Analysis of Inhibition Potential of Nimbin and its Analogs against NF-κB Subunits p50 and p65: A Molecular Docking and Molecular Dynamics Study


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Cancer remains the major cause of morbidity and mortality. The nuclear factor kappa-B (NF- κB) plays an indispensable role in cancer cell proliferation and drug resistance. The role of NF-κB is not only limited to tumor cell proliferation and suppression of apoptotic genes but it also induces EMT transition responsible for metastasis. Inhibition of the NF-κB pathway in cancer cells by herbal derivatives makes it a favorable yet promising target for cancer therapeutics.

Aim:The purpose of the study is to explore the inhibition potential of Nimbin and its analogs against NF-κB subunits p50 and p65.

Methods:In the present study, an herbal compound Nimbin and its derivative analogs were investigated to examine their impact on the p50 and p65 subunits of the NF-κB signaling pathway using in silico tools, namely molecular docking and simulation.

Results:The molecular docking analysis revealed that Nimbin and its analogs may bind to p50 and p65 subunits with dG bind values ranging from -33.23 to -50.49Kcal/mol. Interestingly, molecular dynamic simulation for the NO5-p65 complex displayed a stable conformation and convergence when compared to the NO4-p50 complex.

Conclusion:These results indicate that NO5 may have a potential inhibitory effect against NF-κB subunit p65, which needs to be further validated in in vitro and in vivo systems. Also, the results obtained emphasize and pave the way for exploring the Nimbin scaffold against NF-κB inhibition for cancer therapeutics.

Авторлар туралы

Asiya Khan

Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University

Email: info@benthamscience.net

Divyam Singh

Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family

Email: info@benthamscience.net

Kamran Waidha

Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family

Email: info@benthamscience.net

Sandeep Sisodiya

Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family

Email: info@benthamscience.net

Pushparathinam Gopinath

Department of Chemistry, College of Engineering and Technology,, SRM Institute of Science and Technology,

Email: info@benthamscience.net

Showket Hussian

Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family

Email: info@benthamscience.net

Pranay Tanwar

Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences

Email: info@benthamscience.net

Deepshikha Katare

Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
  2. Barkett, M.; Gilmore, T.D. Control of apoptosis by Rel/NF-κB transcription factors. Oncogene, 1999, 18(49), 6910-6924. doi: 10.1038/sj.onc.1203238 PMID: 10602466
  3. Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther., 2018, 11, 2063-2073. doi: 10.2147/OTT.S161109 PMID: 29695914
  4. Chuang, S.E.; Yeh, P.Y.; Lu, Y.S.; Lai, G.M.; Liao, C.M.; Gao, M.; Cheng, A.L. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-κB (NF-κB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem. Pharmacol., 2002, 63(9), 1709-1716. doi: 10.1016/S0006-2952(02)00931-0 PMID: 12007574
  5. Hao, F.; Kumar, S.; Yadav, N.; Chandra, D. Neem components as potential agents for cancer prevention and treatment. Biochim. Biophys. Acta Rev. Cancer, 2014, 1846(1), 247-257. doi: 10.1016/j.bbcan.2014.07.002 PMID: 25016141
  6. Elumalai, P.; Gunadharini, D.N.; Senthilkumar, K.; Banudevi, S.; Arunkumar, R.; Benson, C.S.; Sharmila, G.; Arunakaran, J. Ethanolic neem (Azadirachta indica A. Juss) leaf extract induces apoptosis and inhibits the IGF signaling pathway in breast cancer cell lines. Biomedicine & Preventive Nutrition, 2012, 2(1), 59-68. doi: 10.1016/j.bionut.2011.12.008
  7. Schumacher, M.; Cerella, C.; Reuter, S.; Dicato, M.; Diederich, M. Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway. Genes Nutr., 2011, 6(2), 149-160. doi: 10.1007/s12263-010-0194-6 PMID: 21484152
  8. Chitta, K.S.; Khan, A.N.H.; Ersing, N.; Swaika, A.; Masood, A.; Paulus, A.; Qadeer, A.; Advani, P.; Sher, T.; Miller, K.C.; Lee, K.; Chanan-Khan, A.A. Neem leaf extract induces cell death by apoptosis and autophagy in B-chronic lymphocytic leukemia cells. Leuk. Lymphoma, 2014, 55(3), 652-661. doi: 10.3109/10428194.2013.807927 PMID: 23721511
  9. Kikuchi, T.; Ishii, K.; Noto, T.; Takahashi, A.; Tabata, K.; Suzuki, T.; Akihisa, T. Cytotoxic and apoptosis-inducing activities of limonoids from the seeds of Azadirachta indica (neem). J. Nat. Prod., 2011, 74(4), 866-870. doi: 10.1021/np100783k PMID: 21381696
  10. Priyadarsini, R.V.; Murugan, R.S.; Sripriya, P.; Karunagaran, D.; Nagini, S. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells. Free Radic. Res., 2010, 44(6), 624-634. doi: 10.3109/10715761003692503 PMID: 20429769
  11. Srivastava, P.; Yadav, N.; Lella, R.; Schneider, A.; Jones, A.; Marlowe, T.; Lovett, G.; O’Loughlin, K.; Minderman, H.; Gogada, R.; Chandra, D. Neem oil limonoids induces p53-independent apoptosis and autophagy. Carcinogenesis, 2012, 33(11), 2199-2207. doi: 10.1093/carcin/bgs269 PMID: 22915764
  12. Sudhakaran, G.; Rajesh, R.; Almutairi, B.O.; Arokiyaraj, S.; Gopinath, P.; Arockiaraj, J. Nimbin analogs stimulate glucose uptake and glycogen storage in the insulin signalling cascade by enhancing the IRTK, PI3K and Glut-4 mechanism in myotubes. Tissue Cell, 2023, 82, 102104. doi: 10.1016/j.tice.2023.102104 PMID: 37207372
  13. Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4), a000034. doi: 10.1101/cshperspect.a000034 PMID: 20066092
  14. Murwanti, R.; Kholifah, E.; Sudarmanto, B.S.A.; Hermawan, A. Effect of curcumin on NF-κB P105/50 expression on triplenegative breast cancer (TNBC) and its possible mechanism of action. AIP Conf. Proc., 2020, 2260, 040024. doi: 10.1063/5.0016423
  15. Zhang, T. Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF‐κB signaling in inflammation and cancer. MedComm, 2021, 2(4), 618-653. doi: 10.1002/mco2.104 PMID: 34977871
  16. Yu, Y.; Wan, Y.; Huang, C. The biological functions of NF-kappaB1 (p50) and its potential as an anti-cancer target. Curr. Cancer Drug Targets, 2009, 9(4), 566-571. doi: 10.2174/156800909788486759 PMID: 19519322
  17. Waidha, K.; Anto, N.P.; Jayaram, D.R.; Golan-Goldhirsh, A.; Rajendran, S.; Livneh, E.; Gopas, J. 6,6′-dihydroxythiobinupharidine (DTBN) purified from Nuphar lutea leaves is an inhibitor of protein kinase C catalytic activity. Molecules, 2021, 26(9), 2785. doi: 10.3390/molecules26092785 PMID: 34066895
  18. Dadwal, A.; Singh, V.; Sharma, S.; Satyanarayana, T. Structural aspects of β-glucosidase of Myceliophthora thermophila (MtBgl3c) by homology modelling and molecular docking. J. Biomol. Struct. Dyn., 2022, 40(11), 5211-5228. doi: 10.1080/07391102.2020.1869095 PMID: 33413029
  19. Giuliani, C.; Bucci, I.; Napolitano, G. The role of the transcription factor nuclear factor-kappa B in thyroid autoimmunity and cancer. Front. Endocrinol. (Lausanne), 2018, 9, 471. doi: 10.3389/fendo.2018.00471 PMID: 30186235
  20. Chen, F.E.; Huang, D.B.; Chen, Y.Q.; Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature, 1998, 391(6665), 410-413. doi: 10.1038/34956 PMID: 9450761
  21. Nakanishi, C.; Toi, M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer, 2005, 5(4), 297-309. doi: 10.1038/nrc1588 PMID: 15803156
  22. Nelson, D.E.; Ihekwaba, A.E.C.; Elliott, M.; Johnson, J.R.; Gibney, C.A.; Foreman, B.E.; Nelson, G.; See, V.; Horton, C.A.; Spiller, D.G.; Edwards, S.W.; McDowell, H.P.; Unitt, J.F.; Sullivan, E.; Grimley, R.; Benson, N.; Broomhead, D.; Kell, D.B.; White, M.R.H. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science, 2004, 306(5696), 704-708. doi: 10.1126/science.1099962 PMID: 15499023
  23. Brown, M. Cohen, J.; Arun, P.; Chen, Z.; Waes, C.V. NF-κB in carcinoma therapy and prevention. Expert Opin. Ther. Targets, 2008, 12(9), 1109-1122. doi: 10.1517/14728222.12.9.1109 PMID: 18694378
  24. Sovak, M.A.; Bellas, R.E.; Kim, D.W.; Zanieski, G.J.; Rogers, A.E.; Traish, A.M.; Sonenshein, G.E. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest., 1997, 100(12), 2952-2960. doi: 10.1172/JCI119848 PMID: 9399940
  25. Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J., Jr; Sledge, G.W. Jr Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol., 1997, 17(7), 3629-3639. doi: 10.1128/MCB.17.7.3629 PMID: 9199297
  26. Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
  27. Gambhir, S.; Vyas, D.; Hollis, M.; Aekka, A.; Vyas, A. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J. Gastroenterol., 2015, 21(11), 3174-3183. doi: 10.3748/wjg.v21.i11.3174 PMID: 25805923
  28. Lind, D.S.; Hochwald, S.N.; Malaty, J.; Rekkas, S.; Hebig, P.; Mishra, G.; Moldawer, L.L.; Copeland, E.M., III; MacKay, S. Nuclear factor-κB is upregulated in colorectal cancer. Surgery, 2001, 130(2), 363-369. doi: 10.1067/msy.2001.116672 PMID: 11490372
  29. Tan, C.; Waldmann, T.A. Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Cancer Res., 2002, 62(4), 1083-1086. PMID: 11861386
  30. Amiri, K.I.; Horton, L.W.; LaFleur, B.J.; Sosman, J.A.; Richmond, A. Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: Implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res., 2004, 64(14), 4912-4918. doi: 10.1158/0008-5472.CAN-04-0673 PMID: 15256463
  31. Yang, J.; Amiri, K.I.; Burke, J.R.; Schmid, J.A.; Richmond, A. BMS-345541 targets inhibitor of kappaB kinase and induces apoptosis in melanoma: Involvement of nuclear factor kappaB and mitochondria pathways. Clin. Cancer Res., 2006, 12(3), 950-960. doi: 10.1158/1078-0432.CCR-05-1220 PMID: 16467110
  32. Umezawa, K. Inhibition of tumor growth by NF-?B inhibitors. Cancer Sci., 2006, 97(10), 990-995. doi: 10.1111/j.1349-7006.2006.00285.x PMID: 16925581
  33. Zollo, M.; Di Dato, V.; Spano, D.; De Martino, D.; Liguori, L.; Marino, N.; Vastolo, V.; Navas, L.; Garrone, B.; Mangano, G.; Biondi, G.; Guglielmotti, A. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin. Exp. Metastasis, 2012, 29(6), 585-601. doi: 10.1007/s10585-012-9473-5 PMID: 22484917
  34. Gupta, S.C.; Prasad, S.; Sethumadhavan, D.R.; Nair, M.S.; Mo, Y.Y.; Aggarwal, B.B. Nimbolide, a limonoid triterpene, inhibits growth of human colorectal cancer xenografts by suppressing the proinflammatory microenvironment. Clin. Cancer Res., 2013, 19(16), 4465-4476. doi: 10.1158/1078-0432.CCR-13-0080 PMID: 23766363
  35. Sudhakaran, G.; Prathap, P.; Guru, A.; Rajesh, R.; Sathish, S.; Madhavan, T.; Arasu, M.V.; Al-Dhabi, N.A.; Choi, K.C.; Gopinath, P.; Arockiaraj, J. Anti‐inflammatory role demonstrated both in vitro and in vivo models using nonsteroidal tetranortriterpenoid, Nimbin (N1) and its analogs (N2 and N3) that alleviate the domestication of alternative medicine. Cell Biol. Int., 2022, 46(5), 771-791. doi: 10.1002/cbin.11769 PMID: 35077598
  36. Sudhakaran, G.; Prathap, P.; Guru, A.; Haridevamuthu, B.; Murugan, R.; Almutairi, B.O.; Almutairi, M.H.; Juliet, A.; Gopinath, P.; Arockiaraj, J. Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model. Mol. Cell. Biochem., 2022, 477(10), 2387-2401. doi: 10.1007/s11010-022-04448-7 PMID: 35575874

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024