Anticancer Potential of a Synthetic Quinoline, 9IV-c, by Inducing Apoptosis in A549 Cell and In vivo BALB/c Mice Models


Cite item

Full Text

Abstract

Background:In a previous work from the author of this study, the compound of 9IV-c, ((E)-2-(3,4- dimethoxystyryl)-6,7,8-trimethoxy-N-(3,4,5-trimethoxyphenyl)quinoline-4-amine) was synthesized, and the effects of potent activity on the multiple human tumor cell lines were evaluated considering the spindle formation together with the microtubule network.

Methods:Accordingly, cytotoxic activity, apoptotic effects, and the therapeutic efficiency of compound 9IV-c on A549 and C26 cell lines were investigated in this study.

Results:The compound 9IV-c demonstrated high cytotoxicity against A549 and C26 cell lines with IC50 = 1.66 and 1.21 µM, respectively. The flow cytometric analysis of the A549 cancer cell line treated with compounds 9IV-c showed that these compounds induced cell cycle arrest at the G2/M phase and apoptosis. Western blotting analysis displayed that compound 9IV-c also elevated the Bax/Bcl-2 ratio and increased the activation of caspase- 9 and -3 but not caspase -8.

Conclusion:These data presented that the intrinsic pathway was responsible for 9IV-c -induced cell apoptosis. In vivo studies demonstrated that treatment with the compound of 9IV-c at 10 mg/kg dose led to a decrease in tumor growth compared to the control group. It was found that there was not any apparent body weight loss in the period of treatment. Also, in the vital organs of the BALB/c mice, observable pathologic changes were not detected.

About the authors

Salimeh Mirzaei

Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Farhad Eisvand

Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Mojgan Nejabat

Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Razieh Ghodsi

Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences,

Email: info@benthamscience.net

Farzin Hadizadeh

Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Giordano, S.; Petrelli, A. From single- to multi-target drugs in cancer therapy: When aspecificity becomes an advantage. Curr. Med. Chem., 2008, 15(5), 422-432. doi: 10.2174/092986708783503212 PMID: 18288997
  2. Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487. doi: 10.1016/j.ejmech.2014.03.018 PMID: 24685980
  3. Al-Warhi, T.; Sabt, A.; Elkaeed, E.B.; Eldehna, W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg. Chem., 2020, 103, 104163. doi: 10.1016/j.bioorg.2020.104163 PMID: 32890989
  4. Bukhari, S.N.A.; Kumar, G.B.; Revankar, H.M.; Qin, H.L. Development of combretastatins as potent tubulin polymerization inhibitors. Bioorg. Chem., 2017, 72, 130-147. doi: 10.1016/j.bioorg.2017.04.007 PMID: 28460355
  5. Haider, K.; Rahaman, S.; Yar, M.S.; Kamal, A. Tubulin inhibitors as novel anticancer agents: An overview on patents (2013-2018). Expert Opin. Ther. Pat., 2019, 29(8), 623-641. doi: 10.1080/13543776.2019.1648433 PMID: 31353978
  6. Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghodsi, R. Design, synthesis, and biological evaluation of novel 5,6,7-trimethoxy quinolines as potential anticancer agents and tubulin polymerization inhibitors. Iran. J. Basic Med. Sci., 2020, 23(12), 1527-1537. PMID: 33489025
  7. Mirzaei, S.; Qayumov, M.; Gangi, F.; Behravan, J.; Ghodsi, R. Synthesis and biological evaluation of oxazinonaphthalene-3-one derivatives as potential anticancer agents and tubulin inhibitors. Iran. J. Basic Med. Sci., 2020, 23(11), 1388-1395. PMID: 33235695
  8. Castedo, M.; Perfettini, J.L.; Roumier, T.; Andreau, K.; Medema, R.; Kroemer, G. Cell death by mitotic catastrophe: A molecular definition. Oncogene, 2004, 23(16), 2825-2837. doi: 10.1038/sj.onc.1207528 PMID: 15077146
  9. Kamal, A.; Shaik, A.B.; Jain, N.; Kishor, C.; Nagabhushana, A.; Supriya, B.; Bharath, K.G.; Chourasiya, S.S.; Suresh, Y.; Mishra, R.K.; Addlagatta, A. Design and synthesis of pyrazole–oxindole conjugates targeting tubulin polymerization as new anticancer agents. Eur. J. Med. Chem., 2015, 92, 501-513. doi: 10.1016/j.ejmech.2013.10.077 PMID: 25599948
  10. Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghasemi, A.; Ghodsi, R. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 98, 103711. doi: 10.1016/j.bioorg.2020.103711 PMID: 32179282
  11. Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo clinic proceedings; Elsevier, 2008.
  12. El-Shafey, H.W.; Gomaa, R.M.; El-Messery, S.M.; Goda, F.E. Synthetic approaches, anticancer potential, HSP90 inhibition, multitarget evaluation, molecular modeling and apoptosis mechanistic study of thioquinazolinone skeleton: Promising antibreast cancer agent. Bioorg. Chem., 2020, 101, 103987. doi: 10.1016/j.bioorg.2020.103987 PMID: 32540783
  13. Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823. doi: 10.1038/nrc1951 PMID: 16990858
  14. Nejabat, M.; Soltani, F.; Alibolandi, M.; Nejabat, M.; Abnous, K.; Hadizadeh, F.; Ramezani, M. Smac peptide and doxorubicin-encapsulated nanoparticles: Design, preparation, computational molecular approach and in vitro studies on cancer cells. J. Biomol. Struct. Dyn., 2022, 40(2), 807-819. doi: 10.1080/07391102.2020.1819420 PMID: 32912085
  15. Eisvand, F.; Imenshahidi, M.; Ghasemzadeh, R.M.; Tabatabaei, Y.S.A.; Rameshrad, M.; Razavi, B.M.; Hosseinzadeh, H. Cardioprotective effects of alpha‐mangostin on doxorubicin‐induced cardiotoxicity in rats. Phytother. Res., 2022, 36(1), 506-524. doi: 10.1002/ptr.7356 PMID: 34962009
  16. Khademi, Z.; Lavaee, P.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohydr. Polym., 2020, 248, 116735. doi: 10.1016/j.carbpol.2020.116735 PMID: 32919550
  17. Horita, N.; Yamamoto, M.; Sato, T.; Tsukahara, T.; Nagakura, H.; Tashiro, K.; Shibata, Y.; Watanabe, H.; Nagai, K.; Inoue, M.; Nakashima, K.; Ushio, R.; Shinkai, M.; Kudo, M.; Kaneko, T. Topotecan for relapsed small-cell lung cancer: Systematic review and meta-analysis of 1347 patients. Sci. Rep., 2015, 5(1), 15437. doi: 10.1038/srep15437 PMID: 26486755
  18. de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet., 2018, 57(10), 1229-1254. doi: 10.1007/s40262-018-0644-7 PMID: 29520731
  19. Oh, I.J.; Kim, K.S.; Park, C.K.; Kim, Y.C.; Lee, K.H.; Jeong, J.H.; Kim, S.Y.; Lee, J.E.; Shin, K.C.; Jang, T.W.; Lee, H.K.; Lee, K.Y.; Lee, S.Y. Belotecan/cisplatin versus etoposide/cisplatin in previously untreated patients with extensive-stage small cell lung carcinoma: A multi-center randomized phase III trial. BMC Cancer, 2016, 16(1), 690. doi: 10.1186/s12885-016-2741-z PMID: 27566413
  20. Dickson, M.A.; Schwartz, G.K. Development of cell-cycle inhibitors for cancer therapy. Curr. Oncol., 2009, 16(2), 36-43. doi: 10.3747/co.v16i2.428 PMID: 19370178
  21. Williams, G.H.; Stoeber, K. The cell cycle and cancer. J. Pathol., 2012, 226(2), 352-364. doi: 10.1002/path.3022 PMID: 21990031
  22. Chiu, C.C.; Chou, H.L.; Chen, B.H.; Chang, K.F.; Tseng, C.H.; Fong, Y.; Fu, T.F.; Chang, H.W.; Wu, C.Y.; Tsai, E.M.; Lin, S.R.; Chen, Y.L. BPIQ, a novel synthetic quinoline derivative, inhibits growth and induces mitochondrial apoptosis of lung cancer cells in vitro and in zebrafish xenograft model. BMC Cancer, 2015, 15(1), 962. doi: 10.1186/s12885-015-1970-x PMID: 26672745
  23. Fulda, S.; Debatin, K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006, 25(34), 4798-4811. doi: 10.1038/sj.onc.1209608 PMID: 16892092
  24. Ghobrial, I.M.; Witzig, T.E.; Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin., 2005, 55(3), 178-194. doi: 10.3322/canjclin.55.3.178 PMID: 15890640
  25. Alnemri, E.S.; Livingston, D.J.; Nicholson, D.W.; Salvesen, G.; Thornberry, N.A.; Wong, W.W.; Yuan, J. Human ICE/CED-3 protease nomenclature. Cell, 1996, 87(2), 171. doi: 10.1016/S0092-8674(00)81334-3 PMID: 8861900
  26. Choi, S.; Singh, S.V. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res., 2005, 65(5), 2035-2043. doi: 10.1158/0008-5472.CAN-04-3616 PMID: 15753404
  27. Gervais, F.G.; Xu, D.; Robertson, G.S.; Vaillancourt, J.P.; Zhu, Y.; Huang, J.; LeBlanc, A.; Smith, D.; Rigby, M.; Shearman, M.S.; Clarke, E.E.; Zheng, H.; Van Der Ploeg, L.H.T.; Ruffolo, S.C.; Thornberry, N.A.; Xanthoudakis, S.; Zamboni, R.J.; Roy, S.; Nicholson, D.W. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic A β peptide formation. Cell, 1999, 97(3), 395-406. doi: 10.1016/S0092-8674(00)80748-5 PMID: 10319819
  28. Huang, K.; Zhang, J.; O’Neill, K.L.; Gurumurthy, C.B.; Quadros, R.M.; Tu, Y.; Luo, X. Cleavage by caspase 8 and mitochondrial membrane association activate the BH3-only protein Bid during TRAIL-induced apoptosis. J. Biol. Chem., 2016, 291(22), 11843-11851. doi: 10.1074/jbc.M115.711051 PMID: 27053107
  29. Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 1999, 6(2), 99-104. doi: 10.1038/sj.cdd.4400476 PMID: 10200555
  30. Salvesen, G.S. Caspases: Opening the boxes and interpreting the arrows. Cell Death Differ., 2002, 9(1), 3-5. doi: 10.1038/sj.cdd.4400963 PMID: 11803369
  31. Oltval, Z.N.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell, 1993, 74(4), 609-619.
  32. Zhu, L.; Han, M.B.; Gao, Y.; Wang, H.; Dai, L.; Wen, Y.; Na, L.X. Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol. Med. Rep., 2015, 12(1), 1151-1156. doi: 10.3892/mmr.2015.3450 PMID: 25760477
  33. Li, H.; Zhu, H.; Xu, C.; Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998, 94(4), 491-501. doi: 10.1016/S0092-8674(00)81590-1 PMID: 9727492
  34. Sahu, U.; Sidhar, H.; Ghate, P.S.; Advirao, G.M.; Raghavan, S.C.; Giri, R.K. A novel anticancer agent, 8-methoxypyrimido 4′ 5′ 4, 5 thieno (2, 3-b) quinoline-4 (3H)-one induces neuro 2a neuroblastoma cell death through p53-dependent, caspase-dependent and-independent apoptotic pathways. PLoS One, 2013, 8(6), e66430. doi: 10.1371/journal.pone.0066430 PMID: 23824039
  35. Balaji, S.; Neupane, R.; Malla, S.; Khupse, R.; Amawi, H.; Kumari, S.; Tukaramrao, D.B.; Chattopadhyay, S.; Ashby, C.R., Jr; Boddu, S.H.S.; Karthikeyan, C.; Trivedi, P.; Raman, D.; Tiwari, A.K. IND-2, a quinoline derivative, inhibits the proliferation of prostate cancer cells by inducing oxidative stress, apoptosis and inhibiting topoisomerase II. Life, 2022, 12(11), 1879. doi: 10.3390/life12111879 PMID: 36431014
  36. Zhou, Q.; McCracken, M.A.; Strobl, J.S. Control of mammary tumor cell growth in vitro by novel cell differentiation and apoptosis agents. Breast Cancer Res. Treat., 2002, 75(2), 107-117. doi: 10.1023/A:1019698807564 PMID: 12243503
  37. He, R.; Xu, B.; Ping, L.; Lv, X. Structural optimization towards promising β-methyl-4-acrylamido quinoline derivatives as PI3K/mTOR dual inhibitors for anti-cancer therapy: The in vitro and in vivo biological evaluation. Eur. J. Med. Chem., 2021, 214, 113249. doi: 10.1016/j.ejmech.2021.113249 PMID: 33561608

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers