FN-1501 Inhibits Diffuse Large B-Cell Lymphoma Tumor Growth by Inducing Cell Cycle Arrest and Apoptosis
- Authors: Feng S.1, Si R.1, Zhong B.2, Shen B.1, Du Y.1, Feng J.1, Zou D.1, Hu B.1
-
Affiliations:
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University
- Issue: Vol 24, No 20 (2024)
- Pages: 1501-1513
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644079
- DOI: https://doi.org/10.2174/0118715206345788240902062910
- ID: 644079
Cite item
Full Text
Abstract
Background:Due to its high degree of aggressiveness, diffuse large B-cell lymphoma (DLBCL) presents a treatment challenge because 30% to 50% of patients experience resistance or relapse following standard chemotherapy. FN-1501 is an effective inhibitor of cyclin-dependent kinases and Fms-like receptor tyrosine kinase 3.
Objective:This study aimed to examine the anti-tumor impact of FN-1501 on DLBCL and clarify its molecular mechanism.
Methods:This study used the cell counting kit-8 assay to evaluate cell proliferation, along with western blotting and flow cytometry to analyze cell cycle progression and apoptosis influenced by FN-1501 in vitro. Afterward, the effectiveness of FN-1501 was evaluated in vivo utilizing the xenograft tumor model. In addition, we identified the potential signaling pathways and performed rescue studies using western blotting and flow cytometry.
Results:We found that FN-1501 inhibited cell proliferation and induced cell cycle arrest and apoptosis in DLBCL cells in vitro. Its anti-proliferative effects were shown to be time- and dose-dependent. The effect on cell cycle progression resulted in G1/S phase arrest, and the apoptosis induction was found to be caspase-dependent. FN-1501 treatment also reduced tumor volumes and weights and was associated with a prolonged progressionfree survival in vivo. Mechanistically, the MAPK and PI3K/AKT/mTOR pathways were significantly inhibited by FN-1501. Additional pathway inhibitors examination reinforced that FN-1501 may regulate cell cycle arrest and apoptosis through these pathways.
Conclusion:FN-1501 shows promising anti-tumor activity against DLBCL in vivo and in vitro, suggesting its potential as a new therapeutic option for patients with refractory or relapsed DLBCL.
Keywords
About the authors
Sitong Feng
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Email: info@benthamscience.net
Rujia Si
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Email: info@benthamscience.net
Bei Zhong
Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University
Email: info@benthamscience.net
Bo Shen
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Author for correspondence.
Email: info@benthamscience.net
Yuxin Du
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Author for correspondence.
Email: info@benthamscience.net
Jifeng Feng
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Author for correspondence.
Email: info@benthamscience.net
Dan Zou
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Email: info@benthamscience.net
Bowen Hu
Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research
Email: info@benthamscience.net
References
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Padala, S.A.; Barsouk, A.; Rawla, P. Epidemiology of non-hodgkins lymphoma. Med. Sci., 2021, 9(1), 5-13. doi: 10.3390/medsci9010005 PMID: 33573146
- de Leval, L.; Jaffe, E.S. Lymphoma classification. Cancer J., 2020, 26(3), 176-185. doi: 10.1097/PPO.0000000000000451 PMID: 32496451
- Poletto, S.; Novo, M.; Paruzzo, L.; Frascione, P.M.M.; Vitolo, U. Treatment strategies for patients with diffuse large B-cell lymphoma. Cancer Treat. Rev., 2022, 110, 102443. doi: 10.1016/j.ctrv.2022.102443 PMID: 35933930
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; Staiger, A.M.; Wala, J.A.; Ducar, M.D.; Leshchiner, I.; Rheinbay, E.; Taylor-Weiner, A.; Coughlin, C.A.; Hess, J.M.; Pedamallu, C.S.; Livitz, D.; Rosebrock, D.; Rosenberg, M.; Tracy, A.A.; Horn, H.; van Hummelen, P.; Feldman, A.L.; Link, B.K.; Novak, A.J.; Cerhan, J.R.; Habermann, T.M.; Siebert, R.; Rosenwald, A.; Thorner, A.R.; Meyerson, M.L.; Golub, T.R.; Beroukhim, R.; Wulf, G.G.; Ott, G.; Rodig, S.J.; Monti, S.; Neuberg, D.S.; Loeffler, M.; Pfreundschuh, M.; Trümper, L.; Getz, G.; Shipp, M.A. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med., 2018, 24(5), 679-690. doi: 10.1038/s41591-018-0016-8 PMID: 29713087
- Sehn, L.H.; Salles, G. Diffuse large B-cell lymphoma. N. Engl. J. Med., 2021, 384(9), 842-858. doi: 10.1056/NEJMra2027612 PMID: 33657296
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; Jaffe, E.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 2016, 127(20), 2375-2390. doi: 10.1182/blood-2016-01-643569 PMID: 26980727
- Nowakowski, G.S.; Feldman, T.; Rimsza, L.M.; Westin, J.R.; Witzig, T.E.; Zinzani, P.L. Integrating precision medicine through evaluation of cell of origin in treatment planning for diffuse large B-cell lymphoma. Blood Cancer J., 2019, 9(6), 48. doi: 10.1038/s41408-019-0208-6 PMID: 31097684
- Susanibar-Adaniya, S.; Barta, S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol., 2021, 96(5), 617-629. doi: 10.1002/ajh.26151 PMID: 33661537
- Lewis, W.D.; Lilly, S.; Jones, K.L. Lymphoma: Diagnosis and Treatment. Am. Fam. Physician, 2020, 101(1), 34-41. PMID: 31894937
- Lv, Y.; Du, Y.; Li, K.; Ma, X.; Wang, J.; Du, T.; Ma, Y.; Teng, Y.; Tang, W.; Ma, R.; Wu, J.; Wu, J.; Feng, J. The FACT-targeted drug CBL0137 enhances the effects of rituximab to inhibit B-cell non-Hodgkins lymphoma tumor growth by promoting apoptosis and autophagy. Cell Commun. Signal., 2023, 21(1), 16-32. doi: 10.1186/s12964-022-01031-x PMID: 36691066
- Melchardt, T.; Egle, A.; Greil, R. How I treat diffuse large B-cell lymphoma. ESMO Open, 2023, 8(1), 100750. doi: 10.1016/j.esmoop.2022.100750 PMID: 36634531
- Wang, L.; Li, L.; Young, K.H. New agents and regimens for diffuse large B cell lymphoma. J. Hematol. Oncol., 2020, 13(1), 175. doi: 10.1186/s13045-020-01011-z PMID: 33317571
- He, M.Y.; Kridel, R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia, 2021, 35(8), 2151-2165. doi: 10.1038/s41375-021-01285-3 PMID: 34017074
- Davoodi-Moghaddam, Z.; Jafari-Raddani, F.; Noori, M.; Bashash, D. A systematic review and meta-analysis of immune checkpoint therapy in relapsed or refractory non-Hodgkin lymphoma; a friend or foe? Transl. Oncol., 2023, 30, 101636. doi: 10.1016/j.tranon.2023.101636 PMID: 36773442
- Rosenthal, A.C.; Munoz, J.L.; Villasboas, J.C. Clinical advances in epigenetic therapies for lymphoma. Clin. Epigenetics, 2023, 15(1), 39-51. doi: 10.1186/s13148-023-01452-6 PMID: 36871057
- Xu, W.; Berning, P.; Lenz, G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood, 2021, 138(13), 1110-1119. doi: 10.1182/blood.2020006784 PMID: 34320160
- Lu, T.; Zhang, J.; Xu-Monette, Z.Y.; Young, K.H. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp. Hematol. Oncol., 2023, 12(1), 72. doi: 10.1186/s40164-023-00432-z PMID: 37580826
- Hanlon, A.; Brander, D.M. Managing toxicities of phosphatidylinositol-3-kinase (PI3K) inhibitors. Hematology (Am. Soc. Hematol. Educ. Program), 2020, 2020(1), 346-356. doi: 10.1182/hematology.2020000119 PMID: 33275709
- Wang, X.; Wu, S.; Chen, Y.; Shao, E.; Zhuang, T.; Lu, L.; Chen, X. Fatal adverse events associated with programmed cell death ligand 1 inhibitors: A systematic review and meta-analysis. Front. Pharmacol., 2020, 11, 5-16. doi: 10.3389/fphar.2020.00005 PMID: 32076409
- Kiyoi, H.; Kawashima, N.; Ishikawa, Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci., 2020, 111(2), 312-322. doi: 10.1111/cas.14274 PMID: 31821677
- Roskoski, R., Jr The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias. Pharmacol. Res., 2020, 155, 104725. doi: 10.1016/j.phrs.2020.104725 PMID: 32109580
- Kazi, J.U.; Rönnstrand, L. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol. Rev., 2019, 99(3), 1433-1466. doi: 10.1152/physrev.00029.2018 PMID: 31066629
- Short, N.J.; Nguyen, D.; Ravandi, F. Treatment of older adults with FLT3-mutated AML: Emerging paradigms and the role of frontline FLT3 inhibitors. Blood Cancer J., 2023, 13(1), 142. doi: 10.1038/s41408-023-00911-w PMID: 37696819
- Bystrom, R.; Levis, M.J. An update on FLT3 in acute myeloid leukemia: Pathophysiology and therapeutic landscape. Curr. Oncol. Rep., 2023, 25(4), 369-378. doi: 10.1007/s11912-023-01389-2 PMID: 36808557
- Kayser, S.; Levis, M.J. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica, 2023, 108(2), 308-320. doi: 10.3324/haematol.2022.280801 PMID: 36722402
- Zhao, J.C.; Agarwal, S.; Ahmad, H.; Amin, K.; Bewersdorf, J.P.; Zeidan, A.M. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev., 2022, 52, 100905. doi: 10.1016/j.blre.2021.100905 PMID: 34774343
- Daver, N.; Venugopal, S.; Ravandi, F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J., 2021, 11(5), 104. doi: 10.1038/s41408-021-00495-3 PMID: 34045454
- Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122. doi: 10.1186/gb4184 PMID: 25180339
- Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166. doi: 10.1038/nrc2602 PMID: 19238148
- Fischer, M.; Schade, A.E.; Branigan, T.B.; Müller, G.A.; DeCaprio, J.A. Coordinating gene expression during the cell cycle. Trends Biochem. Sci., 2022, 47(12), 1009-1022. doi: 10.1016/j.tibs.2022.06.007 PMID: 35835684
- Mughal, M.J.; Bhadresha, K.; Kwok, H.F. CDK inhibitors from past to present: A new wave of cancer therapy. Semin. Cancer Biol., 2023, 88, 106-122. doi: 10.1016/j.semcancer.2022.12.006 PMID: 36565895
- Lee, D.J.; Zeidner, J.F. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opin. Investig. Drugs, 2019, 28(11), 989-1001. doi: 10.1080/13543784.2019.1678583 PMID: 31612739
- Senderowicz, A.M. Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies. Leukemia, 2001, 15(1), 1-9. doi: 10.1038/sj.leu.2401994 PMID: 11243375
- Wang, Y.; Zhi, Y.; Jin, Q.; Lu, S.; Lin, G.; Yuan, H.; Yang, T.; Wang, Z.; Yao, C.; Ling, J.; Guo, H.; Li, T.; Jin, J.; Li, B.; Zhang, L.; Chen, Y.; Lu, T. Discovery of 4-((7 H -Pyrrolo2,3- d pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1 H -pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-kinase inhibitor with potentially high efficiency against acute myelocytic leukemia. J. Med. Chem., 2018, 61(4), 1499-1518. doi: 10.1021/acs.jmedchem.7b01261 PMID: 29357250
- Lin, B.; Li, Y.; Wang, T.; Qiu, Y.; Chen, Z.; Zhao, K.; Lu, N. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene, 2020, 39(37), 6024-6040. doi: 10.1038/s41388-020-01412-x PMID: 32778769
- Richardson, G.E.; Al-Rajabi, R.; Uprety, D.; Hamid, A.; Williamson, S.K.; Baranda, J.; Mamdani, H.; Lee, Y.L.; Nitika; Li, L.; Wang, X.; Dong, X. A multicenter, open-label, phase I/II study of FN-1501 in patients with advanced solid tumors. Cancers (Basel), 2023, 15(9), 2553-2562. doi: 10.3390/cancers15092553 PMID: 37174019
- Bury, M.; Le Calvé, B.; Ferbeyre, G.; Blank, V.; Lessard, F. New insights into CDK regulators: Novel opportunities for cancer therapy. Trends Cell Biol., 2021, 31(5), 331-344. doi: 10.1016/j.tcb.2021.01.010 PMID: 33676803
- Perrone, S.; Ottone, T.; Zhdanovskaya, N.; Molica, M. How acute myeloid leukemia (AML) escapes from FMS-related tyrosine kinase 3 (FLT3) inhibitors? Still an overrated complication? Cancer Drug Resist., 2023, 6(2), 223-238. doi: 10.20517/cdr.2022.130 PMID: 37457126
- Kong, D.; Yamori, T. Phosphatidylinositol 3‐kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci., 2008, 99(9), 1734-1740. doi: 10.1111/j.1349-7006.2008.00891.x PMID: 18616528
- You, Y.; Niu, Y.; Zhang, J.; Huang, S.; Ding, P.; Sun, F.; Wang, X. U0126: Not only a MAPK kinase inhibitor. Front. Pharmacol., 2022, 13, 927083. doi: 10.3389/fphar.2022.927083 PMID: 36091807
- Lopez-Santillan, M.; Lopez-Lopez, E.; Alvarez-Gonzalez, P.; Martinez, G.; Arzuaga-Mendez, J.; Ruiz-Diaz, I.; Guerra-Merino, I.; Gutierrez-Camino, A.; Martin-Guerrero, I. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: A systematic review. Crit. Rev. Oncol. Hematol., 2021, 165, 103430. doi: 10.1016/j.critrevonc.2021.103430 PMID: 34339834
- Takahara, T.; Nakamura, S.; Tsuzuki, T.; Satou, A. The Immunology of DLBCL. Cancers (Basel), 2023, 15(3), 835. doi: 10.3390/cancers15030835 PMID: 36765793
- Cillessen, S.A.G.M.; Meijer, C.J.L.M.; Notoya, M.; Ossenkoppele, G.J.; Oudejans, J.J. Molecular targeted therapies for diffuse large B‐cell lymphoma based on apoptosis profiles. J. Pathol., 2010, 220(5), 509-520. doi: 10.1002/path.2670 PMID: 20087881
- Hilton, L.K.; Scott, D.W.; Morin, R.D. Biological heterogeneity in diffuse large B-cell lymphoma. Semin. Hematol., 2023, 60(5), 267-276. doi: 10.1053/j.seminhematol.2023.11.006 PMID: 38151380
- Hume, S.; Dianov, G.L.; Ramadan, K. A unified model for the G1/S cell cycle transition. Nucleic Acids Res., 2020, 48(22), 12483-12501. doi: 10.1093/nar/gkaa1002 PMID: 33166394
- Yuan, K.; Wang, X.; Dong, H.; Min, W.; Hao, H.; Yang, P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B, 2021, 11(1), 30-54. doi: 10.1016/j.apsb.2020.05.001 PMID: 33532179
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88. doi: 10.1038/s41580-021-00404-3 PMID: 34508254
- Liu, J.; Peng, Y.; Wei, W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol., 2022, 32(1), 30-44. doi: 10.1016/j.tcb.2021.07.001 PMID: 34304958
- Dang, F.; Nie, L.; Wei, W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ., 2021, 28(2), 427-438. doi: 10.1038/s41418-020-00648-0 PMID: 33130827
- Zheng, C.; Tang, Y.D. The emerging roles of the CDK/cyclin complexes in antiviral innate immunity. J. Med. Virol., 2022, 94(6), 2384-2387. doi: 10.1002/jmv.27554 PMID: 34964486
- Ettl, T.; Schulz, D.; Bauer, R. The renaissance of cyclin dependent kinase inhibitors. Cancers (Basel), 2022, 14(2), 293. doi: 10.3390/cancers14020293 PMID: 35053461
- Xie, Z.; Hou, S.; Yang, X.; Duan, Y.; Han, J.; Wang, Q.; Liao, C. Lessons learned from past cyclin-dependent kinase drug discovery efforts. J. Med. Chem., 2022, 65(9), 6356-6389. doi: 10.1021/acs.jmedchem.1c02190 PMID: 35235745
- Knudsen, E.S.; Kumarasamy, V.; Nambiar, R.; Pearson, J.D.; Vail, P.; Rosenheck, H.; Wang, J.; Eng, K.; Bremner, R.; Schramek, D.; Rubin, S.M.; Welm, A.L.; Witkiewicz, A.K. CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities. Cell Rep., 2022, 38(9), 110448. doi: 10.1016/j.celrep.2022.110448 PMID: 35235778
- Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol., 2020, 21(11), 678-695. doi: 10.1038/s41580-020-0270-8 PMID: 32873928
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell. Mol. Immunol., 2021, 18(5), 1106-1121. doi: 10.1038/s41423-020-00630-3 PMID: 33785842
- Park, H.A.; Hayden, M.M.; Bannerman, S.; Jansen, J.; Crowe-White, K.M. Anti-apoptotic effects of carotenoids in neurodegeneration. Molecules, 2020, 25(15), 3453. doi: 10.3390/molecules25153453 PMID: 32751250
- Dailah, H.G. Potential of therapeutic small molecules in apoptosis regulation in the treatment of neurodegenerative diseases: An updated review. Molecules, 2022, 27(21), 7207. doi: 10.3390/molecules27217207 PMID: 36364033
- Li, M.; Wang, Z.W.; Fang, L.J.; Cheng, S.Q.; Wang, X.; Liu, N.F. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis., 2022, 13(5), 467. doi: 10.1038/s41419-022-04923-5 PMID: 35585052
- Lin, X.; Ouyang, S.; Zhi, C.; Li, P.; Tan, X.; Ma, W.; Yu, J.; Peng, T.; Chen, X.; Li, L.; Xie, W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch. Biochem. Biophys., 2022, 715, 109098. doi: 10.1016/j.abb.2021.109098 PMID: 34856194
- Newton, K.; Strasser, A.; Kayagaki, N.; Dixit, V.M. Cell death. Cell, 2024, 187(2), 235-256. doi: 10.1016/j.cell.2023.11.044 PMID: 38242081
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193. doi: 10.1038/s41580-018-0089-8 PMID: 30655609
- Nowak, K.L.; Edelstein, C.L. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell. Signal., 2020, 68, 109518. doi: 10.1016/j.cellsig.2019.109518 PMID: 31881325
- Sanz, A.B.; Sanchez-Niño, M.D.; Ramos, A.M.; Ortiz, A. Regulated cell death pathways in kidney disease. Nat. Rev. Nephrol., 2023, 19(5), 281-299. doi: 10.1038/s41581-023-00694-0 PMID: 36959481
- Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol., 2022, 15(1), 174-205. doi: 10.1186/s13045-022-01392-3 PMID: 36482419
- Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis, 2021, 26(9-10), 512-533. doi: 10.1007/s10495-021-01687-9 PMID: 34510317
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417. doi: 10.1038/s41571-020-0341-y PMID: 32203277
- Profitós-Pelejà, N.; Santos, J.C.; Marín-Niebla, A.; Roué, G.; Ribeiro, M.L. Regulation of B-cell receptor signaling and its therapeutic relevance in aggressive B-cell lymphomas. Cancers (Basel), 2022, 14(4), 860. doi: 10.3390/cancers14040860 PMID: 35205606
- Deshotels, L.; Safa, F.; Saba, N. Notch signaling in mantle cell lymphoma: Biological and clinical implications. Int. J. Mol. Sci., 2023, 24(12), 10280. doi: 10.3390/ijms241210280 PMID: 37373427
- Steinberg, G.R.; Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov., 2019, 18(7), 527-551. doi: 10.1038/s41573-019-0019-2 PMID: 30867601
- Pi, M.; Kuang, H.; Yue, C.; Yang, Q.; Wu, A.; Li, Y.; Assaraf, Y.G.; Yang, D.H.; Wu, S. Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resist. Updat., 2022, 61, 100822. doi: 10.1016/j.drup.2022.100822 PMID: 35257981
- Li, B.; Wan, Q.; Li, Z.; Chng, W.J. Janus kinase signaling: Oncogenic criminal of lymphoid cancers. Cancers (Basel), 2021, 13(20), 5147. doi: 10.3390/cancers13205147 PMID: 34680295
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165. doi: 10.1186/s13045-020-00990-3 PMID: 33276800
- Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol., 2022, 80, 1-17. doi: 10.1016/j.semcancer.2019.12.008 PMID: 31866476
- Yang, J.; Friedman, R. Synergy and antagonism between azacitidine and FLT3 inhibitors. Comput. Biol. Med., 2024, 169, 107889. doi: 10.1016/j.compbiomed.2023.107889 PMID: 38199214
- Zhang, M.; Huang, M.N.; Dong, X.D.; Cui, Q.B.; Yan, Y.; She, M.L.; Feng, W.G.; Zhao, X.S.; Wang, D.T. Overexpression of ABCB1 confers resistance to FLT3 inhibitor FN-1501 in cancer cells: in vitro and in vivo characterization. Am. J. Cancer Res., 2023, 13(12), 6026-6037. PMID: 38187048
Supplementary files
