A Comprehensive Review on Nanoparticles as a Targeted Delivery System for the Treatment of Lung Cancer
- Authors: Gupta T.1, Varanwal A.1, Nema P.1, Soni S.1, Iyer A.2, Das R.3, Soni V.1, Kashaw S.1
-
Affiliations:
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University
- Department of Chemistry, Dr. Harisingh Gour University (A Central University)
- Issue: Vol 24, No 3 (2024)
- Pages: 157-168
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644096
- DOI: https://doi.org/10.2174/0118715206257442231109202235
- ID: 644096
Cite item
Full Text
Abstract
The second most common type of cancer is lung cancer, impacting the human population. Lung cancer is treated with a number of surgical and non-surgical therapies, including radiation, chemotherapy, and photodynamic treatment. However, the bulk of these procedures are costly, difficult, and hostile to patients. Chemotherapy is distinguished by inadequate tumour targeting, low drug solubility, and insufficient drug transport to the tumour site. In order to deal with the issues related to chemotherapy, extensive efforts are underway to develop and investigate various types of nanoparticles, both organic and inorganic, for the treatment of lung cancer. The subject of this review is the advancements in research pertaining to active targeted lung cancer nano-drug delivery systems treatment, with a specific emphasis on receptors or targets. The findings of this study are expected to assist biomedical researchers in utilizing nanoparticles [NPs] as innovative tools for lung cancer treatment, offering new methods for delivering drugs and reliable solid ligands.
About the authors
Twinkle Gupta
Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Avinash Varanwal
Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Priyanshu Nema
Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Sakshi Soni
Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Arun Iyer
Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University
Email: info@benthamscience.net
Ratnesh Das
Department of Chemistry, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Vandana Soni
Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Sushil Kashaw
Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Author for correspondence.
Email: info@benthamscience.net
References
- WHO: https://www.who.int/2020
- American cancer society: https://www.cancer.org/cancer/types/lung-cancer.html
- SEER Data: https://seer.cancer.gov/statfacts/html/lungb.html
- Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070. doi: 10.1038/nature08956 PMID: 20305636
- Krug, L.M.; Pietanza, M.C.; Kris, M.G. Small cell and other neuroendocrine tumors of the lung. DeVita, V.T.; Lawrence, T.S.; Rosenberg, S.A. In: DeVita, Hellman and Rosenbergs Cancer, Principle and Practice of Oncology; 9th edn.; Wolters Kluwer: Lippincott Williams & Wilkins: Philadelphia, 2011; p. 848-870.
- What Are Lung Carcinoid Tumors? Available from: https://www.cancer.org/cancer/lung-carcinoid-tumor/about/what-is-lung-carcinoid-tumor.html
- Lemjabbar-Alaouia, H.; Hassan, O. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta, 2015, 1856(2), 189-210. doi: 10.1016/j.bbcan.2015.08.002
- Shapiro, J.A.; Jacobs, E.J.; Thun, M.J. Cigar smoking in men and risk of death from tobacco-related cancers. J. Natl. Cancer Inst., 2000, 92(4), 333-337. doi: 10.1093/jnci/92.4.333 PMID: 10675383
- Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med., 2011, 32(4), 605-644. doi: 10.1016/j.ccm.2011.09.001 PMID: 22054876
- Blanco, R. A gene-alteration profile of human lung cancer cell lines. Hum. Mutat., 2009, 30(8), 1199-1206. doi: 10.1002/humu.21028
- Kwun, M. Molecular pathogenesis of lung cancer. J. Thorac. Cardiovasc. Surg., 1999, 118(6), 1136-1152. doi: 10.1016/S0022-5223(99)70121-2
- Kazazi-Hyseni, F.; Beijnen, J.H.; Schellens, J.H.M. Bevacizumab. Oncologist, 2010, 15(8), 819-825. doi: 10.1634/theoncologist.2009-0317 PMID: 20688807
- Grothey, A.; Galanis, E. Targeting angiogenesis: Progress with anti-VEGF treatment with large molecules. Nat. Rev. Clin. Oncol., 2009, 6(9), 507-518. doi: 10.1038/nrclinonc.2009.110 PMID: 19636328
- AMG 510 First to Inhibit "Undruggable" KRAS. Cancer Discov., 2019, 9(8), 988-989. doi: 10.1158/2159-8290.CD-NB2019-073
- Li, Z.; Xu, M.; Xing, S.; Ho, W.T.; Ishii, T.; Li, Q.; Fu, X.; Zhao, Z.J. Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J. Biol. Chem., 2007, 282(6), 3428-3432. doi: 10.1074/jbc.C600277200 PMID: 17178722
- Giotrif 30 mg film-coated tablets. Available from: https://www.medicines.org.uk/emc/product/7701/smpc
- Gefitinib. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Gefitinib#section=EMA-Drug-Information
- TAGRISSO. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208065s026lbl.pdf
- Neijssen, J.; Cardoso, R.M.F.; Chevalier, K.M.; Wiegman, L.; Valerius, T.; Anderson, G.M.; Moores, S.L.; Schuurman, J.; Parren, P.W.H.I.; Strohl, W.R.; Chiu, M.L. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem., 2021, 296, 100641. doi: 10.1016/j.jbc.2021.100641 PMID: 33839159
- Grugan, K.D.; Dorn, K.; Jarantow, S.W.; Bushey, B.S.; Pardinas, J.R.; Laquerre, S.; Moores, S.L.; Chiu, M.L. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs, 2017, 9(1), 114-126. doi: 10.1080/19420862.2016.1249079 PMID: 27786612
- Necitumumab is a monoclonal antibody used to treat metastatic squamous non-small cell lung cancer. Available from: https://go.drugbank.com/drugs/DB09559
- Heigener, D.F.; Reck, M. Crizotinib. Recent Results Cancer Res., 2018, 211, 57-65. doi: 10.1007/978-3-319-91442-8_4 PMID: 30069759
- Ceritinib. Available from: https://go.drugbank.com/drugs/DB09063
- Alectinib. Available from: https://go.drugbank.com/drugs/DB11363
- Huang, W.S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T.A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S.D.; Ning, Y.; Xu, Q.; Moran, L.E.; Mohemmad, Q.K.; Jang, H.G.; Clackson, T.; Narasimhan, N.I.; Rivera, V.M.; Zhu, X.; Dalgarno, D.; Shakespeare, W.C. Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J. Med. Chem., 2016, 59(10), 4948-4964. doi: 10.1021/acs.jmedchem.6b00306 PMID: 27144831
- Lorlatinib. Available from: https://go.drugbank.com/drugs/DB12130
- Rolfo, C.; Ruiz, R.; Giovannetti, E.; Gil-Bazo, I.; Russo, A.; Passiglia, F.; Giallombardo, M.; Peeters, M.; Raez, L. Entrectinib: A potent new TRK, ROS1, and ALK inhibitor. Expert Opin. Investig. Drugs, 2015, 24(11), 1493-1500. doi: 10.1517/13543784.2015.1096344 PMID: 26457764
- Dabrafenib.. Available from: https://go.drugbank.com/drugs/DB08912
- Trametinib. https://go.drugbank.com/drugs/DB08911
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213246s000lbl.pdf
- Pralsetinib. https://go.drugbank.com/drugs/DB15822
- Capmatinib. https://pubchem.ncbi.nlm.nih.gov/compound/Capmatinib
- Tepotinib. https://go.drugbank.com/drugs/DB15133
- Drilon, A.; Nagasubramanian, R.; Blake, J.F.; Ku, N.; Tuch, B.B.; Ebata, K.; Smith, S.; Lauriault, V.; Kolakowski, G.R.; Brandhuber, B.J.; Larsen, P.D.; Bouhana, K.S.; Winski, S.L.; Hamor, R.; Wu, W.I.; Parker, A.; Morales, T.H.; Sullivan, F.X.; DeWolf, W.E.; Wollenberg, L.A.; Gordon, P.R.; Douglas-Lindsay, D.N.; Scaltriti, M.; Benayed, R.; Raj, S.; Hanusch, B.; Schram, A.M.; Jonsson, P.; Berger, M.F.; Hechtman, J.F.; Taylor, B.S.; Andrews, S.; Rothenberg, S.M.; Hyman, D.M. A Next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusionpositive solid tumors. Cancer Discov., 2017, 7(9), 963-972. doi: 10.1158/2159-8290.CD-17-0507 PMID: 28578312
- Vallières, E.; Shepherd, F.A.; Crowley, J.; Van Houtte, P.; Postmus, P.E.; Carney, D.; Chansky, K.; Shaikh, Z.; Goldstraw, P. The IASLC lung cancer staging project: Proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. J. Thorac. Oncol., 2009, 4(9), 1049-1059. doi: 10.1097/JTO.0b013e3181b27799 PMID: 19652623
- Yang, L.; Wang, S. Evaluation of the 7th and 8th editions of the AJCC/UICC TNM staging systems for lung cancer in a large North American cohort In: Oncotarget; , 2017.
- Sharma, P.; Mehtaa, M.; Daljeet, S.S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309, 108720. doi: 10.1016/j.cbi.2019.06.033
- Vanza, D. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J. Drug Deliv. Sci. Technol., 2020, 60, 10207. doi: 10.1016/j.jddst.2020.102070
- Vengurlekar, S.; Chaturvedi, C.S. Nano Drug Delivery Strategies for the Treatment of Cancers book; Academic press, 2021, pp. 1-3. doi: 10.1016/B978-0-12-819793-6.00005-9
- Kumar, K.; Chawla, R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J. Drug Deliv. Sci. Technol., 2021, 65, 102677. doi: 10.1016/j.jddst.2021.102677
- Aishah, S.; Razak, A. Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: An overview; MDPI, 2021, pp. 6-18. doi: 10.3390/cancers13030400
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394. doi: 10.1016/j.heliyon.2022.e09394
- Khodabandehloo, H.; Zahednasab, H.; Ashrafi, H, A. Nanocarriers usage for drug delivery in cancer therapy. Iran. J. Cancer Prev., 2016, In Press, e3966. doi: 10.17795/ijcp-3966 PMID: 27482328
- Lisa, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286. doi: 10.3389/fphar.2015.00286
- Skupin-Mrugalska, P. Liposome-Based Drug Delivery for Lung Cancer; Academic press, 2019, pp. 126-127. doi: 10.1016/B978-0-12-815720-6.00006-X
- Lin, C. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci. Rep., 2017, 7(1), 1097. doi: 10.1038/s41598-017-00957-4
- Maruyama, K.; Ishida, O.; Takizawa, T.; Moribe, K. Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev., 1999, 40(1-2), 89-102. doi: 10.1016/S0169-409X(99)00042-3 PMID: 10837782
- Berlin Grace, V.M.; Viswanathan, S. Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J. Drug Deliv. Sci. Technol., 2017, 39, 223-236. doi: 10.1016/j.jddst.2017.04.005
- De, M. Applications of nanoparticles in biology. Adv. Mater., 2008, 20(22), 4225-4241. doi: 10.1002/adma.200703183
- Mohanraj, V.J.; Chen, Y. Nanoparticles a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
- Wang, G.; Wang, Z.; Li, C.; Duan, G.; Wang, K.; Li, Q.; Tao, T. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed. Pharmacother., 2018, 106, 275-284. doi: 10.1016/j.biopha.2018.06.137 PMID: 29966971
- Humblet, Y. Cetuximab: An IgG1 monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumours. Expert Opin. Pharmacother., 2004, 5(7), 1621-1633. doi: 10.1517/14656566.5.7.1621 PMID: 15212612
- Jeffrey, H.; Von Daniel, H. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med., 2012, 4(128), 128ra39.
- Carboplatin and paclitaxel albumin-stabilized nanoparticle formulation followed by radiation therapy and erlotinib in treating patients with stage iii non-small cell lung cancer that cannot be removed by surgery. Patent NCT00553462, 2018.
- Owen, D.H.; Williams, T.M.; Bertino, E.M.; Mo, X.; Webb, A.; Schweitzer, C.; Liu, T.; Roychowdhury, S.; Timmers, C.D.; Otterson, G.A. Homologous recombination and DNA repair mutations in patients treated with carboplatin and nab-paclitaxel for metastatic non-small cell lung cancer. Lung Cancer, 2019, 134, 167-173. doi: 10.1016/j.lungcan.2019.06.017 PMID: 31319977
- A phase 2 study of CRLX101(NLG207) in patients with advanced non-small cell lung cancer. Patent NCT01380769, 2022.
- Rizvi, N.A.; Riely, G.J.; Azzoli, C.G.; Miller, V.A.; Ng, K.K.; Fiore, J.; Chia, G.; Brower, M.; Heelan, R.; Hawkins, M.J.; Kris, M.G. Phase I/II trial of weekly intravenous 130-nm albumin-bound paclitaxel as initial chemotherapy in patients with stage IV non-small-cell lung cancer. J. Clin. Oncol., 2008, 26(4), 639-643. doi: 10.1200/JCO.2007.10.8605 PMID: 18235124
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247. doi: 10.1186/1556-276X-9-247 PMID: 24994950
- Pooja, M.; Saharan, A. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int., 2021, 2021, 8844030. doi: 10.1155/2021/8844030
- Zhong, Q.; Bielski, E.R.; Rodrigues, L.S.; Brown, M.R.; Reineke, J.J.; da Rocha, S.R.P. Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol. Pharm., 2016, 13(7), 2363-2375. doi: 10.1021/acs.molpharmaceut.6b00126 PMID: 27253493
- Yoon, A.R.; Kasala, D.; Li, Y.; Hong, J.; Lee, W.; Jung, S.- J.; Yun, C.-O. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J. Control. Release, 2016, 231, 2e16. doi: 10.1016/j.jconrel.2016.02.046
- Park, T.; Jeong, J.; Kim, S. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev., 2006, 58(4), 467-486. doi: 10.1016/j.addr.2006.03.007 PMID: 16781003
- De, M. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics, 2018, 10, 231.
- Valdivia, L.; García-Hevia, L. Solid Lipid Particles for Lung Metastasis Treatment Pharmaceutical, 2021, 13(1), 93. doi: 10.3390/pharmaceutics13010093
- Jarvi, M.; Krishnan, V.; Mitragotri, S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng. Transl. Med., 2018, 5-7. doi: 10.1002/btm2.10122
- Salah, L.S.; Ouslimani, N. Carbon nanotubes (CNTs) from Synthesis to Functionalized (CNTs) using conventional and new chemical approaches. J. Nanomater., 2021, 2021. doi: 10.1155/2021/4972770
- Mohamed, F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198. doi: 10.1111/jphp.13098
- Daniel, R.; Nitin, J. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410. doi: 10.1038/s41467-018-03705-y
- Maeda, H.; Matsumura, Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst., 1989, 6(3), 193-210. PMID: 2692843
- Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603. doi: 10.1126/science.8128245 PMID: 8128245
- Mansour, A.M.; Drevs, J.; Esser, N. A new approach for the treatment of malignant melanoma: Enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res., 2003, 63(14), 4062-4066.
- Nomura, T.; Saikawa, A.; Morita, S.; Sakaeda, K.T.; Yamashita, F.; Honda, K.; Takakura, Y.; Hashida, M. Pharmacokinetic characteristics and therapeutic effects of mitomycin C-dextran conjugates after intratumoural injection. J. Control. Release, 1998, 52(3), 239-252. doi: 10.1016/S0168-3659(97)00185-5 PMID: 9743445
- Li, S.; Schmitz, K.R.; Jeffrey, P.D.; Wiltzius, J.J.W.; Kussie, P.; Ferguson, K.M. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell, 2005, 7(4), 301-311. doi: 10.1016/j.ccr.2005.03.003 PMID: 15837620
- Cai, Z.; Xu, D. Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol. Biosyst., 2015, 11, 791-800. doi: 10.1039/C4MB00659C
- Chen, D-W.; Cheng, L.; Huang, F.; Cheng, L.; Zhu, Y.; Hu, Q.; Li, L.; Wei, L. GE11-modified liposomes for non-small cell lung cancer targeting: Preparation, ex vitro and in vivo evaluation. Int. J. Nanomedicine, 2014, 9, 921-935. doi: 10.2147/IJN.S53310 PMID: 24611009
- Askarian, S.; Abnous, K.; Taghavi, S.; Oskuee, R.K.; Ramezani, M. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids Surf. B Biointerfaces, 2015, 136, 355-364. doi: 10.1016/j.colsurfb.2015.09.023 PMID: 26433348
- Yu, L.; Hu, Y.; Duan, J.; Yang, X-D. A novel approach of targeted immunotherapy against adenocarcinoma cells with nanoparticles modified by CD16 and MUC1 aptamers. J. Nanomater., 2015, 2015, 1-10. doi: 10.1155/2015/316968
- Nagano, O.; Saya, H. Mechanism and biological significance of CD44 cleavage. Cancer Sci., 2004, 95(12), 930-935. doi: 10.1111/j.1349-7006.2004.tb03179.x PMID: 15596040
- Wang, S.J.; Huo, Z.J.; Liu, K.; Yu, N.; Ma, Y.; Qin, Y-H.; Li, X-C.; Yu, J-M.; Wang, Z-Q. Ligand-conjugated pH-sensitive polymeric micelles for the targeted delivery of gefitinib in lung cancers. RSC Advances, 2015, 5(89), 73184-73193. doi: 10.1039/C5RA09931E
- Muthukumar, T.; Chamundeeswari, M.; Prabhavathi, S.; Gurunathan, B.; Chandhuru, J.; Sastry, T.P. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells. Eur. J. Pharm. Biopharm., 2014, 88(3), 730-736. doi: 10.1016/j.ejpb.2014.09.011 PMID: 25305584
- Rosière, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm., 2018, 15(3), 899-910. doi: 10.1021/acs.molpharmaceut.7b00846 PMID: 29341619
Supplementary files
