Identification of Novel EGFR Inhibitors for the Targeted Therapy of Colorectal Cancer Using Pharmacophore Modelling, Docking, Molecular Dynamic Simulation and Biological Activity Prediction
- Authors: Krishnan K. A.1, George Valavi S.2, Joy A.3
-
Affiliations:
- Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology,, Affiliated to APJ Abdul Kalam Technological University,
- Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University
- Department of Biotechnology, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University
- Issue: Vol 24, No 4 (2024)
- Pages: 263-279
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644151
- DOI: https://doi.org/10.2174/0118715206275566231206094645
- ID: 644151
Cite item
Full Text
Abstract
Background:Colorectal cancer (CRC) is considered the second deadliest cancer in the world. One of the reasons for the occurrence of this cancer is the deregulation of the Epidermal Growth Factor Receptor (EGFR), which plays a critical role in regulating cell division, persistence, differentiation, and migration. The overexpression of the EGFR protein leads to its dysregulation and causes CRC.
Objective:Hence, this work aims to identify and validate novel EGFR inhibitors for the treatment of colorectal cancer employing various computer aided techniques such as pharmacophore modeling, docking, molecular dynamic simulation and Quantitative Structure-Activity Relationship (QSAR) analysis.
Methods:In this work, a shared-featured ligand-based pharmacophore model was generated using the known inhibitors of EGFR. The best model was validated and screened against ZincPharmer and Maybridge databases, and 143 hits were obtained. Pharmacokinetic and toxicological properties of these hits were studied, and the acceptable ligands were docked against EGFR. The best five protein-ligand complexes with binding energy less than -5 kcal/mol were selected. The molecular dynamic simulation studies of these complexes were conducted for 100 nanoseconds (ns), and the results were analyzed. The biological activity of this ligand was calculated using QSAR analysis.
Results:The best complex with Root Mean Square Deviation (RMSD) 3.429 Å and Radius of Gyration (RoG) 20.181 Å was selected. The Root Mean Square Fluctuations (RMSF) results were also found to be satisfactory. The biological activity of this ligand was found to be 1.38 µM.
Conclusion:This work hereby proposes the ligand 2-((1,6-dimethyl-4-oxo-1,4-dihydropyridin-3-yl)oxy)-N- (1H-indol-4-yl)acetamide as a potential EGFR inhibitor for the treatment of colorectal cancer. The wet lab analysis must be conducted, however, to confirm this hypothesis.
About the authors
Amrutha Krishnan K.
Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology,, Affiliated to APJ Abdul Kalam Technological University,
Author for correspondence.
Email: info@benthamscience.net
Sudha George Valavi
Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University
Email: info@benthamscience.net
Amitha Joy
Department of Biotechnology, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- WHO. Colorectal cancer. Available from: https://www.who.int/newsroom/fact-sheets/detail/colorectal-cancer#:~:text=Colon%20cancer%20is%20the%20second,and%20mortality%20rates%20were%20observed (Accessed on 26 Oct 2023).
- Spano, J.P.; Lagorce, C.; Atlan, D.; Milano, G.; Domont, J.; Benamouzig, R.; Attar, A.; Benichou, J.; Martin, A.; Morere, J.F.; Raphael, M.; Penault-Llorca, F.; Breau, J.L.; Fagard, R.; Khayat, D.; Wind, P. Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann. Oncol., 2005, 16(1), 102-108. doi: 10.1093/annonc/mdi006 PMID: 15598946
- Ohashi, K.; Maruvka, Y.E.; Michor, F.; Pao, W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J. Clin. Oncol., 2013, 31(8), 1070-1080. doi: 10.1200/JCO.2012.43.3912 PMID: 23401451
- Frattini, M.; Saletti, P.; Molinari, F.; De Dosso, S. EGFR signaling in colorectal cancer: A clinical perspective. Gastrointest. Cancer, 2015, 21, 21. doi: 10.2147/GICTT.S49002
- Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500. doi: 10.1126/science.1099314 PMID: 15118125
- Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; Mardis, E.; Kupfer, D.; Wilson, R.; Kris, M.; Varmus, H. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci., 2004, 101(36), 13306-13311. doi: 10.1073/pnas.0405220101 PMID: 15329413
- Ogino, S.; Meyerhardt, J.A.; Cantor, M.; Brahmandam, M.; Clark, J.W.; Namgyal, C.; Kawasaki, T.; Kinsella, K.; Michelini, A.L.; Enzinger, P.C.; Kulke, M.H.; Ryan, D.P.; Loda, M.; Fuchs, C.S. Molecular alterations in tumors and response to combination chemotherapy with gefitinib for advanced colorectal cancer. Clin. Cancer Res., 2005, 11(18), 6650-6656. doi: 10.1158/1078-0432.CCR-05-0738 PMID: 16166444
- Bonomi, P.D.; Buckingham, L.; Coon, J. Selecting patients for treatment with epidermal growth factor tyrosine kinase inhibitors. Clin. Cancer Res., 2007, 13(15), 4606s-4612s. doi: 10.1158/1078-0432.CCR-07-0332 PMID: 17671150
- Barber, T.D.; Vogelstein, B.; Kinzler, K.W.; Velculescu, V.E. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N. Engl. J. Med., 2004, 351(27), 2883. doi: 10.1056/NEJM200412303512724 PMID: 15625347
- Pabla, B.; Bissonnette, M.; Konda, V.J. Colon cancer and the epidermal growth factor receptor: Current treatment paradigms, the importance of diet, and the role of chemoprevention. World J. Clin. Oncol., 2015, 6(5), 133-141. doi: 10.5306/wjco.v6.i5.133 PMID: 26468449
- Zhao, Y.; Ma, J.; Fan, Y.; Wang, Z.; Tian, R.; Ji, W.; Zhang, F.; Niu, R. TGF -β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol. Oncol., 2018, 12(3), 305-321. doi: 10.1002/1878-0261.12162 PMID: 29215776
- Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer, 2022, 21(1), 144. doi: 10.1186/s12943-022-01616-7 PMID: 35836256
- Majhi, M; Ali, MA; Limaye, A; Sinha, K; Bairagi, P; Chouksey, M; Shukla, R; Kanwar, N; Hussain, T; Nayarisseri, A; Singh, S K An in silico investigation of potential EGFR inhibitors for the clinical treatment of colorectal cancer. Curr. Topics. Med. Chem., 2018, 18(27), 2355-2366. doi: 10.2174/1568026619666181129144107
- Rothenberg, M.L.; LaFleur, B.; Levy, D.E.; Washington, M.K.; Morgan-Meadows, S.L.; Ramanathan, R.K.; Berlin, J.D.; Benson, A.B., III; Coffey, R.J. Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. J. Clin. Oncol., 2005, 23(36), 9265-9274. doi: 10.1200/JCO.2005.03.0536 PMID: 16361624
- Kuo, T.; Cho, C.D.; Halsey, J.; Wakelee, H.A.; Advani, R.H.; Ford, J.M.; Fisher, G.A.; Sikic, B.I. Phase II study of gefitinib, fluorouracil, leucovorin, and oxaliplatin therapy in previously treated patients with metastatic colorectal cancer. J. Clin. Oncol., 2005, 23(24), 5613-5619. doi: 10.1200/JCO.2005.08.359 PMID: 16110021
- Fisher, G.A.; Kuo, T.; Ramsey, M.; Schwartz, E.; Rouse, R.V.; Cho, C.D.; Halsey, J.; Sikic, B.I. A phase II study of gefitinib, 5-fluorouracil, leucovorin, and oxaliplatin in previously untreated patients with metastatic colorectal cancer. Clin. Cancer Res., 2008, 14(21), 7074-7079. doi: 10.1158/1078-0432.CCR-08-1014 PMID: 18981005
- Santoro, A.; Comandone, A.; Rimassa, L.; Granetti, C.; Lorusso, V.; Oliva, C.; Ronzoni, M.; Siena, S.; Zuradelli, M.; Mari, E.; Pressiani, T.; Carnaghi, C. A phase II randomized multicenter trial of gefitinib plus FOLFIRI and FOLFIRI alone in patients with metastatic colorectal cancer. Ann. Oncol., 2008, 19(11), 1888-1893. doi: 10.1093/annonc/mdn401 PMID: 18667394
- Meyerhardt, J.A.; Zhu, A.X.; Enzinger, P.C.; Ryan, D.P.; Clark, J.W.; Kulke, M.H.; Earle, C.C.; Vincitore, M.; Michelini, A.; Sheehan, S.; Fuchs, C.S. Phase II study of capecitabine, oxaliplatin, and erlotinib in previously treated patients with metastastic colorectal cancer. J. Clin. Oncol., 2006, 24(12), 1892-1897. doi: 10.1200/JCO.2005.05.3728 PMID: 16622264
- Yanagisawa, A.; Kinehara, Y.; Kijima, R.; Tanaka, M.; Ninomiya, R.; Jokoji, R.; Tachibana, I. Metastatic lung tumors from colorectal cancer with EGFR mutations that responded to osimertinib. Intern. Med., 2023, 62(5), 769-773. doi: 10.2169/internalmedicine.0002-22 PMID: 35871578
- Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: applications to targets and beyond. Br. J. Pharmacol., 2007, 152(1), 21-37. doi: 10.1038/sj.bjp.0707306 PMID: 17549046
- Samad, A.; Ahammad, F.; Nain, Z.; Alam, R.; Imon, R.R.; Hasan, M.; Rahman, M.S. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn., 2022, 40(1), 14-30. doi: 10.1080/07391102.2020.1792347 PMID: 32677533
- Khedkar, S.; Malde, A.; Coutinho, E.; Srivastava, S. Pharmacophore modeling in drug discovery and development: An overview. Med. Chem., 2007, 3(2), 187-197. doi: 10.2174/157340607780059521 PMID: 17348856
- Opo, F.A.D.M.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep., 2021, 11(1), 4049. doi: 10.1038/s41598-021-83626-x PMID: 33603068
- Darvas, F.; Keseru, G.; Papp, A.; Dormán, G.; Urge, L.; Krajcsi, P. In silico and Ex silico ADME approaches for drug discovery. Curr. Top. Med. Chem., 2002, 2(12), 1287-1304. doi: 10.2174/1568026023392841 PMID: 12470281
- Zheng, S. In silico identification of potent small molecule inhibitors targeting epidermal growth factor receptor 1. J. Cancer Res. Therapeut., 2018, 14(1), 18-23. doi: 10.4103/jcrt.JCRT_365_17
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2023 update. Nucleic Acids Res., 2023, 51(D1), D1373-D1380. doi: 10.1093/nar/gkac956 PMID: 36305812
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594. doi: 10.1021/jm300687e PMID: 22716043
- OBoyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33. doi: 10.1186/1758-2946-3-33 PMID: 21982300
- Golestanian, S.; Sharifi, A.; Popowicz, G.M.; Azizian, H.; Foroumadi, A.; Szwagierczak, A.; Holak, T.A.; Amanlou, M. Discovery of novel dual inhibitors against Mdm2 and Mdmx proteins by In silico approaches and binding assay. Life Sci., 2016, 145, 240-246. doi: 10.1016/j.lfs.2015.12.047 PMID: 26746660
- Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(W1), W409-W414. doi: 10.1093/nar/gks378 PMID: 22553363
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for In silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(90001), D668-D672. doi: 10.1093/nar/gkj067 PMID: 16381955
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
- Cheng, H.; Nair, S.K.; Murray, B.W.; Almaden, C.; Bailey, S.; Baxi, S.; Behenna, D.; Cho-Schultz, S.; Dalvie, D.; Dinh, D.M.; Edwards, M.P.; Feng, J.L.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.D.; Jackson-Fisher, A.; Jalaie, M.; Johnson, T.O.; Kania, R.S.; Kephart, S.; Lafontaine, J.; Lunney, B.; Liu, K.K.C.; Liu, Z.; Matthews, J.; Nagata, A.; Niessen, S.; Ornelas, M.A.; Orr, S.T.M.; Pairish, M.; Planken, S.; Ren, S.; Richter, D.; Ryan, K.; Sach, N.; Shen, H.; Smeal, T.; Solowiej, J.; Sutton, S.; Tran, K.; Tseng, E.; Vernier, W.; Walls, M.; Wang, S.; Weinrich, S.L.; Xin, S.; Xu, H.; Yin, M.J.; Zientek, M.; Zhou, R.; Kath, J.C. Discovery of 1-(3 R, 4 R)-3-(5-Chloro-2-(1-methyl-1 H -pyrazol-4-yl)amino-7 H -pyrrolo2,3- dpyrimidin-4-yloxy)methyl-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a Potent, WT Sparing, Irreversible Inhibitor of T790M-Containing EGFR Mutants. J. Med. Chem., 2016, 59(5), 2005-2024. doi: 10.1021/acs.jmedchem.5b01633 PMID: 26756222
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
- Martínez-Rosell, G.; Giorgino, T.; De Fabritiis, G. Playmolecule proteinprepare: A web application for protein preparation for molecular dynamics simulations. J. Chem. Inf. Model., 2017, 57(7), 1511-1516. doi: 10.1021/acs.jcim.7b00190 PMID: 28594549
- Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, CA, USA, 2021.
- Samdani, A.; Vetrivel, U. POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Comput. Biol. Chem., 2018, 74, 39-48. doi: 10.1016/j.compbiolchem.2018.02.012 PMID: 29533817
- Maestro: A Powerful, All-Purpose Molecular Modeling Environment. Available from: http://www.schrodinger.com/maestro
- Elbadawi, M.M.; Eldehna, W.M.; Abd El-Hafeez, A.A.; Somaa, W.R.; Albohy, A.; Al-Rashood, S.T.; Agama, K.K.; Elkaeed, E.B.; Ghosh, P.; Pommier, Y.; Abe, M. 2-Arylquinolines as novel anticancer agents with dual EGFR/FAK kinase inhibitory activity: Synthesis, biological evaluation, and molecular modelling insights. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 355-378. doi: 10.1080/14756366.2021.2015344 PMID: 34923887
- Alam, M.M.; Nazreen, S.; Almalki, A.S.A.; Elhenawy, A.A.; Alsenani, N.I.; Elbehairi, S.E.I.; Malebari, A.M.; Alfaifi, M.Y.; Alsharif, M.A.; Alfaifi, S.Y.M. Naproxen based 1,3,4-oxadiazole derivatives as EGFR inhibitors: Design, synthesis, anticancer, and computational studies. Pharmaceuticals, 2021, 14(9), 870. doi: 10.3390/ph14090870 PMID: 34577570
- Liu, L.T.; Yuan, T.T.; Liu, H.H.; Chen, S.F.; Wu, Y.T. Synthesis and biological evaluation of substituted 6-alkynyl-4-anilinoquinazoline derivatives as potent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(22), 6373-6377. doi: 10.1016/j.bmcl.2007.08.061 PMID: 17889528
- Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem., 2013, 34(24), 2121-2132. doi: 10.1002/jcc.23361
- Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem., 2014, 35(13), 1036-1044. doi: 10.1002/jcc.23576 PMID: 24599647
- Gramatica, P. Principles of QSAR Modeling: Comments and suggestions from personal experience. Int. J. Quantita. Struct.-Prop. Relationships, 2020, 5(3)
- Moriwaki, H.; Tian, Y.S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform., 2018, 10(1), 4. doi: 10.1186/s13321-018-0258-y PMID: 29411163
- Lin, S-K. Pharmacophore perception, development and use in drug design. Edited by Osman F. Güner. Molecules, 2000, 5(12), 987-989. doi: 10.3390/50700987
- Wermuth, C.G.; Ganellin, C.R.; Lindberg, P.; Mitscher, L.A. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem., 1998, 70(5), 1129-1143. doi: 10.1351/pac199870051129
- Schisterman, E.F.; Faraggi, D.; Reiser, B. Adjusting the generalized ROC curve for covariates. Stat. Med., 2004, 23(21), 3319-3331. doi: 10.1002/sim.1908 PMID: 15490426
- Bamber, D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J. Math. Psychol., 1975, 12(4), 387-415. doi: 10.1016/0022-2496(75)90001-2
- Kirchmair, J.; Distinto, S.; Markt, P.; Schuster, D.; Spitzer, G.M.; Liedl, K.R.; Wolber, G. How to optimize shape-based virtual screening: Choosing the right query and including chemical information. J. Chem. Inf. Model., 2009, 49(3), 678-692. doi: 10.1021/ci8004226 PMID: 19434901
- Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the In silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42(W1), W53-W58. doi: 10.1093/nar/gku401 PMID: 24838562
- Ortiz, C.L.D.; Completo, G.C.; Nacario, R.C.; Nellas, R.B. Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In silico ADMETox Studies. Sci. Rep., 2019, 9(1), 17096. doi: 10.1038/s41598-019-52764-8 PMID: 31745103
- Ongtanasup, T.; Mazumder, A.; Dwivedi, A.; Eawsakul, K. Homology modeling, molecular docking, molecular dynamic simulation, and drug-likeness of the modified alpha-mangostin against the β-tubulin protein of acanthamoeba keratitis. Molecules, 2022, 27(19), 6338. doi: 10.3390/molecules27196338 PMID: 36234875
- Unni, P.A.; Lulu, S.S.; Pillai, G.G. Computational strategies towards developing novel antimelanogenic agents. Life Sci., 2020, 250117602 doi: 10.1016/j.lfs.2020.117602
- Chandran, S. Machine Learning Model Deployment - A Simple Checklist. , 2021. Available from: https://towardsdatascience.com/machine-learningmodel-deployment-a-simplistic-checklist-dc5558a88d1b
- Gramatica, P.; Sangion, A. A historical excursus on the statistical validation parameters for qsar models: A clarification concerning metrics and terminology. J. Chem. Inf. Model., 2016, 56(6), 1127-1131. doi: 10.1021/acs.jcim.6b00088 PMID: 27218604
- Roy, K. On some aspects of validation of predictive quantitative structureactivity relationship models. Expert Opin. Drug Discov., 2007, 2(12), 1567-1577. doi: 10.1517/17460441.2.12.1567 PMID: 23488901
- Garg, Rajni Smith, Carr Predicting the bioconcentration factor of highly hydrophobic organic chemicals. Food Chem. Toxicol., 2014, 69, 035. doi: 10.1016/j.fct.2014.03.035
Supplementary files
