A Comprehensive Review on Nanoparticles as a Targeted Delivery System for the Treatment of Lung Cancer


Cite item

Full Text

Abstract

The second most common type of cancer is lung cancer, impacting the human population. Lung cancer is treated with a number of surgical and non-surgical therapies, including radiation, chemotherapy, and photodynamic treatment. However, the bulk of these procedures are costly, difficult, and hostile to patients. Chemotherapy is distinguished by inadequate tumour targeting, low drug solubility, and insufficient drug transport to the tumour site. In order to deal with the issues related to chemotherapy, extensive efforts are underway to develop and investigate various types of nanoparticles, both organic and inorganic, for the treatment of lung cancer. The subject of this review is the advancements in research pertaining to active targeted lung cancer nano-drug delivery systems treatment, with a specific emphasis on receptors or targets. The findings of this study are expected to assist biomedical researchers in utilizing nanoparticles [NPs] as innovative tools for lung cancer treatment, offering new methods for delivering drugs and reliable solid ligands.

About the authors

Twinkle Gupta

Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Avinash Varanwal

Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Priyanshu Nema

Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Sakshi Soni

Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Arun Iyer

Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University

Email: info@benthamscience.net

Ratnesh Das

Department of Chemistry, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Vandana Soni

Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Email: info@benthamscience.net

Sushil Kashaw

Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)

Author for correspondence.
Email: info@benthamscience.net

References

  1. WHO: https://www.who.int/2020
  2. American cancer society: https://www.cancer.org/cancer/types/lung-cancer.html
  3. SEER Data: https://seer.cancer.gov/statfacts/html/lungb.html
  4. Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070. doi: 10.1038/nature08956 PMID: 20305636
  5. Krug, L.M.; Pietanza, M.C.; Kris, M.G. Small cell and other neuroendocrine tumors of the lung. DeVita, V.T.; Lawrence, T.S.; Rosenberg, S.A. In: DeVita, Hellman and Rosenberg’s Cancer, Principle and Practice of Oncology; 9th edn.; Wolters Kluwer: Lippincott Williams & Wilkins: Philadelphia, 2011; p. 848-870.
  6. What Are Lung Carcinoid Tumors? Available from: https://www.cancer.org/cancer/lung-carcinoid-tumor/about/what-is-lung-carcinoid-tumor.html
  7. Lemjabbar-Alaouia, H.; Hassan, O. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta, 2015, 1856(2), 189-210. doi: 10.1016/j.bbcan.2015.08.002
  8. Shapiro, J.A.; Jacobs, E.J.; Thun, M.J. Cigar smoking in men and risk of death from tobacco-related cancers. J. Natl. Cancer Inst., 2000, 92(4), 333-337. doi: 10.1093/jnci/92.4.333 PMID: 10675383
  9. Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med., 2011, 32(4), 605-644. doi: 10.1016/j.ccm.2011.09.001 PMID: 22054876
  10. Blanco, R. A gene-alteration profile of human lung cancer cell lines. Hum. Mutat., 2009, 30(8), 1199-1206. doi: 10.1002/humu.21028
  11. Kwun, M. Molecular pathogenesis of lung cancer. J. Thorac. Cardiovasc. Surg., 1999, 118(6), 1136-1152. doi: 10.1016/S0022-5223(99)70121-2
  12. Kazazi-Hyseni, F.; Beijnen, J.H.; Schellens, J.H.M. Bevacizumab. Oncologist, 2010, 15(8), 819-825. doi: 10.1634/theoncologist.2009-0317 PMID: 20688807
  13. Grothey, A.; Galanis, E. Targeting angiogenesis: Progress with anti-VEGF treatment with large molecules. Nat. Rev. Clin. Oncol., 2009, 6(9), 507-518. doi: 10.1038/nrclinonc.2009.110 PMID: 19636328
  14. AMG 510 First to Inhibit "Undruggable" KRAS. Cancer Discov., 2019, 9(8), 988-989. doi: 10.1158/2159-8290.CD-NB2019-073
  15. Li, Z.; Xu, M.; Xing, S.; Ho, W.T.; Ishii, T.; Li, Q.; Fu, X.; Zhao, Z.J. Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J. Biol. Chem., 2007, 282(6), 3428-3432. doi: 10.1074/jbc.C600277200 PMID: 17178722
  16. Giotrif 30 mg film-coated tablets. Available from: https://www.medicines.org.uk/emc/product/7701/smpc
  17. Gefitinib. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Gefitinib#section=EMA-Drug-Information
  18. TAGRISSO. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208065s026lbl.pdf
  19. Neijssen, J.; Cardoso, R.M.F.; Chevalier, K.M.; Wiegman, L.; Valerius, T.; Anderson, G.M.; Moores, S.L.; Schuurman, J.; Parren, P.W.H.I.; Strohl, W.R.; Chiu, M.L. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem., 2021, 296, 100641. doi: 10.1016/j.jbc.2021.100641 PMID: 33839159
  20. Grugan, K.D.; Dorn, K.; Jarantow, S.W.; Bushey, B.S.; Pardinas, J.R.; Laquerre, S.; Moores, S.L.; Chiu, M.L. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs, 2017, 9(1), 114-126. doi: 10.1080/19420862.2016.1249079 PMID: 27786612
  21. Necitumumab is a monoclonal antibody used to treat metastatic squamous non-small cell lung cancer. Available from: https://go.drugbank.com/drugs/DB09559
  22. Heigener, D.F.; Reck, M. Crizotinib. Recent Results Cancer Res., 2018, 211, 57-65. doi: 10.1007/978-3-319-91442-8_4 PMID: 30069759
  23. Ceritinib. Available from: https://go.drugbank.com/drugs/DB09063
  24. Alectinib. Available from: https://go.drugbank.com/drugs/DB11363
  25. Huang, W.S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T.A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S.D.; Ning, Y.; Xu, Q.; Moran, L.E.; Mohemmad, Q.K.; Jang, H.G.; Clackson, T.; Narasimhan, N.I.; Rivera, V.M.; Zhu, X.; Dalgarno, D.; Shakespeare, W.C. Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J. Med. Chem., 2016, 59(10), 4948-4964. doi: 10.1021/acs.jmedchem.6b00306 PMID: 27144831
  26. Lorlatinib. Available from: https://go.drugbank.com/drugs/DB12130
  27. Rolfo, C.; Ruiz, R.; Giovannetti, E.; Gil-Bazo, I.; Russo, A.; Passiglia, F.; Giallombardo, M.; Peeters, M.; Raez, L. Entrectinib: A potent new TRK, ROS1, and ALK inhibitor. Expert Opin. Investig. Drugs, 2015, 24(11), 1493-1500. doi: 10.1517/13543784.2015.1096344 PMID: 26457764
  28. Dabrafenib.. Available from: https://go.drugbank.com/drugs/DB08912
  29. Trametinib. https://go.drugbank.com/drugs/DB08911
  30. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213246s000lbl.pdf
  31. Pralsetinib. https://go.drugbank.com/drugs/DB15822
  32. Capmatinib. https://pubchem.ncbi.nlm.nih.gov/compound/Capmatinib
  33. Tepotinib. https://go.drugbank.com/drugs/DB15133
  34. Drilon, A.; Nagasubramanian, R.; Blake, J.F.; Ku, N.; Tuch, B.B.; Ebata, K.; Smith, S.; Lauriault, V.; Kolakowski, G.R.; Brandhuber, B.J.; Larsen, P.D.; Bouhana, K.S.; Winski, S.L.; Hamor, R.; Wu, W.I.; Parker, A.; Morales, T.H.; Sullivan, F.X.; DeWolf, W.E.; Wollenberg, L.A.; Gordon, P.R.; Douglas-Lindsay, D.N.; Scaltriti, M.; Benayed, R.; Raj, S.; Hanusch, B.; Schram, A.M.; Jonsson, P.; Berger, M.F.; Hechtman, J.F.; Taylor, B.S.; Andrews, S.; Rothenberg, S.M.; Hyman, D.M. A Next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion–positive solid tumors. Cancer Discov., 2017, 7(9), 963-972. doi: 10.1158/2159-8290.CD-17-0507 PMID: 28578312
  35. Vallières, E.; Shepherd, F.A.; Crowley, J.; Van Houtte, P.; Postmus, P.E.; Carney, D.; Chansky, K.; Shaikh, Z.; Goldstraw, P. The IASLC lung cancer staging project: Proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. J. Thorac. Oncol., 2009, 4(9), 1049-1059. doi: 10.1097/JTO.0b013e3181b27799 PMID: 19652623
  36. Yang, L.; Wang, S. Evaluation of the 7th and 8th editions of the AJCC/UICC TNM staging systems for lung cancer in a large North American cohort In: Oncotarget; , 2017.
  37. Sharma, P.; Mehtaa, M.; Daljeet, S.S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720. doi: 10.1016/j.cbi.2019.06.033
  38. Vanza, D. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J. Drug Deliv. Sci. Technol., 2020, 60, 10207. doi: 10.1016/j.jddst.2020.102070
  39. Vengurlekar, S.; Chaturvedi, C.S. Nano Drug Delivery Strategies for the Treatment of Cancers book; Academic press, 2021, pp. 1-3. doi: 10.1016/B978-0-12-819793-6.00005-9
  40. Kumar, K.; Chawla, R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J. Drug Deliv. Sci. Technol., 2021, 65, 102677. doi: 10.1016/j.jddst.2021.102677
  41. Aishah, S.; Razak, A. Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: An overview; MDPI, 2021, pp. 6-18. doi: 10.3390/cancers13030400
  42. Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394. doi: 10.1016/j.heliyon.2022.e09394
  43. Khodabandehloo, H.; Zahednasab, H.; Ashrafi, H, A. Nanocarriers usage for drug delivery in cancer therapy. Iran. J. Cancer Prev., 2016, In Press, e3966. doi: 10.17795/ijcp-3966 PMID: 27482328
  44. Lisa, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286. doi: 10.3389/fphar.2015.00286
  45. Skupin-Mrugalska, P. Liposome-Based Drug Delivery for Lung Cancer; Academic press, 2019, pp. 126-127. doi: 10.1016/B978-0-12-815720-6.00006-X
  46. Lin, C. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci. Rep., 2017, 7(1), 1097. doi: 10.1038/s41598-017-00957-4
  47. Maruyama, K.; Ishida, O.; Takizawa, T.; Moribe, K. Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev., 1999, 40(1-2), 89-102. doi: 10.1016/S0169-409X(99)00042-3 PMID: 10837782
  48. Berlin Grace, V.M.; Viswanathan, S. Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J. Drug Deliv. Sci. Technol., 2017, 39, 223-236. doi: 10.1016/j.jddst.2017.04.005
  49. De, M. Applications of nanoparticles in biology. Adv. Mater., 2008, 20(22), 4225-4241. doi: 10.1002/adma.200703183
  50. Mohanraj, V.J.; Chen, Y. Nanoparticles – a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
  51. Wang, G.; Wang, Z.; Li, C.; Duan, G.; Wang, K.; Li, Q.; Tao, T. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed. Pharmacother., 2018, 106, 275-284. doi: 10.1016/j.biopha.2018.06.137 PMID: 29966971
  52. Humblet, Y. Cetuximab: An IgG1 monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumours. Expert Opin. Pharmacother., 2004, 5(7), 1621-1633. doi: 10.1517/14656566.5.7.1621 PMID: 15212612
  53. Jeffrey, H.; Von Daniel, H. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med., 2012, 4(128), 128ra39.
  54. Carboplatin and paclitaxel albumin-stabilized nanoparticle formulation followed by radiation therapy and erlotinib in treating patients with stage iii non-small cell lung cancer that cannot be removed by surgery. Patent NCT00553462, 2018.
  55. Owen, D.H.; Williams, T.M.; Bertino, E.M.; Mo, X.; Webb, A.; Schweitzer, C.; Liu, T.; Roychowdhury, S.; Timmers, C.D.; Otterson, G.A. Homologous recombination and DNA repair mutations in patients treated with carboplatin and nab-paclitaxel for metastatic non-small cell lung cancer. Lung Cancer, 2019, 134, 167-173. doi: 10.1016/j.lungcan.2019.06.017 PMID: 31319977
  56. A phase 2 study of CRLX101(NLG207) in patients with advanced non-small cell lung cancer. Patent NCT01380769, 2022.
  57. Rizvi, N.A.; Riely, G.J.; Azzoli, C.G.; Miller, V.A.; Ng, K.K.; Fiore, J.; Chia, G.; Brower, M.; Heelan, R.; Hawkins, M.J.; Kris, M.G. Phase I/II trial of weekly intravenous 130-nm albumin-bound paclitaxel as initial chemotherapy in patients with stage IV non-small-cell lung cancer. J. Clin. Oncol., 2008, 26(4), 639-643. doi: 10.1200/JCO.2007.10.8605 PMID: 18235124
  58. Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247. doi: 10.1186/1556-276X-9-247 PMID: 24994950
  59. Pooja, M.; Saharan, A. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int., 2021, 2021, 8844030. doi: 10.1155/2021/8844030
  60. Zhong, Q.; Bielski, E.R.; Rodrigues, L.S.; Brown, M.R.; Reineke, J.J.; da Rocha, S.R.P. Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol. Pharm., 2016, 13(7), 2363-2375. doi: 10.1021/acs.molpharmaceut.6b00126 PMID: 27253493
  61. Yoon, A.R.; Kasala, D.; Li, Y.; Hong, J.; Lee, W.; Jung, S.- J.; Yun, C.-O. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J. Control. Release, 2016, 231, 2e16. doi: 10.1016/j.jconrel.2016.02.046
  62. Park, T.; Jeong, J.; Kim, S. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev., 2006, 58(4), 467-486. doi: 10.1016/j.addr.2006.03.007 PMID: 16781003
  63. De, M. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics, 2018, 10, 231.
  64. Valdivia, L.; García-Hevia, L. Solid Lipid Particles for Lung Metastasis Treatment Pharmaceutical, 2021, 13(1), 93. doi: 10.3390/pharmaceutics13010093
  65. Jarvi, M.; Krishnan, V.; Mitragotri, S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng. Transl. Med., 2018, 5-7. doi: 10.1002/btm2.10122
  66. Salah, L.S.; Ouslimani, N. Carbon nanotubes (CNTs) from Synthesis to Functionalized (CNTs) using conventional and new chemical approaches. J. Nanomater., 2021, 2021. doi: 10.1155/2021/4972770
  67. Mohamed, F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198. doi: 10.1111/jphp.13098
  68. Daniel, R.; Nitin, J. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410. doi: 10.1038/s41467-018-03705-y
  69. Maeda, H.; Matsumura, Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst., 1989, 6(3), 193-210. PMID: 2692843
  70. Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603. doi: 10.1126/science.8128245 PMID: 8128245
  71. Mansour, A.M.; Drevs, J.; Esser, N. A new approach for the treatment of malignant melanoma: Enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res., 2003, 63(14), 4062-4066.
  72. Nomura, T.; Saikawa, A.; Morita, S.; Sakaeda, K.T.; Yamashita, F.; Honda, K.; Takakura, Y.; Hashida, M. Pharmacokinetic characteristics and therapeutic effects of mitomycin C-dextran conjugates after intratumoural injection. J. Control. Release, 1998, 52(3), 239-252. doi: 10.1016/S0168-3659(97)00185-5 PMID: 9743445
  73. Li, S.; Schmitz, K.R.; Jeffrey, P.D.; Wiltzius, J.J.W.; Kussie, P.; Ferguson, K.M. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell, 2005, 7(4), 301-311. doi: 10.1016/j.ccr.2005.03.003 PMID: 15837620
  74. Cai, Z.; Xu, D. Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol. Biosyst., 2015, 11, 791-800. doi: 10.1039/C4MB00659C
  75. Chen, D-W.; Cheng, L.; Huang, F.; Cheng, L.; Zhu, Y.; Hu, Q.; Li, L.; Wei, L. GE11-modified liposomes for non-small cell lung cancer targeting: Preparation, ex vitro and in vivo evaluation. Int. J. Nanomedicine, 2014, 9, 921-935. doi: 10.2147/IJN.S53310 PMID: 24611009
  76. Askarian, S.; Abnous, K.; Taghavi, S.; Oskuee, R.K.; Ramezani, M. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids Surf. B Biointerfaces, 2015, 136, 355-364. doi: 10.1016/j.colsurfb.2015.09.023 PMID: 26433348
  77. Yu, L.; Hu, Y.; Duan, J.; Yang, X-D. A novel approach of targeted immunotherapy against adenocarcinoma cells with nanoparticles modified by CD16 and MUC1 aptamers. J. Nanomater., 2015, 2015, 1-10. doi: 10.1155/2015/316968
  78. Nagano, O.; Saya, H. Mechanism and biological significance of CD44 cleavage. Cancer Sci., 2004, 95(12), 930-935. doi: 10.1111/j.1349-7006.2004.tb03179.x PMID: 15596040
  79. Wang, S.J.; Huo, Z.J.; Liu, K.; Yu, N.; Ma, Y.; Qin, Y-H.; Li, X-C.; Yu, J-M.; Wang, Z-Q. Ligand-conjugated pH-sensitive polymeric micelles for the targeted delivery of gefitinib in lung cancers. RSC Advances, 2015, 5(89), 73184-73193. doi: 10.1039/C5RA09931E
  80. Muthukumar, T.; Chamundeeswari, M.; Prabhavathi, S.; Gurunathan, B.; Chandhuru, J.; Sastry, T.P. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells. Eur. J. Pharm. Biopharm., 2014, 88(3), 730-736. doi: 10.1016/j.ejpb.2014.09.011 PMID: 25305584
  81. Rosière, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm., 2018, 15(3), 899-910. doi: 10.1021/acs.molpharmaceut.7b00846 PMID: 29341619

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers