Effects of Arborvitae (Thuja plicata) Essential Oil on Cervical Cancer Cells: Insights into Molecular Mechanisms
- Authors: Piña-Cruz R.1, Molina-Pineda A.2, Aguila-Estrada M.3, Villaseñor-García M.3, Hernández-Flores G.3, Jave-Suarez L.3, Aguilar-Lemarroy A.3
-
Affiliations:
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, CONAHCYT
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)
- Issue: Vol 24, No 20 (2024)
- Pages: 1483-1500
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644074
- DOI: https://doi.org/10.2174/0118715206308864240823095507
- ID: 644074
Cite item
Full Text
Abstract
Aims:This study aimed to assess the effects of AEO in an in vitro model of cell lines derived from cervical cancernamely, HeLa and SiHaby screening for AEOs cytotoxic properties and examining its influence on the modulation of gene expression.
Background:Cervical cancer stands as a prevalent global health concern, affecting millions of women worldwide. The current treatment modalities encompass surgery, radiation, and chemotherapy, but significant limitations and adverse effects constrain their effectiveness. Therefore, exploring novel treatments that offer enhanced efficacy and reduced side effects is imperative. Arborvitae essential oil, extracted from Thuja Plicata, has garnered attention for its antimicrobial, anti-inflammatory, immunomodulatory, and tissue-remodeling properties; however, its potential in treating cervical cancer remains uncharted.
Objective:The objective of this study was to delve into the molecular mechanisms induced by arborvitae essential oil in order to learn about its anticancer effects on cervical cancer cell lines.
Methods:The methods used in this study were assessments of cell viability using WST-1 and annexin V propidium iodide, mRNA sequencing, and subsequent bioinformatics analysis.
Results:The findings unveiled a dose-dependent cytotoxic effect of arborvitae essential oil on both HeLa and SiHa cell lines. Minor effects were observed only at very low doses in the HaCaT non-tumorigenic human keratinocyte cells. RNA-Seq bioinformatics analysis revealed the regulatory impact of arborvitae essential oil on genes enriched in the following pathways: proteasome, adherens junctions, nucleocytoplasmic transport, cell cycle, proteoglycans in cancer, protein processing in the endoplasmic reticulum, ribosome, spliceosome, mitophagy, cellular senescence, and viral carcinogenesis, among others, in both cell lines. It is worth noting that the ribosome and spliceosome KEGG pathways are the most significantly enriched pathways in HeLa and SiHa cells.
Conclusion:Arborvitae essential oil shows potential as a cytotoxic and antiproliferative agent against cervical cancer cells, exerting its cytotoxic properties by regulating many KEGG pathways.
Keywords
About the authors
Ruben Piña-Cruz
Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara
Email: info@benthamscience.net
Andrea Molina-Pineda
Consejo Nacional de Humanidades, Ciencias y Tecnologías, CONAHCYT
Email: info@benthamscience.net
Marco Aguila-Estrada
División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)
Email: info@benthamscience.net
María Villaseñor-García
División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)
Email: info@benthamscience.net
Georgina Hernández-Flores
División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)
Email: info@benthamscience.net
Luis Jave-Suarez
División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)
Author for correspondence.
Email: info@benthamscience.net
Adriana Aguilar-Lemarroy
División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS)
Author for correspondence.
Email: info@benthamscience.net
References
- Johnson, C.A.; James, D.; Marzan, A.; Armaos, M. Cervical cancer: An overview of pathophysiology and management. Semin. Oncol. Nurs., 2019, 35(2), 166-174. doi: 10.1016/j.soncn.2019.02.003 PMID: 30878194
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
- Lewandowska, A.; Szubert, S.; Koper, K.; Koper, A.; Cwynar, G.; Wicherek, L. Analysis of long-term outcomes in 44 patients following pelvic exenteration due to cervical cancer. World J. Surg. Oncol., 2020, 18(1), 234. doi: 10.1186/s12957-020-01997-3 PMID: 32878646
- Boon, S.S.; Luk, H.Y.; Xiao, C.; Chen, Z.; Chan, P.K.S. Review of the standard and advanced screening, staging systems and treatment modalities for cervical cancer. Cancers (BaseL), 2022, 14(12), 2913. doi: 10.3390/cancers14122913.
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668. doi: 10.1038/s41577-020-0306-5 PMID: 32433532
- Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.V.; Papneja, N.; Miller, W.H., Jr A review of cancer immunotherapy: from the past, to the present, to the future. Curr. Oncol., 2020, 27(12), 87-97. doi: 10.3747/co.27.5223 PMID: 32368178
- Odiase, O.; Noah-Vermillion, L.; Simone, B.A.; Aridgides, P.D. The incorporation of immunotherapy and targeted therapy into chemoradiation for cervical cancer: A focused review. Front. Oncol., 2021, 11, 663749. doi: 10.3389/fonc.2021.663749 PMID: 34123823
- Schmidt, MW.; Battista, MJ.; Schmidt, M.; Garcia, M.; Siepmann, T.; Hasenburg, A.; Anic, K. Efficacy and safety of immunotherapy for cervical cancer-A systematic review of clinical trials. Cancers (Basel), 2022, 14(2), 441. doi: 10.3390/cancers14020441.
- Shen, G.; Zheng, F.; Ren, D.; Du, F.; Dong, Q.; Wang, Z.; Zhao, F.; Ahmad, R.; Zhao, J. Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development. J. Hematol. Oncol., 2018, 11(1), 120. doi: 10.1186/s13045-018-0664-7 PMID: 30231931
- Schilder, R.J.; Sill, M.W.; Lee, Y.C.; Mannel, R. A phase II trial of erlotinib in recurrent squamous cell carcinoma of the cervix: A gynecologic oncology group study. Int. J. Gynecol. Cancer, 2009, 19(5), 929-933. doi: 10.1111/IGC.0b013e3181a83467 PMID: 19574787
- Goncalves, A.; Fabbro, M.; Lhommé, C.; Gladieff, L.; Extra, J.M.; Floquet, A.; Chaigneau, L.; Carrasco, A.T.; Viens, P. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer. Gynecol. Oncol., 2008, 108(1), 42-46. doi: 10.1016/j.ygyno.2007.07.057 PMID: 17980406
- Nogueira-Rodrigues, A.; Moralez, G.; Grazziotin, R.; Carmo, C.C.; Small, I.A.; Alves, F.V.G.; Mamede, M.; Erlich, F.; Viegas, C.; Triginelli, S.A.; Ferreira, C.G. Phase 2 trial of erlotinib combined with cisplatin and radiotherapy in patients with locally advanced cervical cancer. Cancer, 2014, 120(8), 1187-1193. doi: 10.1002/cncr.28471 PMID: 24615735
- Tewari, K.S.; Sill, M.W.; Long, H.J., III; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; Monk, B.J. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med., 2014, 370(8), 734-743. doi: 10.1056/NEJMoa1309748 PMID: 24552320
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; DiSaia, P.J.; Copeland, L.J.; Creasman, W.T.; Stehman, F.B.; Brady, M.F.; Burger, R.A.; Thigpen, J.T.; Birrer, M.J.; Waggoner, S.E.; Moore, D.H.; Look, K.Y.; Koh, W.J.; Monk, B.J. Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet, 2017, 390(10103), 1654-1663. doi: 10.1016/S0140-6736(17)31607-0 PMID: 28756902
- Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; Redondo, A.; Vindeløv, S.D.; Chen, M.; Harris, J.R.; Smith, M.; Nicacio, L.V.; Teng, M.S.L.; Laenen, A.; Rangwala, R.; Manso, L.; Mirza, M.; Monk, B.J.; Vergote, I.; Raspagliesi, F.; Melichar, B.; Gaba Garcia, L.; Jackson, A.; Henry, S.; Kral, Z.; Harter, P.; De Giorgi, U.; Bjurberg, M.; Gold, M.; OMalley, D.; Honhon, B.; Vulsteke, C.; De Cuypere, E.; Denys, H.; Baurain, J-F.; Zamagni, C.; Tenney, M.; Gordinier, M.; Bradley, W.; Schlumbrecht, M.; Spirtos, N.; Concin, N.; Mahner, S.; Scambia, G.; Leath, C.; Farias-Eisner, R.; Cohen, J.; Muller, C.; Bhatia, S. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol., 2021, 22(5), 609-619. doi: 10.1016/S1470-2045(21)00056-5 PMID: 33845034
- Min, H.Y.; Lee, H.Y. Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Arch. Pharm. Res., 2021, 44(2), 146-164. doi: 10.1007/s12272-021-01312-y PMID: 33608812
- Ortiz, M.; Wabel, E.; Mitchell, K.; Horibata, S. Mechanisms of chemotherapy resistance in ovarian cancer. Cancer Drug Resist., 2022, 5(2), 304-316. doi: 10.20517/cdr.2021.147 PMID: 35800369
- Eslami, M.; Davarpanah, A.; Rismanbaf, A.H.; Taghizadeh-Hesary, F.; Dorgaleleh, S.; Memar, S.S.; Nayernia, K.; Behnam, B. Molecular mechanisms for targeting metastatic cancer cells and to overcome or prevent chemotherapy resistance. Preprints, 2023. doi: 10.20944/preprints202306.0602.v1.
- Kanno, Y.; Chen, C.Y.; Lee, H.L.; Chiou, J.F.; Chen, Y.J. Molecular mechanisms of chemotherapy resistance in head and neck cancers. Front. Oncol., 2021, 11, 640392. doi: 10.3389/fonc.2021.640392 PMID: 34026617
- Zahedipour, F.K.; Prashant, K.; Sahebkar, A. Mechanisms of multidrug resistance in cancer. In: Aptamers Engineered Nanocarriers for Cancer Therapy; , 2023; pp. 51-83. doi: 10.1016/B978-0-323-85881-6.00002-6.
- George, I.A.C.; Chauhan, R.; Dhawale, R.E.; Iyer, R.; Limaye, S.; Sankaranarayanan, R.; Kumar, P.; Venkataramanan, R. Insights into therapy resistance in cervical cancer. Adv. Cancer Bio. Metasis, 2022, 6(4), 100074. doi: 10.1016/j.adcanc.2022.100074.
- Mann, M.; Singh, V.P.; Kumar, L. Cervical cancer: A tale from HPV infection to PARP inhibitors. Genes Dis., 2023, 10(4), 1445-1456. doi: 10.1016/j.gendis.2022.09.014 PMID: 37397551
- Lai, J.; Yang, S.; Lin, Z.; Huang, W.; Li, X.; Li, R.; Tan, J.; Wang, W. Update on chemoresistance mechanisms to first-line chemotherapy for gallbladder cancer and potential reversal strategies. Am. J. Clin. Oncol., 2023, 46(4), 131-141. doi: 10.1097/COC.0000000000000989 PMID: 36867653
- Fedotcheva, T.A.; Shimanovsky, N.L. Pharmacological strategies for overcoming multidrug resistance to chemotherapy. Pharm. Chem. J., 2023, 56(10), 1307-1313. doi: 10.1007/s11094-023-02790-8 PMID: 36683825
- Rose, P.G.; Ali, S.; Watkins, E.; Thigpen, J.T.; Deppe, G.; Clarke-Pearson, D.L.; Insalaco, S. Long-term follow-up of a randomized trial comparing concurrent single agent cisplatin, cisplatin-based combination chemotherapy, or hydroxyurea during pelvic irradiation for locally advanced cervical cancer: A gynecologic oncology group study. J. Clin. Oncol., 2007, 25(19), 2804-2810. doi: 10.1200/JCO.2006.09.4532 PMID: 17502627
- Kumar, L.; Gupta, S. Integrating chemotherapy in the management of cervical cancer: A critical appraisal. Oncology, 2016, 91, 8-17. doi: 10.1159/000447576 PMID: 27464068
- Katsumata, N.; Yoshikawa, H.; Kobayashi, H.; Saito, T.; Kuzuya, K.; Nakanishi, T.; Yasugi, T.; Yaegashi, N.; Yokota, H.; Kodama, S.; Mizunoe, T.; Hiura, M.; Kasamatsu, T.; Shibata, T.; Kamura, T.; Japan, G. Phase III randomised controlled trial of neoadjuvant chemotherapy plus radical surgery vs radical surgery alone for stages IB2, IIA2, and IIB cervical cancer: A Japan Clinical Oncology Group trial (JCOG 0102). Br. J. Cancer, 2013, 108(10), 1957-1963. doi: 10.1038/bjc.2013.179 PMID: 23640393
- Lin, S.R.; Chang, C.H.; Hsu, C.F.; Tsai, M.J.; Cheng, H.; Leong, M.K.; Sung, P.J.; Chen, J.C.; Weng, C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol., 2020, 177(6), 1409-1423. doi: 10.1111/bph.14816 PMID: 31368509
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules, 2021, 26(4), 1109. doi: 10.3390/molecules26041109 PMID: 33669817
- Andrade, M.A.; Braga, M.A.; Cesar, P.H.S.; Trento, M.V.C.; Espósito, M.A.; Silva, L.F.; Marcussi, S. Anticancer properties of essential oils: An overview. Curr. Cancer Drug Targets, 2018, 18(10), 957-966. doi: 10.2174/1568009618666180102105843 PMID: 29295695
- Abd Rashid, N.; Mohamad Najib, N.H.; Abdul Jalil, N.A.; Teoh, S.L. Essential oils in cervical cancer: Narrative review on current insights and future prospects. Antioxidants, 2023, 12(12), 2109. doi: 10.3390/antiox12122109 PMID: 38136228
- Singh, T.; Aggarwal, N.; Thakur, K.; Chhokar, A.; Yadav, J.; Tripathi, T.; Jadli, M.; Bhat, A.; Kumar, A.; Narula, R.H.; Gupta, P.; Khurana, A.; Bharti, A.C. Evaluation of therapeutic potential of selected plant-derived homeopathic medicines for their action against cervical cancer. Homeopathy, 2023, 112(4), 262-274. doi: 10.1055/s-0042-1756436 PMID: 36858077
- Pal, A.; Das, S.; Basu, S.; Kundu, R. Apoptotic and autophagic death union by Thuja occidentalis homeopathic drug in cervical cancer cells with Thujone as the bioactive principle. J. Integr. Med., 2022, 20(5), 463-472. doi: 10.1016/j.joim.2022.06.004 PMID: 35752587
- Tsiri, D.; Graikou, K.; Pobłocka-Olech, L.; Krauze-Baranowska, M.; Spyropoulos, C.; Chinou, I. Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland-antimicrobial activity. Molecules, 2009, 14(11), 4707-4715. doi: 10.3390/molecules14114707 PMID: 19935470
- Yatagai, M.; Sato, T.; Takahashi, T. Terpenes of leaf oils from Cupressaceae. Biochem. Syst. Ecol., 1985, 13(4), 377-385. doi: 10.1016/0305-1978(85)90081-X
- Svajdlenka, E.; Pavol, M.; Grancai, D.; Tomasko, I. Essential oil composition of Thuja occidentalis L. samples from Slovakia. J. Essent. Oil Res., 2011, 11, 532-536. doi: 10.1080/10412905.1999.9701208
- Buben, I.; Karmazín, M.; Trojánková, J.; Nova, D. Seasonal variability in the contents and composition of essential oil in various Thuja species occurring in Czechoslovakia. Acta Hortic., 1992, (1), 200-203. doi: 10.17660/ActaHortic.1992.306.21
- Kéïta, S.M.; Vincent, C.; Schmidt, J.P.; Arnason, J.T. Insecticidal effects of Thuja occidentalis (Cupressaceae) essential oil on Callosobruchus maculatus . Can. J. Plant Sci., 2000, 81, 173-177. doi: 10.4141/P00-059
- Von Rudloff, E.; Lapp Martin, S.; Yeh Francis, C. Chemosystematic study of Thuja plicata : Multivariate analysis of leaf oil terpene composition. Biochem. Syst. Ecol., 1988, 16, 199-125. doi: 10.1016/0305-1978(88)90083-X.
- von Rudloff, E. Gasliquid chromatography of terpenes VI. The volatile oil of Thuja plicata Donn. Phytochemistry, 1962, 1(3), 195-202. doi: 10.1016/S0031-9422(00)82822-8
- Naser, B.; Bodinet, C.; Tegtmeier, M.; Lindequist, U. Thuja occidentalis (Arbor vitae): A review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complement. Alternat. Med., 2005, 2(1), 69-78. doi: 10.1093/ecam/neh065 PMID: 15841280
- Caruntu, S.; Ciceu, A.; Olah, N.K.; Don, I.; Hermenean, A.; Cotoraci, C. Thuja occidentalis L. (Cupressaceae): Ethnobotany, phytochemistry and biological activity. Molecules, 2020, 25(22), 5416. doi: 10.3390/molecules25225416 PMID: 33228192
- Lee, J.Y.; Park, H.; Lim, W.; Song, G. Therapeutic potential of α,β‐thujone through metabolic reprogramming and caspase‐dependent apoptosis in ovarian cancer cells. J. Cell. Physiol., 2021, 236(2), 1545-1558. doi: 10.1002/jcp.30086 PMID: 33000501
- Lee, J.Y.; Park, H.; Lim, W.; Song, G. α,β-Thujone suppresses human placental choriocarcinoma cells via metabolic disruption. Reproduction, 2020, 159(6), 745-756. doi: 10.1530/REP-20-0018 PMID: 32240978
- Torres, A.; Vargas, Y.; Uribe, D.; Carrasco, C.; Torres, C.; Rocha, R.; Oyarzún, C.; San Martín, R.; Quezada, C. Pro-apoptotic and anti-angiogenic properties of the α /β-thujone fraction from Thuja occidentalis on glioblastoma cells. J. Neurooncol., 2016, 128(1), 9-19. doi: 10.1007/s11060-016-2076-2 PMID: 26900077
- Antos, J.A.; Filipescu, C.N.; Negrave, R.W. Ecology of western redcedar (Thuja plicata ): Implications for management of a high-value multiple-use resource. For. Ecol. Manage., 2016, 375, 211-222. doi: 10.1016/j.foreco.2016.05.043
- Western Redcedar. 1990. Available from: https://www.srs.fs.usda.gov/pubs/misc/ag_654/volume_1/thuja/plicata.htm
- Han, X.; Parker, T.L. Arborvitae ( Thuja plicata ) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts. Biochim. Open, 2017, 4, 56-60. doi: 10.1016/j.biopen.2017.02.003 PMID: 29450142
- Hudson, J.; Kuo, M.; Vimalanathan, S. The antimicrobial properties of cedar leaf (Thuja plicata ) oil; A safe and efficient decontamination agent for buildings. Int. J. Environ. Res. Public Health, 2011, 8(12), 4477-4487. doi: 10.3390/ijerph8124477 PMID: 22408584
- Vimalanathan, S.; Huson, J. The activity of cedar leaf oil vapor against respiratory viruses: Practical applications. J. Appl. Pharm. Sci., 2013, 3, 11-15. doi: 10.7324/JAPS.2013.31103.
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat., 2011, 10(2), 128-134. doi: 10.1002/pst.426 PMID: 22328315
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res., 2019, 47(8), e47. doi: 10.1093/nar/gkz114 PMID: 30783653
- Ulgen, E.; Ozisik, O.; Sezerman, O.U. pathfindR: An R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front. Genet., 2019, 10, 858. doi: 10.3389/fgene.2019.00858 PMID: 31608109
- Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13. doi: 10.1007/s13659-020-00293-7 PMID: 33389713
- Biswas, R.; Mandal, S.K.; Dutta, S.; Bhattacharyya, S.S.; Boujedaini, N.; Khuda-Bukhsh, A.R. Thujone‐rich fraction of Thuja occidentalis demonstrates major anti‐cancer potentials: Evidences from in vitro studies on A375 cells. Evid. Based Complement. Alternat. Med., 2011, 2011(1), 568148. doi: 10.1093/ecam/neq042 PMID: 21647317
- Elansary, H.O.; Abdelgaleil, S.A.M.; Mahmoud, E.A.; Yessoufou, K.; Elhindi, K.; El-Hendawy, S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement. Altern. Med., 2018, 18(1), 214. doi: 10.1186/s12906-018-2262-1 PMID: 30005652
- R, E.B.; Jesubatham, P.D.; v M, Belin, G.V.M.; Vismanathan, S.; Srividya, S. Non-toxic and non teratogenic extract of Thuja orientalis L. inhibited angiogenesis in zebra fish and suppressed the growth of human lung cancer cell line. Biomed. Pharmacother., 2018, 106, 699-706. doi: 10.1016/j.biopha.2018.07.010 PMID: 29990861
- Saha, S.; Bhattacharjee, P.; Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Khurana, A.; Nayak, D.; Manchanda, R.; Chakrabarty, R.; Das, T.; Sa, G. Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells. Oncol. Rep., 2014, 31(4), 1589-1598. doi: 10.3892/or.2014.2993 PMID: 24482097
- Siveen, K.S.; Kuttan, G. Thujone inhibits lung metastasis induced by B16F-10 melanoma cells in C57BL/6 mice. Can. J. Physiol. Pharmacol., 2011, 89(10), 691-703. doi: 10.1139/y11-067 PMID: 21905822
- Swor, K.; Satyal, P.; Poudel, A.; Setzer, W.N. Gymnosperms of Idaho: Chemical compositions and enantiomeric distributions of essential oils of Abies lasiocarpa, Picea engelmannii, Pinus contorta, Pseudotsuga menziesii, and Thuja plicata. Molecules, 2023, 28(6), 2477. doi: 10.3390/molecules28062477 PMID: 36985451
- Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; Janik-Olchawa, N.; Czyż, J.; Ryszawy, D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro . Fitoterapia, 2019, 134, 172-181. doi: 10.1016/j.fitote.2019.02.020 PMID: 30825580
- Kozics, K.; Buckova, M.; Puskarova, A.; Kalaszova, V.; Cabicarova, T.; Pangallo, D. The effect of ten essential oils on several cutaneous drug-resistant microorganisms and their cyto/genotoxic and antioxidant properties. Molecules, 2019, 24(24), 4570. doi: 10.3390/molecules24244570.
- Liu, Q.; Li, A.; Tian, Y.; Wu, J.D.; Liu, Y.; Li, T.; Chen, Y.; Han, X.; Wu, K. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev., 2016, 31, 61-71. doi: 10.1016/j.cytogfr.2016.08.002 PMID: 27578214
- Waugh, D.J.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res., 2008, 14(21), 6735-6741. doi: 10.1158/1078-0432.CCR-07-4843 PMID: 18980965
- Knall, C.; Worthen, G.S.; Johnson, G.L. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc. Natl. Acad. Sci. USA, 1997, 94(7), 3052-3057. doi: 10.1073/pnas.94.7.3052 PMID: 9096344
- Fernandez-Avila, L.; Castro-Amaya, A.M.; Molina-Pineda, A.; Hernández-Gutiérrez, R.; Jave-Suarez, L.F.; Aguilar-Lemarroy, A. The Value of CXCL1, CXCL2, CXCL3, and CXCL8 as potential prognosis markers in cervical cancer: Evidence of E6/E7 from HPV16 and 18 in chemokines regulation. Biomedicines, 2023, 11(10), 2655. doi: 10.3390/biomedicines11102655 PMID: 37893029
- Xiong, X.; Liao, X.; Qiu, S.; Xu, H.; Zhang, S.; Wang, S.; Ai, J.; Yang, L. CXCL8 in tumor biology and its implications for clinical translation. Front. Mol. Biosci., 2022, 9, 723846. doi: 10.3389/fmolb.2022.723846 PMID: 35372515
- Chen, X.; Gu, X.; Shan, Y.; Tang, W.; Yuan, J.; Zhong, Z.; Wang, Y.; Huang, W.; Wan, B.; Yu, L. Identification of a novel human lactate dehydrogenase gene LDHAL6A, which activates transcriptional activities of AP1(PMA). Mol. Biol. Rep., 2009, 36(4), 669-676. doi: 10.1007/s11033-008-9227-2 PMID: 18351441
- Eferl, R.; Wagner, E.F. AP-1: A double-edged sword in tumorigenesis. Nat. Rev. Cancer, 2003, 3(11), 859-868. doi: 10.1038/nrc1209 PMID: 14668816
- Ran, L.; Mou, X.; Peng, Z.; Li, X.; Li, M.; Xu, D.; Yang, Z.; Sun, X.; Yin, T. ADORA2A promotes proliferation and inhibits apoptosis through PI3K/AKT pathway activation in colorectal carcinoma. Sci. Rep., 2023, 13(1), 19477. doi: 10.1038/s41598-023-46521-1 PMID: 37945707
- Jing, N.; Zhang, K.; Chen, X.; Liu, K.; Wang, J.; Xiao, L.; Zhang, W.; Ma, P.; Xu, P.; Cheng, C.; Wang, D.; Zhao, H.; He, Y.; Ji, Z.; Xin, Z.; Sun, Y.; Zhang, Y.; Bao, W.; Gong, Y.; Fan, L.; Ji, Y.; Zhuang, G.; Wang, Q.; Dong, B.; Zhang, P.; Xue, W.; Gao, W.Q.; Zhu, H.H. ADORA2A-driven proline synthesis triggers epigenetic reprogramming in neuroendocrine prostate and lung cancers. J. Clin. Invest., 2023, 133(24), e168670. doi: 10.1172/JCI168670 PMID: 38099497
- Zhang, Y.; Gu, J.; Wang, L.; Zhao, Z.; Pan, Y.; Chen, Y. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity. Mol. Cell. Endocrinol., 2017, 439, 133-140. doi: 10.1016/j.mce.2016.10.036 PMID: 27815211
- Saigusa, H.; Mimura, I.; Kurata, Y.; Tanaka, T.; Nangaku, M. Hypoxia‐inducible lncRNA MIR210HG promotes HIF1α expression by inhibiting miR‐93‐5p in renal tubular cells. FEBS J., 2023, 290(16), 4040-4056. doi: 10.1111/febs.16794 PMID: 37029581
- Li, Z.Y.; Xie, Y.; Deng, M.; Zhu, L.; Wu, X.; Li, G.; Shi, N.X.; Wen, C.; Huang, W.; Duan, Y.; Yin, Z.; Lin, X.J. c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett., 2022, 526, 322-334. doi: 10.1016/j.canlet.2021.11.006 PMID: 34767926
- Wang, A.H.; Jin, C.H.; Cui, G.Y.; Li, H.Y.; Wang, Y.; Yu, J.J.; Wang, R.F.; Tian, X.Y. MIR210HG promotes cell proliferation and invasion by regulating miR-503-5p/TRAF4 axis in cervical cancer. Aging (Albany NY), 2020, 12(4), 3205-3217. doi: 10.18632/aging.102799 PMID: 32087604
- Yu, T.; Li, G.; Wang, C.; Gong, G.; Wang, L.; Li, C.; Chen, Y.; Wang, X. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis. RNA Biol., 2021, 18(12), 2513-2530. doi: 10.1080/15476286.2021.1930755 PMID: 34110962
- Bedard, K.; Jaquet, V.; Krause, K.H. NOX5: From basic biology to signaling and disease. Free Radic. Biol. Med., 2012, 52(4), 725-734. doi: 10.1016/j.freeradbiomed.2011.11.023 PMID: 22182486
- Salcher, S.; Hermann, M.; Kiechl-Kohlendorfer, U.; Ausserlechner, M.J.; Obexer, P. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy. Mol. Cancer, 2017, 16(1), 95. doi: 10.1186/s12943-017-0661-4 PMID: 28545464
- Tong, S.; Xia, T.; Fan, K.; Jiang, K.; Zhai, W.; Li, J-S.; Wang, S-H.; Wang, J-J. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein. Oncotarget, 2016, 7(39), 64260-64273. doi: 10.18632/oncotarget.11728 PMID: 27588399
- Zhou, P.J.; Wang, X.; An, N.; Wei, L.; Zhang, L.; Huang, X.; Zhu, H.H.; Fang, Y.X.; Gao, W.Q. Loss of Par3 promotes prostatic tumorigenesis by enhancing cell growth and changing cell division modes. Oncogene, 2019, 38(12), 2192-2205. doi: 10.1038/s41388-018-0580-x PMID: 30467379
- Stacker, S.; Achen, M. Emerging roles for VEGF-D in human disease. Biomolecules, 2018, 8(1), 1. doi: 10.3390/biom8010001 PMID: 29300337
- Zhang, Q.; Zheng, L.; Bai, Y.; Su, C.; Che, Y.; Xu, J.; Sun, K.; Ni, J.; Huang, L.; Shen, Y.; Jia, L.; Xu, L.; Yin, R.; Li, M.; Hu, J. ITPR1-AS1 promotes small cell lung cancer metastasis by facilitating P21 splicing and stabilizing DDX3X to activate the cRaf-MEK-ERK cascade. Cancer Lett., 2023, 577, 216426. doi: 10.1016/j.canlet.2023.216426 PMID: 37820992
- Wu, D.; Li, D.; Liu, Z.; Liu, X.; Zhou, S.; Duan, H. Role and underlying mechanism of SPATA12 in oxidative damage. Oncol. Lett., 2018, 15(3), 3676-3684. doi: 10.3892/ol.2018.7749 PMID: 29467887
- Dan, L.; Lifang, Y.; Guangxiu, L. Expression and possible functions of a novel gene SPATA12 in human testis. J. Androl., 2007, 28(4), 502-512. doi: 10.2164/jandrol.106.001560 PMID: 17251597
- Zhang, Y.; Yang, L.; Lin, Y.; Rong, Z.; Liu, X.; Li, D. SPATA12 and its possible role in DNA damage induced by ultraviolet-C. PLoS One, 2013, 8(10), e78201. doi: 10.1371/journal.pone.0078201 PMID: 24205157
- Aguilar-Rojas, A.; Huerta-Reyes, M.; Maya-Núñez, G.; Arechavaleta-Velásco, F.; Conn, P.M.; Ulloa-Aguirre, A.; Valdés, J. Gonadotropin-releasing hormone receptor activates GTPase RhoA and inhibits cell invasion in the breast cancer cell line MDA-MB-231. BMC Cancer, 2012, 12(1), 550. doi: 10.1186/1471-2407-12-550 PMID: 23176180
- Dondi, D.; Festuccia, C.; Piccolella, M.; Bologna, M.; Motta, M. GnRH agonists and antagonists decrease the metastatic progression of human prostate cancer cell lines by inhibiting the plasminogen activator system. Oncol. Rep., 2006, 15(2), 393-400. doi: 10.3892/or.15.2.393 PMID: 16391860
- Emons, G.; Müller, V.; Ortmann, O.; Schulz, K.D. Effects of LHRH-analogues on mitogenic signal transduction in cancer cells. J. Steroid Biochem. Mol. Biol., 1998, 65(1-6), 199-206. doi: 10.1016/S0960-0760(97)00189-1 PMID: 9699874
- Fister, S.; Günthert, A.R.; Emons, G.; Gründker, C. Gonadotropin-releasing hormone type II antagonists induce apoptotic cell death in human endometrial and ovarian cancer cells in vitro and in vivo . Cancer Res., 2007, 67(4), 1750-1756. doi: 10.1158/0008-5472.CAN-06-3222 PMID: 17308117
- Suo, L.; Chang, X.; Xu, N.; Ji, H. The anti-proliferative activity of GnRH through downregulation of the Akt/ERK Pathways in pancreatic cancer. Front. Endocrinol. (Lausanne), 2019, 10, 370. doi: 10.3389/fendo.2019.00370 PMID: 31263453
- von Alten, J.; Fister, S.; Schulz, H.; Viereck, V.; Frosch, K.H.; Emons, G.; Gründker, C. GnRH analogs reduce invasiveness of human breast cancer cells. Breast Cancer Res. Treat., 2006, 100(1), 13-21. doi: 10.1007/s10549-006-9222-z PMID: 16758121
- Du, J.; Xiang, Y.; Liu, H.; Liu, S.; Kumar, A.; Xing, C.; Wang, Z. RIPK1 dephosphorylation and kinase activation by PPP1R3G/PP1γ promote apoptosis and necroptosis. Nat. Commun., 2021, 12(1), 7067. doi: 10.1038/s41467-021-27367-5 PMID: 34862394
- Zhuo, X.; Chen, L.; Lai, Z.; Liu, J.; Li, S.; Hu, A.; Lin, Y. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) correlates with poor prognosis and immune infiltration in lung adenocarcinoma. Bioengineered, 2021, 12(1), 8336-8346. doi: 10.1080/21655979.2021.1985817 PMID: 34592886
- Niedernberg, A.; Tunaru, S.; Blaukat, A.; Ardati, A.; Kostenis, E. Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cell. Signal., 2003, 15(4), 435-446. doi: 10.1016/S0898-6568(02)00119-5 PMID: 12618218
- Zeng, S.; Liang, Y.; Hu, H.; Wang, F.; Liang, L. Endothelial cell-derived S1P promotes migration and stemness by binding with GPR63 in colorectal cancer. Pathol. Res. Pract., 2022, 240, 154197. doi: 10.1016/j.prp.2022.154197 PMID: 36371997
- Diao, L.; Wang, S.; Sun, Z. Long noncoding RNA GAPLINC promotes gastric cancer cell proliferation by acting as a molecular sponge of miR-378 to modulate MAPK1 expression. OncoTargets Ther., 2018, 11, 2797-2804. doi: 10.2147/OTT.S165147 PMID: 29785127
- Hu, Y.; Wang, J.; Qian, J.; Kong, X.; Tang, J.; Wang, Y.; Chen, H.; Hong, J.; Zou, W.; Chen, Y.; Xu, J.; Fang, J.Y. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res., 2014, 74(23), 6890-6902. doi: 10.1158/0008-5472.CAN-14-0686 PMID: 25277524
- Luo, Y.; Ouyang, J.; Zhou, D.; Zhong, S.; Wen, M.; Ou, W.; Yu, H.; Jia, L.; Huang, Y.; Long Noncoding, R.N.A. Long noncoding RNA GAPLINC promotes cells migration and invasion in colorectal cancer cell by regulating miR-34a/c-MET signal pathway. Dig. Dis. Sci., 2018, 63(4), 890-899. doi: 10.1007/s10620-018-4915-9 PMID: 29427222
- Wang, S.; Pang, L.; Liu, Z.; Meng, X. SERPINE1 associated with remodeling of the tumor microenvironment in colon cancer progression: A novel therapeutic target. BMC Cancer, 2021, 21(1), 767. doi: 10.1186/s12885-021-08536-7 PMID: 34215248
- Sheng, Y.H.; He, Y.; Hasnain, S.Z.; Wang, R.; Tong, H.; Clarke, D.T.; Lourie, R.; Oancea, I.; Wong, K.Y.; Lumley, J.W.; Florin, T.H.; Sutton, P.; Hooper, J.D.; McMillan, N.A.; McGuckin, M.A. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene, 2017, 36(5), 700-713. doi: 10.1038/onc.2016.241 PMID: 27399336
- Sheng, Y.; Wong, K.Y.; Seim, I.; Wang, R.; He, Y.; Wu, A.; Patrick, M.; Lourie, R.; Schreiber, V.; Giri, R.; Ng, C.P.; Popat, A.; Hooper, J.; Kijanka, G.; Florin, T.H.; Begun, J.; Radford, K.J.; Hasnain, S.; McGuckin, M.A. MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene, 2019, 38(48), 7294-7310. doi: 10.1038/s41388-019-0951-y PMID: 31427737
- Chen, C.I.; Li, W.S.; Chen, H.P.; Liu, K.W.; Tsai, C.J.; Hung, W.J.; Yang, C.C. High expression of folate receptor alpha (FOLR1) is Associated with aggressive tumor behavior, poor response to chemoradiotherapy, and worse survival in rectal cancer. Technol. Cancer Res. Treat., 2022, 21, 15330338221141795. doi: 10.1177/15330338221141795 PMID: 36426547
- Nawaz, F.Z.; Kipreos, E.T. Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends Endocrinol. Metab., 2022, 33(3), 159-174. doi: 10.1016/j.tem.2021.12.003 PMID: 35094917
- Bouchard, D.; Morisset, D.; Bourbonnais, Y.; Tremblay, G.M. Proteins with whey-acidic-protein motifs and cancer. Lancet Oncol., 2006, 7(2), 167-174. doi: 10.1016/S1470-2045(06)70579-4 PMID: 16455481
- Madar, S.; Brosh, R.; Buganim, Y.; Ezra, O.; Goldstein, I.; Solomon, H.; Kogan, I.; Goldfinger, N.; Klocker, H.; Rotter, V. Modulated expression of WFDC1 during carcinogenesis and cellular senescence. Carcinogenesis, 2009, 30(1), 20-27. doi: 10.1093/carcin/bgn232 PMID: 18842679
- Liang, R.J.; Taylor, S.; Nahiyaan, N.; Song, J.; Murphy, C.J.; Dantas, E.; Cheng, S.; Hsu, T.W.; Ramsamooj, S.; Grover, R.; Hwang, S.K.; Ngo, B.; Cantley, L.C.; Rhee, K.Y.; Goncalves, M.D. GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase. Cancer Metab., 2021, 9(1), 12. doi: 10.1186/s40170-021-00246-9 PMID: 33762003
- Weng, Y.; Fan, X.; Bai, Y.; Wang, S.; Huang, H.; Yang, H.; Zhu, J.; Zhang, F. SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization. Cell Death Discov., 2018, 4(1), 38. doi: 10.1038/s41420-018-0038-5 PMID: 29531835
- Luo, W.; Gangwal, K.; Sankar, S.; Boucher, K.M.; Thomas, D.; Lessnick, S.L. GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewings sarcoma oncogenesis and therapeutic resistance. Oncogene, 2009, 28(46), 4126-4132. doi: 10.1038/onc.2009.262 PMID: 19718047
- Hemming, M.L.; Coy, S.; Lin, J.R.; Andersen, J.L.; Przybyl, J.; Mazzola, E.; Abdelhamid Ahmed, A.H.; van de Rijn, M.; Sorger, P.K.; Armstrong, S.A.; Demetri, G.D.; Santagata, S. HAND1 and BARX1 act as transcriptional and anatomic determinants of malignancy in gastrointestinal stromal tumor. Clin. Cancer Res., 2021, 27(6), 1706-1719. doi: 10.1158/1078-0432.CCR-20-3538 PMID: 33451979
- Hemming, M.L.; Lawlor, M.A.; Zeid, R.; Lesluyes, T.; Fletcher, J.A.; Raut, C.P.; Sicinska, E.T.; Chibon, F.; Armstrong, S.A.; Demetri, G.D.; Bradner, J.E. Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc. Natl. Acad. Sci. USA, 2018, 115(25), E5746-E5755. doi: 10.1073/pnas.1802079115 PMID: 29866822
- Huang, X.; Wang, Z.; Zhang, J.; Ni, X.; Bai, G.; Cao, J.; Zhang, C.; Han, Z.; Liu, T. BARX1 promotes osteosarcoma cell proliferation and invasion by regulating HSPA6 expression. J. Orthop. Surg. Res., 2023, 18(1), 211. doi: 10.1186/s13018-023-03690-z PMID: 36927457
- Sun, G.; Ge, Y.; Zhang, Y.; Yan, L.; Wu, X.; Ouyang, W.; Wang, Z.; Ding, B.; Zhang, Y.; Long, G.; Liu, M.; Shi, R.; Zhou, H.; Chen, Z.; Ye, Z. Transcription factors BARX1 and DLX4 contribute to progression of clear cell renal cell carcinoma via promoting proliferation and epithelialmesenchymal transition. Front. Mol. Biosci., 2021, 8, 626328. doi: 10.3389/fmolb.2021.626328 PMID: 34124141
- Zhang, T.; Qiu, L.; Cao, J.; Li, Q.; Zhang, L.; An, G.; Ni, J.; Jia, H.; Li, S.; Li, K. ZFP36 loss-mediated BARX1 stabilization promotes malignant phenotypes by transactivating master oncogenes in NSCLC. Cell Death Dis., 2023, 14(8), 527. doi: 10.1038/s41419-023-06044-z PMID: 37587140
- Kumar, D.; Asthana, S. Autophagy and metabolism: Potential target for cancer therapy; Academic Press: London, United Kingdom; San Diego, CA, 2022.
- Boese, A.C.; Kang, S. Mitochondrial metabolism-mediated redox regulation in cancer progression. Redox Biol., 2021, 42, 101870. doi: 10.1016/j.redox.2021.101870 PMID: 33509708
- Shi, T.; Polderman, P.E.; Pagès-Gallego, M.; van Es, R.M.; Vos, H.R.; Burgering, B.M.T.; Dansen, T.B. p53 forms redox-dependent proteinprotein interactions through cysteine 277. Antioxidants, 2021, 10(10), 1578. doi: 10.3390/antiox10101578 PMID: 34679713
- He, Z.; Simon, H.U. A novel link between p53 and ROS. Cell Cycle, 2013, 12(2), 201-202. doi: 10.4161/cc.23418 PMID: 23287470
- Montero, J.; Dutta, C.; van Bodegom, D.; Weinstock, D.; Letai, A. p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ., 2013, 20(11), 1465-1474. doi: 10.1038/cdd.2013.52 PMID: 23703322
- Santos, P.A.S.R.; Avanço, G.B.; Nerilo, S.B.; Marcelino, R.I.A.; Janeiro, V.; Valadares, M.C.; Machinski, M. Assessment of cytotoxic activity of rosemary ( Rosmarinus officinalis L.), turmeric ( Curcuma longa L.), and ginger ( Zingiber officinale R.) essential oils in cervical cancer cells (HeLa). ScientificWorldJournal, 2016, 2016, 1-8. doi: 10.1155/2016/9273078 PMID: 28042599
- Rezaieseresht, H.; Shobeiri, S.S.; Kaskani, A. Chenopodium botrys essential oil as a source of sesquiterpenes to induce apoptosis and G1 cell cycle arrest in cervical cancer cells. Iran. J. Pharm. Res., 2020, 19(2), 341-351. PMID: 33224241
- Nikakhtar, Z.; Hasanzadeh, M.; Hamedi, S.S.; Najafi, M.N.; Tavassoli, A.P.; Feyzabadi, Z.; Meshkat, Z.; Saki, A. The efficacy of vaginal suppository based on myrtle in patients with cervicovaginal human papillomavirus infection: A randomized, double‐blind, placebo trial. Phytother. Res., 2018, 32(10), 2002-2008. doi: 10.1002/ptr.6131 PMID: 29943384
- Pukárová, A.; Bučková, M.; Kraková, L.; Pangallo, D.; Kozics, K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep., 2017, 7(1), 8211. doi: 10.1038/s41598-017-08673-9 PMID: 28811611
- McGregor, R.C.; Parker, K.A.; Hornby, J.M.; Latta, L.C., IV Microbial population dynamics under microdoses of the essential oil arborvitae. BMC Complement. Altern. Med., 2019, 19(1), 247. doi: 10.1186/s12906-019-2666-6 PMID: 31488126
- Reis, D.; Jones, T. Aromatherapy: Using essential oils as a supportive therapy. Clin. J. Oncol. Nurs., 2017, 21(1), 16-19. doi: 10.1188/17.CJON.16-19 PMID: 28107335
Supplementary files
