Identification of Novel EGFR Inhibitors for the Targeted Therapy of Colorectal Cancer Using Pharmacophore Modelling, Docking, Molecular Dynamic Simulation and Biological Activity Prediction


Cite item

Full Text

Abstract

Background:Colorectal cancer (CRC) is considered the second deadliest cancer in the world. One of the reasons for the occurrence of this cancer is the deregulation of the Epidermal Growth Factor Receptor (EGFR), which plays a critical role in regulating cell division, persistence, differentiation, and migration. The overexpression of the EGFR protein leads to its dysregulation and causes CRC.

Objective:Hence, this work aims to identify and validate novel EGFR inhibitors for the treatment of colorectal cancer employing various computer aided techniques such as pharmacophore modeling, docking, molecular dynamic simulation and Quantitative Structure-Activity Relationship (QSAR) analysis.

Methods:In this work, a shared-featured ligand-based pharmacophore model was generated using the known inhibitors of EGFR. The best model was validated and screened against ZincPharmer and Maybridge databases, and 143 hits were obtained. Pharmacokinetic and toxicological properties of these hits were studied, and the acceptable ligands were docked against EGFR. The best five protein-ligand complexes with binding energy less than -5 kcal/mol were selected. The molecular dynamic simulation studies of these complexes were conducted for 100 nanoseconds (ns), and the results were analyzed. The biological activity of this ligand was calculated using QSAR analysis.

Results:The best complex with Root Mean Square Deviation (RMSD) 3.429 Å and Radius of Gyration (RoG) 20.181 Å was selected. The Root Mean Square Fluctuations (RMSF) results were also found to be satisfactory. The biological activity of this ligand was found to be 1.38 µM.

Conclusion:This work hereby proposes the ligand 2-((1,6-dimethyl-4-oxo-1,4-dihydropyridin-3-yl)oxy)-N- (1H-indol-4-yl)acetamide as a potential EGFR inhibitor for the treatment of colorectal cancer. The wet lab analysis must be conducted, however, to confirm this hypothesis.

About the authors

Amrutha Krishnan K.

Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology,, Affiliated to APJ Abdul Kalam Technological University,

Author for correspondence.
Email: info@benthamscience.net

Sudha George Valavi

Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University

Email: info@benthamscience.net

Amitha Joy

Department of Biotechnology, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University

Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. WHO. Colorectal cancer. Available from: https://www.who.int/newsroom/fact-sheets/detail/colorectal-cancer#:~:text=Colon%20cancer%20is%20the%20second,and%20mortality%20rates%20were%20observed (Accessed on 26 Oct 2023).
  3. Spano, J.P.; Lagorce, C.; Atlan, D.; Milano, G.; Domont, J.; Benamouzig, R.; Attar, A.; Benichou, J.; Martin, A.; Morere, J.F.; Raphael, M.; Penault-Llorca, F.; Breau, J.L.; Fagard, R.; Khayat, D.; Wind, P. Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann. Oncol., 2005, 16(1), 102-108. doi: 10.1093/annonc/mdi006 PMID: 15598946
  4. Ohashi, K.; Maruvka, Y.E.; Michor, F.; Pao, W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J. Clin. Oncol., 2013, 31(8), 1070-1080. doi: 10.1200/JCO.2012.43.3912 PMID: 23401451
  5. Frattini, M.; Saletti, P.; Molinari, F.; De Dosso, S. EGFR signaling in colorectal cancer: A clinical perspective. Gastrointest. Cancer, 2015, 21, 21. doi: 10.2147/GICTT.S49002
  6. Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500. doi: 10.1126/science.1099314 PMID: 15118125
  7. Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; Mardis, E.; Kupfer, D.; Wilson, R.; Kris, M.; Varmus, H. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci., 2004, 101(36), 13306-13311. doi: 10.1073/pnas.0405220101 PMID: 15329413
  8. Ogino, S.; Meyerhardt, J.A.; Cantor, M.; Brahmandam, M.; Clark, J.W.; Namgyal, C.; Kawasaki, T.; Kinsella, K.; Michelini, A.L.; Enzinger, P.C.; Kulke, M.H.; Ryan, D.P.; Loda, M.; Fuchs, C.S. Molecular alterations in tumors and response to combination chemotherapy with gefitinib for advanced colorectal cancer. Clin. Cancer Res., 2005, 11(18), 6650-6656. doi: 10.1158/1078-0432.CCR-05-0738 PMID: 16166444
  9. Bonomi, P.D.; Buckingham, L.; Coon, J. Selecting patients for treatment with epidermal growth factor tyrosine kinase inhibitors. Clin. Cancer Res., 2007, 13(15), 4606s-4612s. doi: 10.1158/1078-0432.CCR-07-0332 PMID: 17671150
  10. Barber, T.D.; Vogelstein, B.; Kinzler, K.W.; Velculescu, V.E. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N. Engl. J. Med., 2004, 351(27), 2883. doi: 10.1056/NEJM200412303512724 PMID: 15625347
  11. Pabla, B.; Bissonnette, M.; Konda, V.J. Colon cancer and the epidermal growth factor receptor: Current treatment paradigms, the importance of diet, and the role of chemoprevention. World J. Clin. Oncol., 2015, 6(5), 133-141. doi: 10.5306/wjco.v6.i5.133 PMID: 26468449
  12. Zhao, Y.; Ma, J.; Fan, Y.; Wang, Z.; Tian, R.; Ji, W.; Zhang, F.; Niu, R. TGF -β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol. Oncol., 2018, 12(3), 305-321. doi: 10.1002/1878-0261.12162 PMID: 29215776
  13. Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer, 2022, 21(1), 144. doi: 10.1186/s12943-022-01616-7 PMID: 35836256
  14. Majhi, M; Ali, MA; Limaye, A; Sinha, K; Bairagi, P; Chouksey, M; Shukla, R; Kanwar, N; Hussain, T; Nayarisseri, A; Singh, S K An in silico investigation of potential EGFR inhibitors for the clinical treatment of colorectal cancer. Curr. Topics. Med. Chem., 2018, 18(27), 2355-2366. doi: 10.2174/1568026619666181129144107
  15. Rothenberg, M.L.; LaFleur, B.; Levy, D.E.; Washington, M.K.; Morgan-Meadows, S.L.; Ramanathan, R.K.; Berlin, J.D.; Benson, A.B., III; Coffey, R.J. Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. J. Clin. Oncol., 2005, 23(36), 9265-9274. doi: 10.1200/JCO.2005.03.0536 PMID: 16361624
  16. Kuo, T.; Cho, C.D.; Halsey, J.; Wakelee, H.A.; Advani, R.H.; Ford, J.M.; Fisher, G.A.; Sikic, B.I. Phase II study of gefitinib, fluorouracil, leucovorin, and oxaliplatin therapy in previously treated patients with metastatic colorectal cancer. J. Clin. Oncol., 2005, 23(24), 5613-5619. doi: 10.1200/JCO.2005.08.359 PMID: 16110021
  17. Fisher, G.A.; Kuo, T.; Ramsey, M.; Schwartz, E.; Rouse, R.V.; Cho, C.D.; Halsey, J.; Sikic, B.I. A phase II study of gefitinib, 5-fluorouracil, leucovorin, and oxaliplatin in previously untreated patients with metastatic colorectal cancer. Clin. Cancer Res., 2008, 14(21), 7074-7079. doi: 10.1158/1078-0432.CCR-08-1014 PMID: 18981005
  18. Santoro, A.; Comandone, A.; Rimassa, L.; Granetti, C.; Lorusso, V.; Oliva, C.; Ronzoni, M.; Siena, S.; Zuradelli, M.; Mari, E.; Pressiani, T.; Carnaghi, C. A phase II randomized multicenter trial of gefitinib plus FOLFIRI and FOLFIRI alone in patients with metastatic colorectal cancer. Ann. Oncol., 2008, 19(11), 1888-1893. doi: 10.1093/annonc/mdn401 PMID: 18667394
  19. Meyerhardt, J.A.; Zhu, A.X.; Enzinger, P.C.; Ryan, D.P.; Clark, J.W.; Kulke, M.H.; Earle, C.C.; Vincitore, M.; Michelini, A.; Sheehan, S.; Fuchs, C.S. Phase II study of capecitabine, oxaliplatin, and erlotinib in previously treated patients with metastastic colorectal cancer. J. Clin. Oncol., 2006, 24(12), 1892-1897. doi: 10.1200/JCO.2005.05.3728 PMID: 16622264
  20. Yanagisawa, A.; Kinehara, Y.; Kijima, R.; Tanaka, M.; Ninomiya, R.; Jokoji, R.; Tachibana, I. Metastatic lung tumors from colorectal cancer with EGFR mutations that responded to osimertinib. Intern. Med., 2023, 62(5), 769-773. doi: 10.2169/internalmedicine.0002-22 PMID: 35871578
  21. Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: applications to targets and beyond. Br. J. Pharmacol., 2007, 152(1), 21-37. doi: 10.1038/sj.bjp.0707306 PMID: 17549046
  22. Samad, A.; Ahammad, F.; Nain, Z.; Alam, R.; Imon, R.R.; Hasan, M.; Rahman, M.S. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn., 2022, 40(1), 14-30. doi: 10.1080/07391102.2020.1792347 PMID: 32677533
  23. Khedkar, S.; Malde, A.; Coutinho, E.; Srivastava, S. Pharmacophore modeling in drug discovery and development: An overview. Med. Chem., 2007, 3(2), 187-197. doi: 10.2174/157340607780059521 PMID: 17348856
  24. Opo, F.A.D.M.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep., 2021, 11(1), 4049. doi: 10.1038/s41598-021-83626-x PMID: 33603068
  25. Darvas, F.; Keseru, G.; Papp, A.; Dormán, G.; Urge, L.; Krajcsi, P. In silico and Ex silico ADME approaches for drug discovery. Curr. Top. Med. Chem., 2002, 2(12), 1287-1304. doi: 10.2174/1568026023392841 PMID: 12470281
  26. Zheng, S. In silico identification of potent small molecule inhibitors targeting epidermal growth factor receptor 1. J. Cancer Res. Therapeut., 2018, 14(1), 18-23. doi: 10.4103/jcrt.JCRT_365_17
  27. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2023 update. Nucleic Acids Res., 2023, 51(D1), D1373-D1380. doi: 10.1093/nar/gkac956 PMID: 36305812
  28. Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594. doi: 10.1021/jm300687e PMID: 22716043
  29. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33. doi: 10.1186/1758-2946-3-33 PMID: 21982300
  30. Golestanian, S.; Sharifi, A.; Popowicz, G.M.; Azizian, H.; Foroumadi, A.; Szwagierczak, A.; Holak, T.A.; Amanlou, M. Discovery of novel dual inhibitors against Mdm2 and Mdmx proteins by In silico approaches and binding assay. Life Sci., 2016, 145, 240-246. doi: 10.1016/j.lfs.2015.12.047 PMID: 26746660
  31. Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(W1), W409-W414. doi: 10.1093/nar/gks378 PMID: 22553363
  32. Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for In silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(90001), D668-D672. doi: 10.1093/nar/gkj067 PMID: 16381955
  33. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  34. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
  35. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
  36. Cheng, H.; Nair, S.K.; Murray, B.W.; Almaden, C.; Bailey, S.; Baxi, S.; Behenna, D.; Cho-Schultz, S.; Dalvie, D.; Dinh, D.M.; Edwards, M.P.; Feng, J.L.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.D.; Jackson-Fisher, A.; Jalaie, M.; Johnson, T.O.; Kania, R.S.; Kephart, S.; Lafontaine, J.; Lunney, B.; Liu, K.K.C.; Liu, Z.; Matthews, J.; Nagata, A.; Niessen, S.; Ornelas, M.A.; Orr, S.T.M.; Pairish, M.; Planken, S.; Ren, S.; Richter, D.; Ryan, K.; Sach, N.; Shen, H.; Smeal, T.; Solowiej, J.; Sutton, S.; Tran, K.; Tseng, E.; Vernier, W.; Walls, M.; Wang, S.; Weinrich, S.L.; Xin, S.; Xu, H.; Yin, M.J.; Zientek, M.; Zhou, R.; Kath, J.C. Discovery of 1-(3 R, 4 R)-3-(5-Chloro-2-(1-methyl-1 H -pyrazol-4-yl)amino-7 H -pyrrolo2,3- dpyrimidin-4-yloxy)methyl-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a Potent, WT Sparing, Irreversible Inhibitor of T790M-Containing EGFR Mutants. J. Med. Chem., 2016, 59(5), 2005-2024. doi: 10.1021/acs.jmedchem.5b01633 PMID: 26756222
  37. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
  38. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  39. Martínez-Rosell, G.; Giorgino, T.; De Fabritiis, G. Playmolecule proteinprepare: A web application for protein preparation for molecular dynamics simulations. J. Chem. Inf. Model., 2017, 57(7), 1511-1516. doi: 10.1021/acs.jcim.7b00190 PMID: 28594549
  40. Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, CA, USA, 2021.
  41. Samdani, A.; Vetrivel, U. POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Comput. Biol. Chem., 2018, 74, 39-48. doi: 10.1016/j.compbiolchem.2018.02.012 PMID: 29533817
  42. Maestro: A Powerful, All-Purpose Molecular Modeling Environment. Available from: http://www.schrodinger.com/maestro
  43. Elbadawi, M.M.; Eldehna, W.M.; Abd El-Hafeez, A.A.; Somaa, W.R.; Albohy, A.; Al-Rashood, S.T.; Agama, K.K.; Elkaeed, E.B.; Ghosh, P.; Pommier, Y.; Abe, M. 2-Arylquinolines as novel anticancer agents with dual EGFR/FAK kinase inhibitory activity: Synthesis, biological evaluation, and molecular modelling insights. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 355-378. doi: 10.1080/14756366.2021.2015344 PMID: 34923887
  44. Alam, M.M.; Nazreen, S.; Almalki, A.S.A.; Elhenawy, A.A.; Alsenani, N.I.; Elbehairi, S.E.I.; Malebari, A.M.; Alfaifi, M.Y.; Alsharif, M.A.; Alfaifi, S.Y.M. Naproxen based 1,3,4-oxadiazole derivatives as EGFR inhibitors: Design, synthesis, anticancer, and computational studies. Pharmaceuticals, 2021, 14(9), 870. doi: 10.3390/ph14090870 PMID: 34577570
  45. Liu, L.T.; Yuan, T.T.; Liu, H.H.; Chen, S.F.; Wu, Y.T. Synthesis and biological evaluation of substituted 6-alkynyl-4-anilinoquinazoline derivatives as potent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(22), 6373-6377. doi: 10.1016/j.bmcl.2007.08.061 PMID: 17889528
  46. Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem., 2013, 34(24), 2121-2132. doi: 10.1002/jcc.23361
  47. Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem., 2014, 35(13), 1036-1044. doi: 10.1002/jcc.23576 PMID: 24599647
  48. Gramatica, P. Principles of QSAR Modeling: Comments and suggestions from personal experience. Int. J. Quantita. Struct.-Prop. Relationships, 2020, 5(3)
  49. Moriwaki, H.; Tian, Y.S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform., 2018, 10(1), 4. doi: 10.1186/s13321-018-0258-y PMID: 29411163
  50. Lin, S-K. Pharmacophore perception, development and use in drug design. Edited by Osman F. Güner. Molecules, 2000, 5(12), 987-989. doi: 10.3390/50700987
  51. Wermuth, C.G.; Ganellin, C.R.; Lindberg, P.; Mitscher, L.A. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem., 1998, 70(5), 1129-1143. doi: 10.1351/pac199870051129
  52. Schisterman, E.F.; Faraggi, D.; Reiser, B. Adjusting the generalized ROC curve for covariates. Stat. Med., 2004, 23(21), 3319-3331. doi: 10.1002/sim.1908 PMID: 15490426
  53. Bamber, D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J. Math. Psychol., 1975, 12(4), 387-415. doi: 10.1016/0022-2496(75)90001-2
  54. Kirchmair, J.; Distinto, S.; Markt, P.; Schuster, D.; Spitzer, G.M.; Liedl, K.R.; Wolber, G. How to optimize shape-based virtual screening: Choosing the right query and including chemical information. J. Chem. Inf. Model., 2009, 49(3), 678-692. doi: 10.1021/ci8004226 PMID: 19434901
  55. Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the In silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42(W1), W53-W58. doi: 10.1093/nar/gku401 PMID: 24838562
  56. Ortiz, C.L.D.; Completo, G.C.; Nacario, R.C.; Nellas, R.B. Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In silico ADMETox Studies. Sci. Rep., 2019, 9(1), 17096. doi: 10.1038/s41598-019-52764-8 PMID: 31745103
  57. Ongtanasup, T.; Mazumder, A.; Dwivedi, A.; Eawsakul, K. Homology modeling, molecular docking, molecular dynamic simulation, and drug-likeness of the modified alpha-mangostin against the β-tubulin protein of acanthamoeba keratitis. Molecules, 2022, 27(19), 6338. doi: 10.3390/molecules27196338 PMID: 36234875
  58. Unni, P.A.; Lulu, S.S.; Pillai, G.G. Computational strategies towards developing novel antimelanogenic agents. Life Sci., 2020, 250117602 doi: 10.1016/j.lfs.2020.117602
  59. Chandran, S. Machine Learning Model Deployment - A Simple Checklist. , 2021. Available from: https://towardsdatascience.com/machine-learningmodel-deployment-a-simplistic-checklist-dc5558a88d1b
  60. Gramatica, P.; Sangion, A. A historical excursus on the statistical validation parameters for qsar models: A clarification concerning metrics and terminology. J. Chem. Inf. Model., 2016, 56(6), 1127-1131. doi: 10.1021/acs.jcim.6b00088 PMID: 27218604
  61. Roy, K. On some aspects of validation of predictive quantitative structure–activity relationship models. Expert Opin. Drug Discov., 2007, 2(12), 1567-1577. doi: 10.1517/17460441.2.12.1567 PMID: 23488901
  62. Garg, Rajni Smith, Carr Predicting the bioconcentration factor of highly hydrophobic organic chemicals. Food Chem. Toxicol., 2014, 69, 035. doi: 10.1016/j.fct.2014.03.035

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers