, A.; Salloum, F.N.; Kukreja, R.C. Rapamycin Enhances Protective Effect of Sildenafil against Doxorubicin Cardiotoxicity and Potentiates Cancer Cell Killing; Am Heart Assoc, 2012.
  59. Song, I.S.; Cha, J.S.; Choi, M.K. Characterization, in vivo and in vitro evaluation of solid dispersion of curcumin containing d-α-Tocopheryl polyethylene glycol 1000 succinate and mannitol. Molecules, 2016, 21(10), 1386. doi: 10.3390/molecules21101386 PMID: 27763524
  60. Ling, X.; Liu, X.; Zhong, K.; Smith, N.; Prey, J.; Li, F. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models. Am. J. Transl. Res., 2015, 7(10), 1765-1781. PMID: 26692923
  61. Thangapazham, R.L.; Singh, A.K.; Sharma, A.; Warren, J.; Gaddipati, J.P.; Maheshwari, R.K. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett., 2007, 245(1-2), 232-241. doi: 10.1016/j.canlet.2006.01.027 PMID: 16519995
  62. Ma, J.; Salamoun, J.; Wipf, P.; Edwards, R.; Van Houten, B.; Qian, W. Combination of a thioxodihydroquinazolinone with cisplatin eliminates ovarian cancer stem cell-like cells (CSC-LCs) and shows preclinical potential. Oncotarget, 2018, 9(5), 6042-6054. doi: 10.18632/oncotarget.23679 PMID: 29464053
  63. Ueda, K.; Ogasawara, S.; Akiba, J.; Nakayama, M.; Todoroki, K.; Ueda, K.; Sanada, S.; Suekane, S.; Noguchi, M.; Matsuoka, K.; Yano, H. Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line. PLoS One, 2013, 8(10), e75463. doi: 10.1371/journal.pone.0075463 PMID: 24116047
  64. Yamamoto, D.; Kiyozuka, Y.; Adachi, Y.; Takada, H.; Hioki, K.; Tsubura, A. Synergistic action of apoptosis induced by eicosapentaenoic acid and TNP‐470 on human breast cancer cells. Breast Cancer Res. Treat., 1999, 55(2), 147-158. doi: 10.1023/A:1006283131240 PMID: 10481942
  65. Trotta, A.P.; Chipuk, J.E. Mitochondrial dynamics as regulators of cancer biology. Cell. Mol. Life Sci., 2017, 74(11), 1999-2017. doi: 10.1007/s00018-016-2451-3 PMID: 28083595
  66. Yang, B.; Lin, Y.; Shen, Y-Q. Correcting abnormal mitochondrial dynamics to facilitate tumor treatment; Mitochondrial Commun, 2023. doi: 10.1016/j.mitoco.2023.07.001
  67. Di Luigi, L.; Duranti, G.; Antonioni, A.; Sgrò, P.; Ceci, R.; Crescioli, C.; Sabatini, S.; Lenzi, A.; Caporossi, D.; Del Galdo, F.; Dimauro, I.; Antinozzi, C. The phosphodiesterase type 5 inhibitor sildenafil improves dna stability and redox homeostasis in systemic sclerosis fibroblasts exposed to reactive oxygen species. Antioxidants, 2020, 9(9), 786. doi: 10.3390/antiox9090786 PMID: 32854347
  68. Kniotek, M.; Boguska, A. Sildenafil can affect innate and adaptive immune system in both experimental animals and patients. J. Immunol. Res, 2017, 2017 doi: 10.1155/2017/4541958
  69. Yuan, Z.; Hein, T.W.; Rosa, R.H., Jr; Kuo, L. Sildenafil (Viagra) evokes retinal arteriolar dilation: dual pathways via NOS activation and phosphodiesterase inhibition. Invest. Ophthalmol. Vis. Sci., 2008, 49(2), 720-725. doi: 10.1167/iovs.07-1208 PMID: 18235020
  70. Tetsi, L.; Charles, A.L.; Georg, I.; Goupilleau, F.; Lejay, A.; Talha, S.; Maumy-Bertrand, M.; Lugnier, C.; Geny, B. Effect of the phosphodiesterase 5 inhibitor sildenafil on ischemia-reperfusion-induced muscle mitochondrial dysfunction and oxidative stress. Antioxidants, 2019, 8(4), 93. doi: 10.3390/antiox8040093 PMID: 30959961
  71. Olivares-González, L.; Martínez-Fernández de la Cámara, C.; Hervás, D.; Marín, M.P.; Lahoz, A.; Millán, J.M.; Rodrigo, R. cGMP-phosphodiesterase inhibition prevents hypoxia-induced cell death activation in porcine retinal explants. PLoS One, 2016, 11(11), e0166717. doi: 10.1371/journal.pone.0166717 PMID: 27861632
  72. Comşa, Ş.; Cîmpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res., 2015, 35(6), 3147-3154. PMID: 26026074
  73. Hefti, M.M.; Hu, R.; Knoblauch, N.W.; Collins, L.C.; Haibe-Kains, B.; Tamimi, R.M.; Beck, A.H. Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res., 2013, 15(4), R68. doi: 10.1186/bcr3462 PMID: 23971947
  74. Kumar, M.; Salem, K.; Tevaarwerk, A.J.; Strigel, R.M.; Fowler, A.M. Recent advances in imaging steroid hormone receptors in breast cancer. J. Nucl. Med., 2020, 61(2), 172-176. doi: 10.2967/jnumed.119.228858 PMID: 31732674
  75. Brouckaert, O.; Paridaens, R.; Floris, G.; Rakha, E.; Osborne, K.; Neven, P. A critical review why assessment of steroid hormone receptors in breast cancer should be quantitative. Ann. Oncol., 2013, 24(1), 47-53. doi: 10.1093/annonc/mds238 PMID: 22847811
  76. Jokar, F.; Mahabadi, J.A.; Salimian, M.; Taherian, A.; Hayat, S.M.G.; Sahebkar, A.; Atlasi, M.A. Differential expression of HSP90β in MDA-MB-231 and MCF-7 cell lines after treatment with doxorubicin. J. Pharmacopuncture, 2019, 22(1), 28-34. doi: 10.3831/KPI.2019.22.003 PMID: 30988998
  77. Ghosh, K.; De, S.; Das, S.; Mukherjee, S.; Sengupta Bandyopadhyay, S. Withaferin A induces ROS-mediated paraptosis in human breast cancer cell-lines MCF-7 and MDA-MB-231. PLoS One, 2016, 11(12), e0168488. doi: 10.1371/journal.pone.0168488 PMID: 28033383
  78. KS, U.S.; Govindaraju, K. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl. Surf. Sci., 2016, 371, 415-424. doi: 10.1016/j.apsusc.2016.03.004
  79. Grubczak, K.; Kretowska-Grunwald, A.; Groth, D.; Poplawska, I.; Eljaszewicz, A.; Bolkun, L.; Starosz, A.; Holl, J.M.; Mysliwiec, M.; Kruszewska, J.; Wojtukiewicz, M.Z.; Moniuszko, M. Differential response of MDA-MB-231 and MCF-7 breast cancer cells to in vitro inhibition with CTLA-4 and PD-1 through cancer-immune cells modified interactions. Cells, 2021, 10(8), 2044. doi: 10.3390/cells10082044 PMID: 34440813
  80. Núñez-Iglesias, M.J.; Novio, S.; García, C.; Pérez-Muñuzuri, M.E.; Martínez, M.C.; Santiago, J.L.; Boso, S.; Gago, P.; Freire-Garabal, M. Co-adjuvant therapy efficacy of catechin and procyanidin B2 with docetaxel on hormone-related cancers in vitro. Int. J. Mol. Sci., 2021, 22(13), 7178. doi: 10.3390/ijms22137178 PMID: 34281228
  81. Pronk, L.C.; Stoter, G.; Verweij, J. Docetaxel (Taxotere): Single agent activity, development of combination treatment and reducing side-effects. Cancer Treat. Rev., 1995, 21(5), 463-478. doi: 10.1016/0305-7372(95)90030-6 PMID: 8556719

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers