FN-1501 Inhibits Diffuse Large B-Cell Lymphoma Tumor Growth by Inducing Cell Cycle Arrest and Apoptosis


Cite item

Full Text

Abstract

Background:Due to its high degree of aggressiveness, diffuse large B-cell lymphoma (DLBCL) presents a treatment challenge because 30% to 50% of patients experience resistance or relapse following standard chemotherapy. FN-1501 is an effective inhibitor of cyclin-dependent kinases and Fms-like receptor tyrosine kinase 3.

Objective:This study aimed to examine the anti-tumor impact of FN-1501 on DLBCL and clarify its molecular mechanism.

Methods:This study used the cell counting kit-8 assay to evaluate cell proliferation, along with western blotting and flow cytometry to analyze cell cycle progression and apoptosis influenced by FN-1501 in vitro. Afterward, the effectiveness of FN-1501 was evaluated in vivo utilizing the xenograft tumor model. In addition, we identified the potential signaling pathways and performed rescue studies using western blotting and flow cytometry.

Results:We found that FN-1501 inhibited cell proliferation and induced cell cycle arrest and apoptosis in DLBCL cells in vitro. Its anti-proliferative effects were shown to be time- and dose-dependent. The effect on cell cycle progression resulted in G1/S phase arrest, and the apoptosis induction was found to be caspase-dependent. FN-1501 treatment also reduced tumor volumes and weights and was associated with a prolonged progressionfree survival in vivo. Mechanistically, the MAPK and PI3K/AKT/mTOR pathways were significantly inhibited by FN-1501. Additional pathway inhibitors examination reinforced that FN-1501 may regulate cell cycle arrest and apoptosis through these pathways.

Conclusion:FN-1501 shows promising anti-tumor activity against DLBCL in vivo and in vitro, suggesting its potential as a new therapeutic option for patients with refractory or relapsed DLBCL.

About the authors

Sitong Feng

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research

Email: info@benthamscience.net

Rujia Si

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research

Email: info@benthamscience.net

Bei Zhong

Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University

Email: info@benthamscience.net

Bo Shen

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research

Author for correspondence.
Email: info@benthamscience.net

Yuxin Du

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research

Author for correspondence.
Email: info@benthamscience.net

Jifeng Feng

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research

Author for correspondence.
Email: info@benthamscience.net

Dan Zou

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research

Email: info@benthamscience.net

Bowen Hu

Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research

Email: info@benthamscience.net

References

  1. Thandra, K.C.; Barsouk, A.; Saginala, K.; Padala, S.A.; Barsouk, A.; Rawla, P. Epidemiology of non-hodgkin’s lymphoma. Med. Sci., 2021, 9(1), 5-13. doi: 10.3390/medsci9010005 PMID: 33573146
  2. de Leval, L.; Jaffe, E.S. Lymphoma classification. Cancer J., 2020, 26(3), 176-185. doi: 10.1097/PPO.0000000000000451 PMID: 32496451
  3. Poletto, S.; Novo, M.; Paruzzo, L.; Frascione, P.M.M.; Vitolo, U. Treatment strategies for patients with diffuse large B-cell lymphoma. Cancer Treat. Rev., 2022, 110, 102443. doi: 10.1016/j.ctrv.2022.102443 PMID: 35933930
  4. Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Kamburov, A.; Redd, R.A.; Lawrence, M.S.; Roemer, M.G.M.; Li, A.J.; Ziepert, M.; Staiger, A.M.; Wala, J.A.; Ducar, M.D.; Leshchiner, I.; Rheinbay, E.; Taylor-Weiner, A.; Coughlin, C.A.; Hess, J.M.; Pedamallu, C.S.; Livitz, D.; Rosebrock, D.; Rosenberg, M.; Tracy, A.A.; Horn, H.; van Hummelen, P.; Feldman, A.L.; Link, B.K.; Novak, A.J.; Cerhan, J.R.; Habermann, T.M.; Siebert, R.; Rosenwald, A.; Thorner, A.R.; Meyerson, M.L.; Golub, T.R.; Beroukhim, R.; Wulf, G.G.; Ott, G.; Rodig, S.J.; Monti, S.; Neuberg, D.S.; Loeffler, M.; Pfreundschuh, M.; Trümper, L.; Getz, G.; Shipp, M.A. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med., 2018, 24(5), 679-690. doi: 10.1038/s41591-018-0016-8 PMID: 29713087
  5. Sehn, L.H.; Salles, G. Diffuse large B-cell lymphoma. N. Engl. J. Med., 2021, 384(9), 842-858. doi: 10.1056/NEJMra2027612 PMID: 33657296
  6. Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; Jaffe, E.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 2016, 127(20), 2375-2390. doi: 10.1182/blood-2016-01-643569 PMID: 26980727
  7. Nowakowski, G.S.; Feldman, T.; Rimsza, L.M.; Westin, J.R.; Witzig, T.E.; Zinzani, P.L. Integrating precision medicine through evaluation of cell of origin in treatment planning for diffuse large B-cell lymphoma. Blood Cancer J., 2019, 9(6), 48. doi: 10.1038/s41408-019-0208-6 PMID: 31097684
  8. Susanibar-Adaniya, S.; Barta, S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol., 2021, 96(5), 617-629. doi: 10.1002/ajh.26151 PMID: 33661537
  9. Lewis, W.D.; Lilly, S.; Jones, K.L. Lymphoma: Diagnosis and Treatment. Am. Fam. Physician, 2020, 101(1), 34-41. PMID: 31894937
  10. Lv, Y.; Du, Y.; Li, K.; Ma, X.; Wang, J.; Du, T.; Ma, Y.; Teng, Y.; Tang, W.; Ma, R.; Wu, J.; Wu, J.; Feng, J. The FACT-targeted drug CBL0137 enhances the effects of rituximab to inhibit B-cell non-Hodgkin’s lymphoma tumor growth by promoting apoptosis and autophagy. Cell Commun. Signal., 2023, 21(1), 16-32. doi: 10.1186/s12964-022-01031-x PMID: 36691066
  11. Melchardt, T.; Egle, A.; Greil, R. How I treat diffuse large B-cell lymphoma. ESMO Open, 2023, 8(1), 100750. doi: 10.1016/j.esmoop.2022.100750 PMID: 36634531
  12. Wang, L.; Li, L.; Young, K.H. New agents and regimens for diffuse large B cell lymphoma. J. Hematol. Oncol., 2020, 13(1), 175. doi: 10.1186/s13045-020-01011-z PMID: 33317571
  13. He, M.Y.; Kridel, R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia, 2021, 35(8), 2151-2165. doi: 10.1038/s41375-021-01285-3 PMID: 34017074
  14. Davoodi-Moghaddam, Z.; Jafari-Raddani, F.; Noori, M.; Bashash, D. A systematic review and meta-analysis of immune checkpoint therapy in relapsed or refractory non-Hodgkin lymphoma; a friend or foe? Transl. Oncol., 2023, 30, 101636. doi: 10.1016/j.tranon.2023.101636 PMID: 36773442
  15. Rosenthal, A.C.; Munoz, J.L.; Villasboas, J.C. Clinical advances in epigenetic therapies for lymphoma. Clin. Epigenetics, 2023, 15(1), 39-51. doi: 10.1186/s13148-023-01452-6 PMID: 36871057
  16. Xu, W.; Berning, P.; Lenz, G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood, 2021, 138(13), 1110-1119. doi: 10.1182/blood.2020006784 PMID: 34320160
  17. Lu, T.; Zhang, J.; Xu-Monette, Z.Y.; Young, K.H. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp. Hematol. Oncol., 2023, 12(1), 72. doi: 10.1186/s40164-023-00432-z PMID: 37580826
  18. Hanlon, A.; Brander, D.M. Managing toxicities of phosphatidylinositol-3-kinase (PI3K) inhibitors. Hematology (Am. Soc. Hematol. Educ. Program), 2020, 2020(1), 346-356. doi: 10.1182/hematology.2020000119 PMID: 33275709
  19. Wang, X.; Wu, S.; Chen, Y.; Shao, E.; Zhuang, T.; Lu, L.; Chen, X. Fatal adverse events associated with programmed cell death ligand 1 inhibitors: A systematic review and meta-analysis. Front. Pharmacol., 2020, 11, 5-16. doi: 10.3389/fphar.2020.00005 PMID: 32076409
  20. Kiyoi, H.; Kawashima, N.; Ishikawa, Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci., 2020, 111(2), 312-322. doi: 10.1111/cas.14274 PMID: 31821677
  21. Roskoski, R., Jr The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias. Pharmacol. Res., 2020, 155, 104725. doi: 10.1016/j.phrs.2020.104725 PMID: 32109580
  22. Kazi, J.U.; Rönnstrand, L. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol. Rev., 2019, 99(3), 1433-1466. doi: 10.1152/physrev.00029.2018 PMID: 31066629
  23. Short, N.J.; Nguyen, D.; Ravandi, F. Treatment of older adults with FLT3-mutated AML: Emerging paradigms and the role of frontline FLT3 inhibitors. Blood Cancer J., 2023, 13(1), 142. doi: 10.1038/s41408-023-00911-w PMID: 37696819
  24. Bystrom, R.; Levis, M.J. An update on FLT3 in acute myeloid leukemia: Pathophysiology and therapeutic landscape. Curr. Oncol. Rep., 2023, 25(4), 369-378. doi: 10.1007/s11912-023-01389-2 PMID: 36808557
  25. Kayser, S.; Levis, M.J. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica, 2023, 108(2), 308-320. doi: 10.3324/haematol.2022.280801 PMID: 36722402
  26. Zhao, J.C.; Agarwal, S.; Ahmad, H.; Amin, K.; Bewersdorf, J.P.; Zeidan, A.M. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev., 2022, 52, 100905. doi: 10.1016/j.blre.2021.100905 PMID: 34774343
  27. Daver, N.; Venugopal, S.; Ravandi, F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J., 2021, 11(5), 104. doi: 10.1038/s41408-021-00495-3 PMID: 34045454
  28. Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122. doi: 10.1186/gb4184 PMID: 25180339
  29. Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166. doi: 10.1038/nrc2602 PMID: 19238148
  30. Fischer, M.; Schade, A.E.; Branigan, T.B.; Müller, G.A.; DeCaprio, J.A. Coordinating gene expression during the cell cycle. Trends Biochem. Sci., 2022, 47(12), 1009-1022. doi: 10.1016/j.tibs.2022.06.007 PMID: 35835684
  31. Mughal, M.J.; Bhadresha, K.; Kwok, H.F. CDK inhibitors from past to present: A new wave of cancer therapy. Semin. Cancer Biol., 2023, 88, 106-122. doi: 10.1016/j.semcancer.2022.12.006 PMID: 36565895
  32. Lee, D.J.; Zeidner, J.F. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opin. Investig. Drugs, 2019, 28(11), 989-1001. doi: 10.1080/13543784.2019.1678583 PMID: 31612739
  33. Senderowicz, A.M. Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies. Leukemia, 2001, 15(1), 1-9. doi: 10.1038/sj.leu.2401994 PMID: 11243375
  34. Wang, Y.; Zhi, Y.; Jin, Q.; Lu, S.; Lin, G.; Yuan, H.; Yang, T.; Wang, Z.; Yao, C.; Ling, J.; Guo, H.; Li, T.; Jin, J.; Li, B.; Zhang, L.; Chen, Y.; Lu, T. Discovery of 4-((7 H -Pyrrolo2,3- d pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1 H -pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-kinase inhibitor with potentially high efficiency against acute myelocytic leukemia. J. Med. Chem., 2018, 61(4), 1499-1518. doi: 10.1021/acs.jmedchem.7b01261 PMID: 29357250
  35. Lin, B.; Li, Y.; Wang, T.; Qiu, Y.; Chen, Z.; Zhao, K.; Lu, N. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene, 2020, 39(37), 6024-6040. doi: 10.1038/s41388-020-01412-x PMID: 32778769
  36. Richardson, G.E.; Al-Rajabi, R.; Uprety, D.; Hamid, A.; Williamson, S.K.; Baranda, J.; Mamdani, H.; Lee, Y.L.; Nitika; Li, L.; Wang, X.; Dong, X. A multicenter, open-label, phase I/II study of FN-1501 in patients with advanced solid tumors. Cancers (Basel), 2023, 15(9), 2553-2562. doi: 10.3390/cancers15092553 PMID: 37174019
  37. Bury, M.; Le Calvé, B.; Ferbeyre, G.; Blank, V.; Lessard, F. New insights into CDK regulators: Novel opportunities for cancer therapy. Trends Cell Biol., 2021, 31(5), 331-344. doi: 10.1016/j.tcb.2021.01.010 PMID: 33676803
  38. Perrone, S.; Ottone, T.; Zhdanovskaya, N.; Molica, M. How acute myeloid leukemia (AML) escapes from FMS-related tyrosine kinase 3 (FLT3) inhibitors? Still an overrated complication? Cancer Drug Resist., 2023, 6(2), 223-238. doi: 10.20517/cdr.2022.130 PMID: 37457126
  39. Kong, D.; Yamori, T. Phosphatidylinositol 3‐kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci., 2008, 99(9), 1734-1740. doi: 10.1111/j.1349-7006.2008.00891.x PMID: 18616528
  40. You, Y.; Niu, Y.; Zhang, J.; Huang, S.; Ding, P.; Sun, F.; Wang, X. U0126: Not only a MAPK kinase inhibitor. Front. Pharmacol., 2022, 13, 927083. doi: 10.3389/fphar.2022.927083 PMID: 36091807
  41. Lopez-Santillan, M.; Lopez-Lopez, E.; Alvarez-Gonzalez, P.; Martinez, G.; Arzuaga-Mendez, J.; Ruiz-Diaz, I.; Guerra-Merino, I.; Gutierrez-Camino, A.; Martin-Guerrero, I. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: A systematic review. Crit. Rev. Oncol. Hematol., 2021, 165, 103430. doi: 10.1016/j.critrevonc.2021.103430 PMID: 34339834
  42. Takahara, T.; Nakamura, S.; Tsuzuki, T.; Satou, A. The Immunology of DLBCL. Cancers (Basel), 2023, 15(3), 835. doi: 10.3390/cancers15030835 PMID: 36765793
  43. Cillessen, S.A.G.M.; Meijer, C.J.L.M.; Notoya, M.; Ossenkoppele, G.J.; Oudejans, J.J. Molecular targeted therapies for diffuse large B‐cell lymphoma based on apoptosis profiles. J. Pathol., 2010, 220(5), 509-520. doi: 10.1002/path.2670 PMID: 20087881
  44. Hilton, L.K.; Scott, D.W.; Morin, R.D. Biological heterogeneity in diffuse large B-cell lymphoma. Semin. Hematol., 2023, 60(5), 267-276. doi: 10.1053/j.seminhematol.2023.11.006 PMID: 38151380
  45. Hume, S.; Dianov, G.L.; Ramadan, K. A unified model for the G1/S cell cycle transition. Nucleic Acids Res., 2020, 48(22), 12483-12501. doi: 10.1093/nar/gkaa1002 PMID: 33166394
  46. Yuan, K.; Wang, X.; Dong, H.; Min, W.; Hao, H.; Yang, P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B, 2021, 11(1), 30-54. doi: 10.1016/j.apsb.2020.05.001 PMID: 33532179
  47. Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88. doi: 10.1038/s41580-021-00404-3 PMID: 34508254
  48. Liu, J.; Peng, Y.; Wei, W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol., 2022, 32(1), 30-44. doi: 10.1016/j.tcb.2021.07.001 PMID: 34304958
  49. Dang, F.; Nie, L.; Wei, W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ., 2021, 28(2), 427-438. doi: 10.1038/s41418-020-00648-0 PMID: 33130827
  50. Zheng, C.; Tang, Y.D. The emerging roles of the CDK/cyclin complexes in antiviral innate immunity. J. Med. Virol., 2022, 94(6), 2384-2387. doi: 10.1002/jmv.27554 PMID: 34964486
  51. Ettl, T.; Schulz, D.; Bauer, R. The renaissance of cyclin dependent kinase inhibitors. Cancers (Basel), 2022, 14(2), 293. doi: 10.3390/cancers14020293 PMID: 35053461
  52. Xie, Z.; Hou, S.; Yang, X.; Duan, Y.; Han, J.; Wang, Q.; Liao, C. Lessons learned from past cyclin-dependent kinase drug discovery efforts. J. Med. Chem., 2022, 65(9), 6356-6389. doi: 10.1021/acs.jmedchem.1c02190 PMID: 35235745
  53. Knudsen, E.S.; Kumarasamy, V.; Nambiar, R.; Pearson, J.D.; Vail, P.; Rosenheck, H.; Wang, J.; Eng, K.; Bremner, R.; Schramek, D.; Rubin, S.M.; Welm, A.L.; Witkiewicz, A.K. CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities. Cell Rep., 2022, 38(9), 110448. doi: 10.1016/j.celrep.2022.110448 PMID: 35235778
  54. Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol., 2020, 21(11), 678-695. doi: 10.1038/s41580-020-0270-8 PMID: 32873928
  55. Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell. Mol. Immunol., 2021, 18(5), 1106-1121. doi: 10.1038/s41423-020-00630-3 PMID: 33785842
  56. Park, H.A.; Hayden, M.M.; Bannerman, S.; Jansen, J.; Crowe-White, K.M. Anti-apoptotic effects of carotenoids in neurodegeneration. Molecules, 2020, 25(15), 3453. doi: 10.3390/molecules25153453 PMID: 32751250
  57. Dailah, H.G. Potential of therapeutic small molecules in apoptosis regulation in the treatment of neurodegenerative diseases: An updated review. Molecules, 2022, 27(21), 7207. doi: 10.3390/molecules27217207 PMID: 36364033
  58. Li, M.; Wang, Z.W.; Fang, L.J.; Cheng, S.Q.; Wang, X.; Liu, N.F. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis., 2022, 13(5), 467. doi: 10.1038/s41419-022-04923-5 PMID: 35585052
  59. Lin, X.; Ouyang, S.; Zhi, C.; Li, P.; Tan, X.; Ma, W.; Yu, J.; Peng, T.; Chen, X.; Li, L.; Xie, W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch. Biochem. Biophys., 2022, 715, 109098. doi: 10.1016/j.abb.2021.109098 PMID: 34856194
  60. Newton, K.; Strasser, A.; Kayagaki, N.; Dixit, V.M. Cell death. Cell, 2024, 187(2), 235-256. doi: 10.1016/j.cell.2023.11.044 PMID: 38242081
  61. Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193. doi: 10.1038/s41580-018-0089-8 PMID: 30655609
  62. Nowak, K.L.; Edelstein, C.L. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell. Signal., 2020, 68, 109518. doi: 10.1016/j.cellsig.2019.109518 PMID: 31881325
  63. Sanz, A.B.; Sanchez-Niño, M.D.; Ramos, A.M.; Ortiz, A. Regulated cell death pathways in kidney disease. Nat. Rev. Nephrol., 2023, 19(5), 281-299. doi: 10.1038/s41581-023-00694-0 PMID: 36959481
  64. Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol., 2022, 15(1), 174-205. doi: 10.1186/s13045-022-01392-3 PMID: 36482419
  65. Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis, 2021, 26(9-10), 512-533. doi: 10.1007/s10495-021-01687-9 PMID: 34510317
  66. Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417. doi: 10.1038/s41571-020-0341-y PMID: 32203277
  67. Profitós-Pelejà, N.; Santos, J.C.; Marín-Niebla, A.; Roué, G.; Ribeiro, M.L. Regulation of B-cell receptor signaling and its therapeutic relevance in aggressive B-cell lymphomas. Cancers (Basel), 2022, 14(4), 860. doi: 10.3390/cancers14040860 PMID: 35205606
  68. Deshotels, L.; Safa, F.; Saba, N. Notch signaling in mantle cell lymphoma: Biological and clinical implications. Int. J. Mol. Sci., 2023, 24(12), 10280. doi: 10.3390/ijms241210280 PMID: 37373427
  69. Steinberg, G.R.; Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov., 2019, 18(7), 527-551. doi: 10.1038/s41573-019-0019-2 PMID: 30867601
  70. Pi, M.; Kuang, H.; Yue, C.; Yang, Q.; Wu, A.; Li, Y.; Assaraf, Y.G.; Yang, D.H.; Wu, S. Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resist. Updat., 2022, 61, 100822. doi: 10.1016/j.drup.2022.100822 PMID: 35257981
  71. Li, B.; Wan, Q.; Li, Z.; Chng, W.J. Janus kinase signaling: Oncogenic criminal of lymphoid cancers. Cancers (Basel), 2021, 13(20), 5147. doi: 10.3390/cancers13205147 PMID: 34680295
  72. Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165. doi: 10.1186/s13045-020-00990-3 PMID: 33276800
  73. Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol., 2022, 80, 1-17. doi: 10.1016/j.semcancer.2019.12.008 PMID: 31866476
  74. Yang, J.; Friedman, R. Synergy and antagonism between azacitidine and FLT3 inhibitors. Comput. Biol. Med., 2024, 169, 107889. doi: 10.1016/j.compbiomed.2023.107889 PMID: 38199214
  75. Zhang, M.; Huang, M.N.; Dong, X.D.; Cui, Q.B.; Yan, Y.; She, M.L.; Feng, W.G.; Zhao, X.S.; Wang, D.T. Overexpression of ABCB1 confers resistance to FLT3 inhibitor FN-1501 in cancer cells: in vitro and in vivo characterization. Am. J. Cancer Res., 2023, 13(12), 6026-6037. PMID: 38187048

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers