Antitumor Activity of a Lectin Purified from Punica granatum Pulps against Ehrlich Ascites Carcinoma (EAC) Cells


Cite item

Full Text

Abstract

Background:Lectins are carbohydrate-binding proteins with various pharmacological activities, such as antimicrobial, antidiabetic, antioxidant, and anticancer. Punica granatum fruit extract has traditional uses, however, the anti-cancer activity of purified lectin isolated from P. granatum pulp is yet to be reported.

Objective:The goals of this study are purification, characterization of the lectin from P. granatum, and examination of the purified lectin's anticancer potential.

Methods:Diethylaminoethyl (DEAE) ion-exchange chromatography was used to purify the lectin, and SDSPAGE was used to check the purity and homogeneity of the lectin. Spectrometric and chemical analysis were used to characterize the lectin. The anticancer activity of the lectin was examined using in vivo and in vitro functional assays.

Results:A lectin, designated as PgL of 28.0 ± 1.0 kDa molecular mass, was isolated and purified from the pulps of P. granatum and the lectin contains 40% sugar. Also, it is a bivalent ion-dependent lectin and lost its 75% activity in the presence of urea (8M). The lectin agglutinated blood cells of humans and rats, and sugar molecules such as 4-nitrophenyl-α-D-manopyranoside and 2- nitrophenyl -β- D-glucopyranoside inhibited PgL’s hemagglutination activity. At pH ranges of 6.0-8.0 and temperature ranges of 30°C -80°C, PgL exhibited the highest agglutination activity. In vitro MTT assay showed that PgL inhibited Ehrlich ascites carcinoma (EAC) cell growth in a dose-dependent manner. PgL exhibited 39 % and 58.52 % growth inhibition of EAC cells in the mice model at 1.5 and 3.0 mg/kg/day (i.p.), respectively. In addition, PgL significantly increased the survival time (32.0 % and 49.3 %) of EAC-bearing mice at 1.5 and 3.0 mg/kg/day doses (i.p.), respectively, in comparison to untreated EAC-bearing animals (p < 0.01). Also, PgL reduced the tumor weight of EAC-bearing mice (66.6 versus 39.13%; p < 0.01) at the dose of 3.0 mg/kg/day treatment. Furthermore, supplementation of PgL restored the haematological parameters toward normal levels deteriorated in EAC-bearing animals by the toxicity of EAC cells.

Conclusion:The results indicated that the purified lectin has anticancer activity and has the potential to be developed as an effective chemotherapy agent.

About the authors

Md Nurujjaman

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Tanjila Mashhoor

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Tasfik Pronoy

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Abdul Auwal

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Md Robiul Hasan

Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University

Email: info@benthamscience.net

Shaikh Islam

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Imtiaj Hasan

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

A.K.M. Asaduzzaman

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Md Uddin

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Syed Kabir

Department of Biochemistry and Molecular Biology, University of Rajshahi

Author for correspondence.
Email: info@benthamscience.net

Farhadul Islam

Department of Biochemistry and Molecular Biology, University of Rajshahi

Author for correspondence.
Email: info@benthamscience.net

References

  1. Narayanan, V.; Bobbili, K.B.; Sivaji, N.; Jayaprakash, N.G.; Suguna, K.; Surolia, A.; Sekhar, A. Structure and carbohydrate recognition by the nonmitogenic lectin horcolin. Biochemistry, 2022, 61(6), 464-478. doi: 10.1021/acs.biochem.1c00778 PMID: 35225598
  2. Zhang, S.; Chen, K.Y.; Zou, X. Carbohydrate-protein interactions: Advances and challenges. Commun. Inf. Syst., 2021, 21(1), 147-163. doi: 10.4310/CIS.2021.v21.n1.a7 PMID: 34366717
  3. Shetty, K.N.; Bhat, G.G.; Inamdar, S.R.; Swamy, B.M.; Suguna, K. Crystal structure of a β-prism II lectin from Remusatia vivipara. Glycobiology, 2012, 22(1), 56-69. doi: 10.1093/glycob/cwr100 PMID: 21788359
  4. Doores, K.J. The HIV glycan shield as a target for broadly neutralizing antibodies. FEBS J., 2015, 282(24), 4679-4691. doi: 10.1111/febs.13530 PMID: 26411545
  5. Jayaprakash, N.G.; Singh, A.; Vivek, R.; Yadav, S.; Pathak, S.; Trivedi, J.; Jayaraman, N.; Nandi, D.; Mitra, D.; Surolia, A. The barley lectin, horcolin, binds high-mannose glycans in a multivalent fashion, enabling high-affinity, specific inhibition of cellular HIV infection. J. Biol. Chem., 2020, 295(34), 12111-12129. doi: 10.1074/jbc.RA120.013100 PMID: 32636304
  6. Li, Y.; Liu, D.; Wang, Y.; Su, W.; Liu, G.; Dong, W. The importance of glycans of viral and host proteins in enveloped virus infection. Front. Immunol., 2021, 12, 638573. doi: 10.3389/fimmu.2021.638573 PMID: 33995356
  7. Cao, Y.; Park, S.J. Im, W. A systematic analysis of protein–carbohydrate interactions in the Protein Data Bank. Glycobiology, 2021, 31(2), 126-136. doi: 10.1093/glycob/cwaa062 PMID: 32614943
  8. Cheung, A.H.K.; Wong, J.H.; Ng, T.B. Musa acuminata (Del Monte banana) lectin is a fructose-binding lectin with cytokine-inducing activity. Phytomedicine, 2009, 16(6-7), 594-600. doi: 10.1016/j.phymed.2008.12.016 PMID: 19195858
  9. Raja, S.B.; Murali, M.R.; Kumar, N.K.; Devaraj, S.N. Isolation and partial characterisation of a novel lectin from Aegle marmelos fruit and its effect on adherence and invasion of Shigellae to HT29 cells. PLoS One, 2011, 6(1), e16231. doi: 10.1371/journal.pone.0016231 PMID: 21283697
  10. Fu, L.; Zhou, C.; Yao, S.; Yu, J.; Liu, B.; Bao, J. Plant lectins: Targeting programmed cell death pathways as antitumor agents. Int. J. Biochem. Cell Biol., 2011, 43(10), 1442-1449. doi: 10.1016/j.biocel.2011.07.004 PMID: 21798364
  11. Liu, B.; Bian, H.; Bao, J. Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Lett., 2010, 287(1), 1-12. doi: 10.1016/j.canlet.2009.05.013 PMID: 19487073
  12. Maphetu, N.; Unuofin, J.O.; Masuku, N.P.; Olisah, C.; Lebelo, S.L. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed. Pharmacother., 2022, 153, 113256. doi: 10.1016/j.biopha.2022.113256 PMID: 36076615
  13. Dai, Z.; Nair, V.; Khan, M.; Ciolino, H.P. Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro. Oncol. Rep., 2010, 24(4), 1087-1091. PMID: 20811693
  14. Naz, S.; Siddiqi, R.; Ahmad, S.; Rasool, S.A.; Sayeed, S.A. Antibacterial activity directed isolation of compounds from Punica granatum. J. Food Sci., 2007, 72(9), M341-M345. doi: 10.1111/j.1750-3841.2007.00533.x PMID: 18034726
  15. Al-Zoreky, N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol., 2009, 134(3), 244-248. doi: 10.1016/j.ijfoodmicro.2009.07.002 PMID: 19632734
  16. Haghayeghi, K.; Shetty, K.; Labbé, R. Inhibition of foodborne pathogens by pomegranate juice. J. Med. Food, 2013, 16(5), 467-470. doi: 10.1089/jmf.2012.0233 PMID: 23631498
  17. Kabir, S.R.; Islam, J.; Ahamed, M.S.; Alam, M.T. Asparagus racemosus and Geodorum densiflorum lectins induce apoptosis in cancer cells by altering proteins and genes expression. Int. J. Biol. Macromol., 2021, 191, 646-656. doi: 10.1016/j.ijbiomac.2021.09.101 PMID: 34582909
  18. Silva, P.M.; Napoleão, T.H.; Silva, L.C.P.B.B.; Fortes, D.T.O.; Lima, T.A.; Zingali, R.B.; Pontual, E.V.; Araújo, J.M.; Medeiros, P.L.; Rodrigues, C.G.; Gomes, F.S.; Paiva, P.M.G. The juicy sarcotesta of Punica granatum contains a lectin that affects growth, survival as well as adherence and invasive capacities of human pathogenic bacteria. J. Funct. Foods, 2016, 27, 695-702. doi: 10.1016/j.jff.2016.10.015
  19. Argondizzo, A.P.C.; Rocha-de-Souza, C.M.; de Almeida Santiago, M.; Galler, R.; Reis, J.N.; Medeiros, M.A. Pneumococcal Predictive Proteins Selected by Microbial Genomic Approach Are Serotype Cross-Reactive and Bind to Host Extracellular Matrix Proteins. Appl. Biochem. Biotechnol., 2017, 182(4), 1518-1539. doi: 10.1007/s12010-017-2415-6 PMID: 28211009
  20. Kumar, A. Kumar, R.R.; Chaturvedi, V.; Kayastha, A.M. α-Amylase purified and characterized from fenugreek (Trigonella foenum-graecum) showed substantial anti-biofilm activity against Staphylococcus aureus MTCC740. Int. J. Biol. Macromol., 2023, 252, 126442. doi: 10.1016/j.ijbiomac.2023.126442 PMID: 37611683
  21. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685. doi: 10.1038/227680a0 PMID: 5432063
  22. Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275. doi: 10.1016/S0021-9258(19)52451-6 PMID: 14907713
  23. Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugar and related substances. Anal. Chem., 1956, 28(3), 350-356. doi: 10.1021/ac60111a017
  24. Rashel, K. S.; Amir, H, M.; Abu Zubair, M.; Jahangir Alom, M.; Farhadul, I, M.; Anowar Hossain, M.; Kimura, Y. A new lectin from the tuberous rhizome of Kaempferia rotunda: Isolation, characterization, antibacterial and antiproliferative activities. Protein Pept. Lett., 2011, 18(11), 1140-1149. a doi: 10.2174/092986611797200896 PMID: 21707523
  25. Rashel, K.S.; Farhadul, I.M.; Jahangir, A.M.; Abu Zubair, M.; Absar, N. Purification, characterizations of a snake guard seeds lectin with antitumor activity against Ehrlich ascites carcinoma cells in vivo in mice. Protein Pept. Lett., 2012, 19(3), 360-368. doi: 10.2174/092986612799363154 PMID: 22185504
  26. Kabir, S.R.; Islam, F.; Asaduzzaman, A.K.M. Biogenic silver/silver chloride nanoparticles inhibit human cancer cells proliferation in vitro and Ehrlich ascites carcinoma cells growth in vivo. Sci. Rep., 2022, 12(1), 8909. doi: 10.1038/s41598-022-12974-z PMID: 35618812
  27. Kabir, S.R.; Nabi, M.M.; Haque, A.; Zaman, R.U.; Mahmud, Z.H.; Reza, M.A. Pea lectin inhibits growth of Ehrlich ascites carcinoma cells by inducing apoptosis and G2/M cell cycle arrest in vivo in mice. Phytomedicine, 2013, 20(14), 1288-1296. doi: 10.1016/j.phymed.2013.06.010 PMID: 23867650
  28. Finney, D.J. Probit Analysis; Cambridge University Press: London, 1971.
  29. Islam, F.; Ghosh, S.; Khanam, J.A. Antiproliferative and hepatoprotective activity of metabolites from Corynebacterium xerosis against Ehrlich Ascites Carcinoma cells. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S284-S292. doi: 10.12980/APJTB.4.2014C1283 PMID: 25183099
  30. Islam, F.; Khanam, J.A.; Khatun, M.; Zuberi, N.; Khatun, L.; Kabir, S.R.; Reza, M.A.; Ali, M.M.; Rabbi, M.A.; Gopalan, V.; Lam, A.K.Y. A p-menth-1-ene-4,7-diol (EC-1) from Eucalyptus camaldulensis Dhnh. triggers apoptosis and cell cycle changes in Ehrlich ascites carcinoma cells. Phytother. Res., 2015, 29(4), 573-581. doi: 10.1002/ptr.5288 PMID: 25583285
  31. Wu, J.; Wang, X.; Huang, Y.; Zhang, Y.; Su, S.; Shou, H.; Wang, H.; Zhang, J.; Wang, B. Targeted glycan degradation potentiates cellular immunotherapy for solid tumors. Proc. Natl. Acad. Sci. USA, 2023, 120(38), e2300366120. doi: 10.1073/pnas.2300366120 PMID: 37695897
  32. Villegas-Coronado, D.; Soto-Guzman, J.A.; Martínez-Soto, J.M.; Teran-Saavedra, N.G.; Guzman-Partida, A.M.; Vazquez-Moreno, L.; Villalba-Villalba, A.G.; Maldonado, A.; Lagarda-Diaz, I. Antiproliferative potential of Olneya tesota PF2 lectin in human acute monocytic leukemia cells. Chem. Biodivers., 2023, 20(7), e202300051. doi: 10.1002/cbdv.202300051 PMID: 37358490
  33. Yousefi, M.H.; Afkhami, H.; Akbari, A.; Honari, H. Expression, purification, characterization, and cytotoxic evaluation of the ML1-STxB fusion protein. Arch. Microbiol., 2023, 205(6), 220. doi: 10.1007/s00203-023-03563-3 PMID: 37148384
  34. Adamcová, A.; Laursen, K.H.; Ballin, N.Z. Lectin activity in commonly consumed plant-based foods: Calling for method harmonization and risk assessment. Foods, 2021, 10(11), 2796. doi: 10.3390/foods10112796 PMID: 34829077
  35. Nasi, A.; Picariello, G.; Ferranti, P. Proteomic approaches to study structure, functions and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety. J. Proteomics, 2009, 72(3), 527-538. doi: 10.1016/j.jprot.2009.02.001 PMID: 19217948
  36. Mantzoukas, S.; Korbou, G.; Magita, A.; Eliopoulos, P.A.; Poulas, K. Leguminous seeds powder diet reduces the survival and development of the khapra beetle, Trogoderma granarium everts (Coleoptera: dermestidae). Biology (Basel), 2020, 9(8), 204. doi: 10.3390/biology9080204 PMID: 32756491
  37. Pramod, S.N.; Venkatesh, Y.P. Utility of pentose colorimetric assay for the purification of potato lectin, an arabinose-rich glycoprotein. Glycoconj. J., 2006, 23(7-8), 481-488. doi: 10.1007/s10719-006-6217-2 PMID: 17006640
  38. Moreira, R.A.; Gavada, B.S. Lectin from Canavalia brasiliensis (MART.). Isolation, characterization and behavior during germination. Biol. Plant., 1984, 26(2), 113-120. doi: 10.1007/BF02902274
  39. Suseelan, K.N.; Bhagwath, A.; Pandey, R.; Gopalakrishna, T. Characterization of Con C, a lectin from Canavalia cathartica Thouars seeds. Food Chem., 2007, 104(2), 528-535. doi: 10.1016/j.foodchem.2006.11.064
  40. Kaur, M.; Singh, K.; Rup, P.J.; Kamboj, S.S.; Saxena, A.K.; Sharma, M.; Bhagat, M.; Sood, S.K.; Singh, J. A tuber lectin from Arisaema jacquemontii Blume with anti-insect and anti-proliferative properties. J. Biochem. Mol. Biol., 2006, 39(4), 432-440. PMID: 16889688
  41. Suseelan, K.N.; Mitra, R.; Pandey, R.; Sainis, K.B.; Krishna, T.G. Purification and characterization of a lectin from wild sunflower (Helianthus tuberosus L.) tubers. Arch. Biochem. Biophys., 2002, 407(2), 241-247. doi: 10.1016/S0003-9861(02)00517-9 PMID: 12413497
  42. Kabir, S.R.; Zubair, M.A.; Nurujjaman, M.; Haque, M.A.; Hasan, I.; Islam, M.F.; Hossain, M.T.; Hossain, M.A.; Rakib, M.A.; Alam, M.T.; Shaha, R.K.; Hossain, M.T.; Kimura, Y.; Absar, N. Purification and characterization of a Ca2+-dependent novel lectin from Nymphaea nouchali tuber with antiproliferative activities. Biosci. Rep., 2011, 31(6), 465-475. b doi: 10.1042/BSR20100126 PMID: 21291421
  43. Mondal, S.; Das, S.; Swamy, M.J. Macromolecular crowding significantly affects the conformational features and carbohydrate binding properties of CIA17, a PP2-type lectin from Coccinia indica. Biochemistry, 2022, 61(21), 2344-2357. doi: 10.1021/acs.biochem.2c00389 PMID: 36200563
  44. Sivakamavalli, J.; Park, K.; Kwak, I.S.; Vaseeharan, B. Purification and partial characterization of carbohydrate-recognition protein C-type lectin from Hemifusus pugilinus. Carbohydr. Res., 2021, 499, 108224. doi: 10.1016/j.carres.2020.108224 PMID: 33450477
  45. Mondal, S.; Swamy, M.J. Purification, biochemical/biophysical characterization and chitooligosaccharide binding to BGL24, a new PP2-type phloem exudate lectin from bottle gourd (Lagenaria siceraria). Int. J. Biol. Macromol., 2020, 164, 3656-3666. doi: 10.1016/j.ijbiomac.2020.08.246 PMID: 32890565
  46. Clement, F.; Venkatesh, Y.P. Dietary garlic (Allium sativum) lectins, ASA I and ASA II, are highly stable and immunogenic. Int. Immunopharmacol., 2010, 10(10), 1161-1169. doi: 10.1016/j.intimp.2010.06.022 PMID: 20615490
  47. Lin, P.; Ye, X.; Ng, T.B. Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochim. Biophys. Sin. (Shanghai), 2008, 40(12), 1029-1038. doi: 10.1111/j.1745-7270.2008.00488.x PMID: 19089301
  48. Sharma, A.; Ng, T.B.; Wong, J.H.; Lin, P. Purification and Characterization of a Lectin from Phaseolus vulgaris cv. (Anasazi Beans). J. Biomed. Biotechnol., 2009, 2009, 929568.
  49. Nelson, D.L.; Cox, M.N. Lehninger Principles of Biochemistry: The three dimentional structures of proteins; Macmillan Worth Publishers: New York, USA, 2001, pp. 159-202.
  50. Mandal, K.; Chakrabarti, B.; Thomson, J.; Siezen, R.J. Structure and stability of gamma-crystallins. Denaturation and proteolysis behavior. J. Biol. Chem., 1987, 262(17), 8096-8102. doi: 10.1016/S0021-9258(18)47533-3 PMID: 3298226
  51. Seifert, M.H.J.; Georgescu, J.; Ksiazek, D.; Smialowski, P.; Rehm, T.; Steipe, B.; Holak, T.A. Backbone dynamics of green fluorescent protein and the effect of histidine 148 substitution. Biochemistry, 2003, 42(9), 2500-2512. doi: 10.1021/bi026481b PMID: 12614144
  52. Ito, J.; Sugawara, S.; Tatsuta, T.; Hosono, M.; Sato, M. Catfish egg lectin enhances the cytotoxicity of sunitinib on Gb3-expressing renal cancer cells. Biomedicines, 2023, 11(8), 2317. doi: 10.3390/biomedicines11082317 PMID: 37626813
  53. Lee, J.H.; Lee, S.B.; Kim, H.; Shin, J.M.; Yoon, M.; An, H.S.; Han, J.W. Anticancer activity of mannose-specific lectin, BPL2, from marine green alga Bryopsis plumosa. Mar. Drugs, 2022, 20(12), 776. doi: 10.3390/md20120776 PMID: 36547923
  54. Huldani, H.; Rashid, A.I.; Turaev, K.N.; Opulencia, M.J.C.; Abdelbasset, W.K.; Bokov, D.O.; Mustafa, Y.F.; Al-Gazally, M.E.; Hammid, A.T.; Kadhim, M.M.; Ahmadi, S.H. Concanavalin A as a promising lectin-based anti-cancer agent: The molecular mechanisms and therapeutic potential. Cell Commun. Signal., 2022, 20(1), 167. doi: 10.1186/s12964-022-00972-7 PMID: 36289525
  55. Kheeree, N.; Sangvanich, P.; Puthong, S.; Karnchanatat, A. Antifungal and antiproliferative activities of lectin from the rhizomes of Curcuma amarissima Roscoe. Appl. Biochem. Biotechnol., 2010, 162(3), 912-925. doi: 10.1007/s12010-009-8804-8 PMID: 19838861
  56. Kenoth, R.; Sreekumar, A.K.; Sukanya, A.; Prabu, A.A.; Kamlekar, R.K. Interaction of sugar stabilised silver nanoparticles with Momordica charantia seed lectin, a type II ribosome inactivating protein. Glycoconj. J., 2023, 40(2), 179-189. doi: 10.1007/s10719-023-10107-w PMID: 36800135
  57. Jiang, H.; Wen, X.; Zhang, X.; Zhang, B. Concanavalin A inhibits human liver cancer cell migration by regulating F actin redistribution and assembly via MAPK signaling pathway. Oncol. Lett., 2022, 24(5), 405. doi: 10.3892/ol.2022.13525 PMID: 36276493
  58. Yan, Q.; Zhu, L.; Kumar, N.; Jiang, Z.; Huang, L. Characterisation of a novel monomeric lectin (AML) from Astragalus membranaceus with anti-proliferative activity. Food Chem., 2010, 122(3), 589-595. doi: 10.1016/j.foodchem.2010.03.015
  59. Wang, H.; Gao, J.; Ng, T.B. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem. Biophys. Res. Commun., 2000, 275(3), 810-816. doi: 10.1006/bbrc.2000.3373 PMID: 10973803
  60. Ryva, B.; Zhang, K.; Asthana, A.; Wong, D.; Vicioso, Y.; Parameswaran, R. Wheat germ agglutinin as a potential therapeutic agent for leukemia. Front. Oncol., 2019, 9, 100. doi: 10.3389/fonc.2019.00100 PMID: 30847305
  61. Lei, H.Y.; Chang, C.P. Lectin of concanavalin a as an anti-hepatoma therapeutic agent. J. Biomed. Sci., 2009, 16(1), 10.
  62. Ahmed, H.; Chatterjee, B.P.; Debnath, A.K. Interaction and in vivo growth inhibition of Ehrlich ascites tumor cells by jacalin. J. Biosci., 1988, 13(4), 419-424. doi: 10.1007/BF02703454
  63. Siddika, A.; Das, P.K.; Asha, S.Y.; Aktar, S.; Tareq, A.R.M.; Siddika, A.; Rakib, A.; Islam, F.; Khanam, J.A. Antiproliferative activity and apoptotic efficiency of Syzygium cumini bark methanolic extract against EAC cells in vivo. Anticancer. Agents Med. Chem., 2021, 21(6), 782-792. doi: 10.2174/1871520620666200811122137 PMID: 32781964
  64. Hinge, A.; Bajaj, M.; Limaye, L.; Surolia, A.; Kale, V. Oral administration of insulin receptor-interacting lectins leads to an enhancement in the hematopoietic stem and progenitor cell pool of mice. Stem Cells Dev., 2010, 19(2), 163-174. a doi: 10.1089/scd.2009.0128 PMID: 19580456
  65. Hinge, A.S.; Limaye, L.S.; Surolia, A.; Kale, V.P. In vitro protection of umbilical cord blood–derived primitive hematopoietic stem progenitor cell pool by mannose‐specific lectins via antioxidant mechanisms. Transfusion, 2010, 50(8), 1815-1826. b doi: 10.1111/j.1537-2995.2010.02647.x PMID: 20412533
  66. Timoshenko, A.V.; Lan, Y.; Gabius, H.J.; Lala, P.K. Immunotherapy of C3H/HeJ mammary adenocarcinoma with interleukin-2, mistletoe lectin or their combination. Eur. J. Cancer, 2001, 37(15), 1910-1920. doi: 10.1016/S0959-8049(01)00156-3 PMID: 11576848
  67. Timoshenko, A.V.; Gorudko, I.; Gabius, H.J. Lectins from Medicinal Plants: Bioeffectors with Diverse Activities. Phytochemicals – Biosynthesis, Function and Application. Recent Advances in Phytochemistry; Jetter, R., Ed.; Springer: Cham, 2014, p. 44. doi: 10.1007/978-3-319-04045-5_3
  68. Khanam, J.A.; Islam, M.F.; Jesmin, M.; Ali, M.M. Antineoplastic activity of acetone semicarbazone (ASC) against Ehrlich ascites carcinoma (EAC) bearing mice. J. Natl. Sci. Found. Sri Lanka, 2010, 38(4), 225-231. doi: 10.4038/jnsfsr.v38i4.2649
  69. Islam, F.; Raihan, O.; Chowdhury, D.; Khatun, M.; Zuberi, N.; Khatun, L.; Brishti, A.; Bahar, E. Apoptotic and antioxidant activities of methanol extract of Mussaenda roxburghii leaves. Pak. J. Pharm. Sci., 2015, 28(6), 2027-2034. PMID: 26639496

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers