Design and Pharmacophore Study of Triazole Analogues as Aromatase Inhibitors


Cite item

Full Text

Abstract

Background:In current scenario breast cancer measured as one of the dangerous health issues. An effective therapeutic class of drug known as aromatase inhibitors (AIs) is dominant against estrogen receptorpositive breast cancer. However, there is an urgent need to create target-specific AIs with better anti-breast cancer profiles due to the increased toxicity and adverse effects related to currently existing anti-breast cancer drugs.

Objectives:In the present study, we have designed of 100 novel tiazole analogues as aromatase inhibitors their pharmacophoric features were explored.

Method:Molecular docking was applied to a series of 4-substituted-1, 2, 3-triazoles containing letrozole for their aromatase inhibitory effects. The aromatase inhibitory activity of the compound in a series varies in the range of (IC50 = 0.008–31.26 µM). A hydrogen atom positioned at R1 of the triazole ring in compound (01) was responsible for the most potent compound (IC50 = 0.008 µM) in the series of 28 compounds as compared to letrozole. The self-organizing molecular field study was used to assess the molecular characteristics and biological activities of the compounds. The four models were developed using PLS and MLR methods. The PLS method was good for statistical analysis. The letrozole scaffold-based 100 compounds were designed by selecting an effective pharmacophore responsible for aromatase inhibitory activity. The designed compound was placed on the previous model as a test set, and its IC50 values were calculated.

Result:Hydrogen bonds were established between the potent molecule (01) and the essential residues Met 374 and Arg 115, which were responsible for the aromatase-inhibiting action. Cross-validated q2 (0.6349) & noncross- validated r2 (0.7163) were discovered in the statistical findings as having reliable predictive power. Among 100 designed compounds, seven compounds showed good aromatase inhibitory activities.

Conclusion:The additional final SOMFA model created for the interactions between the aromatase and the triazole inhibitors may be helpful for future modification and enhancement of the inhibitors of this crucial enzyme.

About the authors

Laxmi Banjare

School of Pharmaceutical Science, Guru Ghasidas Central University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Fourkala, E.O.; Blyuss, O.; Field, H.; Gunu, R.; Ryan, A.; Barth, J.; Jacobs, I.; Zaikin, A.; Dawnay, A.; Menon, U. Sex hormone measurements using mass spectrometry and sensitive extraction radioimmunoassay and risk of estrogen receptor negative and positive breast cancer: Case control study in UK collaborative cancer trial of ovarian cancer screening (UKCTOCS). Steroids, 2016, 110, 62-69. doi: 10.1016/j.steroids.2016.04.003 PMID: 27091764
  2. Omoto, Y.; Iwase, H. Clinical significance of estrogen receptor β in breast and prostate cancer from biological aspects. Cancer Sci., 2015, 106(4), 337-343. doi: 10.1111/cas.12613 PMID: 25611678
  3. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  4. Fourkala, E.O.; Zaikin, A.; Burnell, M.; Gentry-Maharaj, A.; Ford, J.; Gunu, R.; Soromani, C.; Hasenbrink, G.; Jacobs, I.; Dawnay, A.; Widschwendter, M.; Lichtenberg-Fraté, H.; Menon, U. Association of serum sex steroid receptor bioactivity and sex steroid hormones with breast cancer risk in postmenopausal women. Endocr. Relat. Cancer, 2012, 19(2), 137-147. doi: 10.1530/ERC-11-0310 PMID: 22199143
  5. Henderson, D.; Habenicht, U.F.; Nishino, Y.; Etreby, M.F.E. Estrogens and benign prostatic hyperplasia: The basis for aromatase inhibitor therapy. Steroids, 1987, 50(1-3), 219-233. doi: 10.1016/0039-128X(83)90073-9 PMID: 2460976
  6. Löhr, M.; McFadyen, M.C.; Murray, G.I.; Melvin, W.T. Cytochrome P450 enzymes and tumor therapy. Mol. Cancer Ther., 2004, 3(11), 1503-1504. doi: 10.1158/1535-7163.1503.3.11 PMID: 15542789
  7. McFadyen, M.C.E.; Melvin, W.T.; Murray, G.I. Cytochrome P 450 enzymes: Novel options for cancer therapeutics. Mol. Cancer Ther., 2004, 3(3), 363-371. doi: 10.1158/1535-7163.363.3.3 PMID: 15026557
  8. Miller, W.R. Aromatase inhibitors and breast cancer. Cancer Treat. Rev., 1997, 23(3), 171-187. doi: 10.1016/S0305-7372(97)90037-2 PMID: 9251721
  9. Buzdar, A.U.; Jones, S.E.; Vogel, C.L.; Wolter, J.; Plourde, P.; Webster, A. A Phase III trial comparing anastrozole (1 and 10 milligrams), a potent and selective aromatase inhibitor, with megestrol acetate in postmenopausal women with advanced breast carcinoma. Cancer, 1997, 79(4), 730-739. doi: 10.1002/(SICI)1097-0142(19970215)79:43.0.CO;2-0 PMID: 9024711
  10. Ingle, J.N.; Johnson, P.A.; Suman, V.J.; Gerstner, J.B.; Mailliard, J.A.; Camoriano, J.K.; Gesme, D.H., Jr; Loprinzi, C.L.; Hatfield, A.K.; Hartmann, L.C. A randomized Phase II trial of two dosage levels of letrozole as third-line hormonal therapy for women with metastatic breast carcinoma. Cancer, 1997, 80(2), 218-224. doi: 10.1002/(SICI)1097-0142(19970715)80:23.0.CO;2-P PMID: 9217033
  11. Ahmad, I. Shagufta, Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. Eur. J. Med. Chem., 2015, 102, 375-386. doi: 10.1016/j.ejmech.2015.08.010 PMID: 26301554
  12. Bhatnagar, A.S.; Häusler, A.; Schieweck, K.; Lang, M.; Bowman, R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol., 1990, 37(6), 1021-1027. doi: 10.1016/0960-0760(90)90460-3 PMID: 2149502
  13. Bhatnagar, A.S. The early days of letrozole. Breast Cancer Res. Treat., 2007, 105(S1), 3-5. doi: 10.1007/s10549-007-9699-0 PMID: 17912632
  14. Browne, L.J.; Gude, C.; Rodriguez, H.; Steele, R.E.; Bhatnager, A. Fadrozole hydrochloride: A potent, selective, nonsteroidal inhibitor of aromatase for the treatment of estrogen-dependent disease. J. Med. Chem., 1991, 34(2), 725-736. doi: 10.1021/jm00106a038 PMID: 1825337
  15. Bhatnagar, A.S. The discovery and mechanism of action of letrozole. Breast Cancer Res. Treat., 2007, 105(S1), 7-17. doi: 10.1007/s10549-007-9696-3 PMID: 17912633
  16. Bhatnagar, A.S.; Brodie, A.M.H.; Long, B.J.; Evans, D.B.; Miller, W.R. Intracellular aromatase and its relevance to the pharmacological efficacy of aromatase inhibitors. J. Steroid Biochem. Mol. Biol., 2001, 76(1-5), 199-202. doi: 10.1016/S0960-0760(01)00050-4 PMID: 11384878
  17. Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718. doi: 10.1002/asia.201100432 PMID: 21954075
  18. Marchand, P.; Le Borgne, M.; Palzer, M.; Le Baut, G.; Hartmann, R.W. Preparation and pharmacological profile of 7-(α-Azolylbenzyl)-1H-indoles and indolines as new aromatase inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(9), 1553-1555. doi: 10.1016/S0960-894X(03)00182-3 PMID: 12699753
  19. Lézé, M.P.; Le Borgne, M.; Pinson, P.; Palusczak, A.; Duflos, M.; Le Baut, G.; Hartmann, R.W. Synthesis and biological evaluation of 5-(aryl)(1H-imidazol-1-yl)methyl-1H-indoles: Potent and selective aromatase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(5), 1134-1137. doi: 10.1016/j.bmcl.2005.11.099 PMID: 16380254
  20. Lézé, M.P.; Palusczak, A.; Hartmann, R.W.; Le Borgne, M. Synthesis of 6- or 4-functionalized indoles via a reductive cyclization approach and evaluation as aromatase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(16), 4713-4715. doi: 10.1016/j.bmcl.2008.06.094 PMID: 18640836
  21. Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137. doi: 10.1016/S1359-6446(03)02933-7 PMID: 14678739
  22. Neves, M.A.C.; Dinis, T.C.P.; Colombo, G.; Sá e Melo, M.L. Fast three dimensional pharmacophore virtual screening of new potent non-steroid aromatase inhibitors. J. Med. Chem., 2009, 52(1), 143-150. doi: 10.1021/jm800945c PMID: 19072235
  23. Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem., 2015, 15(18), 1780-1800. doi: 10.2174/1568026615666150506151101 PMID: 25961523
  24. Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus, 2015, 4(1), 571. doi: 10.1186/s40064-015-1352-5 PMID: 26543706
  25. Prachayasittikul, V.; Pingaew, R.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives. Eur. J. Med. Chem., 2014, 84, 247-263. doi: 10.1016/j.ejmech.2014.07.024 PMID: 25019480
  26. Pingaew, R.; Prachayasittikul, V.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies. Eur. J. Med. Chem., 2015, 103, 446-459. doi: 10.1016/j.ejmech.2015.09.001 PMID: 26397393
  27. Robinson, D.D.; Winn, P.J.; Lyne, P.D.; Richards, W.G. Self-organizing molecular field analysis: A tool for structure-activity studies. J. Med. Chem., 1999, 42(4), 573-583. doi: 10.1021/jm9810607 PMID: 10052964
  28. Soultan, A.H.; Richard, R.; Touré, M.M.; Picot, N.; Richard, R.; Cuperlovic-Culf, M. Synthesis and structureeactivity relationship of 1- and 2-substituted- 1,2,3-triazole letrozole-based analogues as aromatase inhibitors. Eur. J. Med. Chem., 2011, 46, 4010-4024.
  29. Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Molecular docking and 3D-QSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer. J. Biomol. Struct. Dyn., 2015, 33(4), 804-819. doi: 10.1080/07391102.2014.912152 PMID: 24702656
  30. Verma, S.K.; Thareja, S. Molecular docking assisted 3D-QSAR study of benzylidene-2,4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of Type-2 diabetes mellitus. RSC Advances, 2016, 6(40), 33857-33867. doi: 10.1039/C6RA03067J
  31. Verma, S.K.; Rajpoot, T.; Gautam, M.K.; Jain, A.K.; Thareja, S. Design of novel biphenyl-2-thioxothiazolidin-4-one derivatives as potential protein tyrosine phosphatase (PTP)-1B inhibitors using molecular docking study. Lett. Drug Des. Discov., 2016, 13(4), 295-300. doi: 10.2174/1570180812666150819002954
  32. Protein Data Bank. 2022. Available From: http://www.rcsb.org/pdb/explore/explore.do?structureId=3S79 (Accessed January 01, 2022).
  33. Verma, S.K.; Sharma, S.K.; Thareja, S. Docking study of novel pyrrolidine derivatives as potential dipeptidyl peptidase-IV (DPPIV) inhibitors. Lett. Drug Des. Discov., 2015, 12, 284-291.
  34. Thareja, S.; Verma, S.K.; Haksar, D.; Bhardwaj, T.R.; Kumar, M. Discovery of novel cinnamylidene-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type 2 diabetes. RSC Advances, 2016, 6(110), 108928-108940. doi: 10.1039/C6RA24501C
  35. Al-Sha’er, M.A.; Mansi, I.; Hakooz, N. Docking and pharmacophore mapping of halogenated pyridinium derivatives as heat shock protein 90. J. Chem. Pharm. Res., 2015, 103-112.
  36. Verma, S.K.; Rajpoot, T.; Gautam, M.K.; Jain, A.K.; Thareja, S. Design of novel biphenyl-2-thioxothiazolidin-4-one derivatives as potential protein tyrosine phosphatase (PTP)-1B inhibitors using molecular docking study. Lett. Drug Des. Discov., 2016, 13, 295-300. doi: 10.2174/1570180812666150819002954
  37. Thareja, S.; Verma, S.K.; Haksar, D.; Bhardwaj, T.R.; Kumar, M. Discovery of novel cinnamylidene-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type 2 diabetes. RSC Adv., 2016, 6(110), 108928-108940. doi: 10.1039/C6RA24501C
  38. Golbraikh, A.; Tropsha, A. Beware of q2. J. Mol. Graph. Model., 2002, 20(4), 269-276. doi: 10.1016/S1093-3263(01)00123-1 PMID: 11858635

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers