Curcumin Suppresses M2 Macrophage-derived Paclitaxel Chemoresistance through Inhibition of PI3K-AKT/STAT3 Signaling
- Authors: Deswal B.1, Bagchi U.1, Kapoor S.1
-
Affiliations:
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University
- Issue: Vol 24, No 2 (2024)
- Pages: 146-156
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644059
- DOI: https://doi.org/10.2174/0118715206275259231105184959
- ID: 644059
Cite item
Full Text
Abstract
Background:Breast cancer is the leading cancer in women worldwide. The development of chemoresistance that leads to recurrence and mortality remains a major concern. M2-type tumor-associated macrophages (TAMs), present in the breast tumor microenvironment, secrete various cytokines and growth factors that induce chemoresistance. Curcumin, isolated from Curcuma longa, is known to sensitize cancer cells and increase the efficacy of standard chemotherapeutic agents. However, the effect of curcumin on the chemoresistancegenerating ability of M2 TAMs is not known.
Objective:The study aimed to determine whether curcumin could modulate M2 macrophages and suppress their ability to induce resistance to paclitaxel in breast cancer cells.
Methods:THP-1 cells were differentiated to M2 macrophages using PMA and IL-4/IL-13 in the presence or absence of curcumin in vitro. The effect of the conditioned medium of M2 macrophages on inducing resistance towards paclitaxel in MCF-7 or MDA-MB-231 cells was analyzed by cell proliferation assay, cell cycle analysis, wound healing and transwell migration assays. RT-PCR analysis was used to determine the mRNA expression of anti-inflammatory cytokines in M2 macrophages. The effect of curcumin on TGF-β, pAKT, and pSTAT3 in M2 macrophages was analyzed by western blotting.
Results:Our data revealed that the M2 macrophages polarized in the presence of curcumin lacked the ability to generate chemoresistance to paclitaxel in breast cancer cell lines. Transcriptomic analysis revealed the expression of TGF-β to be highest amongst M2 macrophage-secreted cytokines. We observed that purified recombinant TGF-β generated chemoresistance in breast cancer cells. We found that curcumin treatment abrogated the expression of TGF-β in M2 macrophages and suppressed their ability to induce chemoresistance in breast cancer cells. STITCH analysis showed strong interaction between curcumin and AKT/STAT3 pathway. Mechanistically, curcumin inhibited PI3K/AKT/STAT3 signaling in M2 macrophages. Western blot analysis revealed that M2 TAM CM, but not curcumin-treated macrophage CM, activated COX2/NF-κB in breast cancer cells.
Conclusion:Our results showed that curcumin reduced the chemoresistance-generating ability of M2 TAMs. The study has revealed a non-cancer cell-autonomous mechanism by which curcumin partly overcomes the chemoresistance of paclitaxel in breast cancer.
About the authors
Bhawna Deswal
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University
Email: info@benthamscience.net
Urmi Bagchi
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University
Email: info@benthamscience.net
Sonia Kapoor
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University
Author for correspondence.
Email: info@benthamscience.net
References
- Jagetia, G.C.; Aggarwal, B.B. "Spicing up" of the immune system by curcumin. J. Clin. Immunol., 2007, 27(1), 19-35. doi: 10.1007/s10875-006-9066-7 PMID: 17211725
- Jiang, H.; Wei, H.; Wang, H. Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer. Cell Death Dis., 2022, 13(3), 206. doi: 10.1038/s41419-022-04632-z
- Mentoor, I.; Engelbrecht, A.M.; van Jaarsveld, P.J.; Nell, T. Chemoresistance: Intricate interplay between breast tumor cells and adipocytes in the tumor microenvironment. Front. Endocrinol., 2018, 9, 758. doi: 10.3389/fendo.2018.00758
- Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795. doi: 10.1172/JCI59643 PMID: 22378047
- Cassetta, L.; Pollard, J.W. Tumor-associated macrophages. Curr. Biol., 2020, 30(6), R246-R248. doi: 10.1016/j.cub.2020.01.031 PMID: 32208142
- Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol., 2010, 11(10), 889-896. doi: 10.1038/ni.1937 PMID: 20856220
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637. doi: 10.1021/acs.jmedchem.6b00975 PMID: 28074653
- Peng, Y.; Ao, M.; Dong, B. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther., 2021, 15, 4503-4525. doi: 10.2147/DDDT.S327378
- Pricci, M.; Girardi, B.; Giorgio, F.; Losurdo, G.; Ierardi, E.; Di Leo, A. Curcumin and colorectal cancer: From basic to clinical evidences. Int. J. Mol. Sci., 2020, 21(7), 2364. doi: 10.3390/ijms21072364 PMID: 32235371
- Wang, L.; Wang, C.; Tao, Z.; Zhao, L.; Zhu, Z.; Wu, W.; He, Y.; Chen, H.; Zheng, B.; Huang, X.; Yu, Y.; Yang, L.; Liang, G.; Cui, R.; Chen, T. Curcumin derivative WZ35 inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 460. doi: 10.1186/s13046-019-1424-4 PMID: 31703744
- Ohnishi, Y.; Sakamoto, T.; Zhengguang, L.; Yasui, H.; Hamada, H.; Kubo, H.; Nakajima, M. Curcumin inhibits epithelial mesenchymal transition in oral cancer cells via c Met blockade. Oncol. Lett., 2020, 19(6), 4177-4182. doi: 10.3892/ol.2020.11523 PMID: 32391111
- Ghasemi, F.; Shafiee, M.; Banikazemi, Z.; Pourhanifeh, M.H.; Khanbabaei, H.; Shamshirian, A.; Moghadam, S. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol. Res. Pract., 2019, 215(10), 152556. doi: 10.1016/j.prp.2019.152556
- Tang, X.; Ding, H.; Liang, M.; Chen, X.; Yan, Y.; Wan, N.; Chen, Q.; Zhang, J.; Cao, J. Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thorac. Cancer, 2021, 12(8), 1219-1230. doi: 10.1111/1759-7714.13904 PMID: 33656766
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930. doi: 10.3390/molecules24162930 PMID: 31412624
- Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376. doi: 10.3390/nu11102376 PMID: 31590362
- Chu, Y.W.; Liu, S.T.; Cheng, H.C.; Huang, S.M.; Chang, Y.L.; Chiang, C.P.; Liu, Y.C.; Wang, W.M. Opposing effects of zac1 and curcumin on AP-1-Regulated expressions of S100A7. PLoS One, 2015, 10(12), e0144175. doi: 10.1371/journal.pone.0144175 PMID: 26633653
- Nakamae, I.; Morimoto, T.; Shima, H.; Shionyu, M.; Fujiki, H.; Yoneda-Kato, N.; Yokoyama, T.; Kanaya, S.; Kakiuchi, K.; Shirai, T.; Meiyanto, E.; Kato, J. Curcumin derivatives verify the essentiality of ros upregulation in tumor suppression. Molecules, 2019, 24(22), 4067. doi: 10.3390/molecules24224067 PMID: 31717651
- Cheng, C.; Jiao, J.T.; Qian, Y.; Guo, X.Y.; Huang, J.; Dai, M.C.; Zhang, L.; Ding, X.P.; Zong, D.; Shao, J.F. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol. Med. Rep., 2016, 13(5), 3763-3770. doi: 10.3892/mmr.2016.5037 PMID: 27035875
- Khan, A.Q.; Ahmed, E.I.; Elareer, N.; Fathima, H.; Prabhu, K.S.; Siveen, K.S.; Kulinski, M.; Azizi, F.; Dermime, S.; Ahmad, A.; Steinhoff, M.; Uddin, S. Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the JAK/STAT3 signaling pathway. Int. J. Mol. Sci., 2020, 21(2), 438. doi: 10.3390/ijms21020438 PMID: 31936675
- Senthebane, D.A.; Rowe, A.; Thomford, N.E.; Shipanga, H.; Munro, D.; Mazeedi, M.A.M.A.; Almazyadi, H.A.M.; Kallmeyer, K.; Dandara, C.; Pepper, M.S.; Parker, M.I.; Dzobo, K. The role of tumor microenvironment in chemoresistance: To survive, keep your enemies closer. Int. J. Mol. Sci., 2017, 18(7), 1586. doi: 10.3390/ijms18071586 PMID: 28754000
- Farghadani, R.; Naidu, R. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer. Int. J. Mol. Sci., 2022, 23(4), 2144. doi: 10.3390/ijms23042144 PMID: 35216255
- Ham, I.H.; Wang, L.; Lee, D.; Woo, J.; Kim, T.; Jeong, H.; Oh, H.; Choi, K.; Kim, T.M.; Hur, H. Curcumin inhibits the cancer associated fibroblast derived chemoresistance of gastric cancer through the suppression of the JAK/STAT3 signaling pathway. Int. J. Oncol., 2022, 61(1), 85. doi: 10.3892/ijo.2022.5375 PMID: 35621145
- Mukherjee, S.; Hussaini, R.; White, R.; Atwi, D.; Fried, A.; Sampat, S.; Piao, L.; Pan, Q.; Banerjee, P. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol. Immunother., 2018, 67(5), 761-774. doi: 10.1007/s00262-018-2130-3 PMID: 29453519
- Gao, J.; Liang, Y.; Wang, L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front. Immunol., 2022, 13, 888713. doi: 10.3389/fimmu.2022.888713 PMID: 35844605
- Soni, V.K.; Mehta, A.; Ratre, Y.K. Counteracting action of curcumin on high glucose-induced chemoresistance in hepatic carcinoma cells. Front. Oncol., 2021, 11, 738961. doi: 10.3389/fonc.2021.738961
- Wu, M.F.; Huang, Y.H.; Chiu, L.Y.; Cherng, S.H.; Sheu, G.T.; Yang, T.Y. Curcumin induces apoptosis of chemoresistant lung cancer cells via ROS-Regulated p38 MAPK phosphorylation. Int. J. Mol. Sci., 2022, 23(15), 8248. doi: 10.3390/ijms23158248
- Sung, B.; Kunnumakkara, A.B.; Sethi, G.; Anand, P.; Guha, S.; Aggarwal, B.B. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol. Cancer Ther., 2009, 8(4), 959-970. doi: 10.1158/1535-7163.MCT-08-0905 PMID: 19372569
- Paciello, F.; Fetoni, A.R.; Mezzogori, D. The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity. Sci. Rep., 2020, 10(1), 1063. doi: 10.1038/s41598-020-57965-0
- Tian, N.; Shangguan, W.; Zhou, Z.; Yao, Y.; Fan, C.; Cai, L. Lin28b is involved in curcumin-reversed paclitaxel chemoresistance and associated with poor prognosis in hepatocellular carcinoma. J. Cancer, 2019, 10(24), 6074-6087. doi: 10.7150/jca.33421
- Farghadani, R.; Naidu, R. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer. Int. J. Mol. Sci., 2022, 23(4), 2144. doi: 10.3390/ijms23042144
- Kapoor, S.; Srivastava, S.; Panda, D. Indibulin dampens microtubule dynamics and produces synergistic antiproliferative effect with vinblastine in MCF-7 cells: Implications in cancer chemotherapy. Sci. Rep., 2018, 8(1), 12363. doi: 10.1038/s41598-018-30376-y PMID: 30120268
- Rai, A.; Kapoor, S.; Naaz, A.; Kumar, S.M.; Panda, D. Enhanced stability of microtubules contributes in the development of colchicine resistance in MCF-7 cells. Biochem. Pharmacol., 2017, 132, 38-47. doi: 10.1016/j.bcp.2017.02.018 PMID: 28242250
- Kapoor, S.; Panda, D. Kinetic stabilization of microtubule dynamics by indanocine perturbs EB1 localization, induces defects in cell polarity and inhibits migration of MDA-MB-231 cells. Biochem. Pharmacol., 2012, 83(11), 1495-1506. doi: 10.1016/j.bcp.2012.02.012 PMID: 22387536
- Rai, A.; Kapoor, S.; Singh, S.; Chatterji, B.P.; Panda, D. Transcription factor NF-κB associates with microtubules and stimulates apoptosis in response to suppression of microtubule dynamics in MCF-7 cells. Biochem. Pharmacol., 2015, 93(3), 277-289. doi: 10.1016/j.bcp.2014.12.007 PMID: 25536174
- Genin, M.; Clement, F.; Fattaccioli, A.; Raes, M.; Michiels, C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015, 15(1), 577. doi: 10.1186/s12885-015-1546-9 PMID: 26253167
- Wang, T.H.; Wang, H.S.; Soong, Y.K. Paclitaxel-induced cell death. Cancer, 2000, 88(11), 2619-2628. doi: 10.1002/1097-0142(20000601)88:113.0.CO;2-J PMID: 10861441
- Liu, K.; Cang, S.; Ma, Y.; Chiao, J.W. Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int., 2013, 13(1), 10. doi: 10.1186/1475-2867-13-10 PMID: 23388416
- Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-Mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767. doi: 10.3390/ijms20112767 PMID: 31195692
- Borges, G.A.; Elias, S.T.; Amorim, B.; de Lima, C.L.; Coletta, R.D.; Castilho, R.M.; Squarize, C.H.; Guerra, E.N.S. Curcumin downregulates the PI3KAKTMTOR pathway and inhibits growth and progression in head and neck cancer cells. Phytother. Res., 2020, 34(12), 3311-3324. doi: 10.1002/ptr.6780 PMID: 32628350
- Hart, J.R.; Liao, L.; Yates, J.R., III; Vogt, P.K. Essential role of Stat3 in PI3K-induced oncogenic transformation. Proc. Natl. Acad. Sci. USA, 2011, 108(32), 13247-13252. doi: 10.1073/pnas.1110486108 PMID: 21788516
- Wang, W.; Nag, S.; Zhang, R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem., 2014, 22(2), 264-289. doi: 10.2174/0929867321666141106124315 PMID: 25386819
- Lim, J.W.; Kim, H.; Kim, K.H. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab. Invest., 2001, 81(3), 349-360. doi: 10.1038/labinvest.3780243 PMID: 11310828
- Nowak, M.; Klink, M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells, 2020, 9(5), 1299. doi: 10.3390/cells9051299
- Li, H.; Yang, P.; Wang, J. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J. Hematol. Oncol., 2022, 15(1), 2. doi: 10.1186/s13045-021-01223-x
- Song, M.; Yeku, O.O. Rafiq, S Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat. Commun., 2020, 11(1), 6298. doi: 10.1038/s41467-020-20140-0
- Wang, N.; Wang, S.; Wang, X.; Zheng, Y.; Yang, B.; Zhang, J.; Pan, B.; Gao, J.; Wang, Z. Research trends in pharmacological modulation of tumor‐associated macrophages. Clin. Transl. Med., 2021, 11(1), e288. doi: 10.1002/ctm2.288 PMID: 33463063
- Li, H.; Luo, F.; Jiang, X.; Zhang, W.; Xiang, T.; Pan, Q.; Cai, L.; Zhao, J.; Weng, D.; Li, Y.; Dai, Y.; Sun, F.; Yang, C.; Huang, Y.; Yang, J.; Tang, Y.; Han, Y.; He, M.; Zhang, Y.; Song, L.; Xia, J.C. CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype. J. Immunother. Cancer, 2022, 10(3), e004029. doi: 10.1136/jitc-2021-004029 PMID: 35277458
- Larionova, I.; Cherdyntseva, N.; Liu, T.; Patysheva, M.; Rakina, M.; Kzhyshkowska, J. Interaction of tumor-associated macrophages and cancer chemotherapy. OncoImmunology, 2019, 8(7), 1596004. doi: 10.1080/2162402X.2019.1596004
- Zhang, G.; Tao, X.; Ji, B.; Gong, J. Hypoxia-driven m2-polarized macrophages facilitate cancer aggressiveness and temozolomide resistance in glioblastoma. Oxid. Med. Cell. Longev., 2022, 1614336. doi: 10.1155/2022/1614336
- Oelschlaegel, D.; Weiss Sadan, T.; Salpeter, S. Cathepsin inhibition modulates metabolism and polarization of tumor-associated macrophages. Cancers, 2020, 12(9), 2579. doi: 10.3390/cancers12092579
- Olson, O.C.; Kim, H.; Quail, D.F.; Foley, E.A.; Joyce, J.A. Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents. Cell Rep., 2017, 19(1), 101-113. doi: 10.1016/j.celrep.2017.03.038 PMID: 28380350
- Mantovani, A.; Allavena, P. The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med., 2015, 212(4), 435-445. doi: 10.1084/jem.20150295 PMID: 25753580
- Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer, 2022, 21(1), 104. doi: 10.1186/s12943-022-01569-x
- Xie, F.; Ling, L.; Van Dam, H.; Zhou, F.; Zhang, L. TGF-β signaling in cancer metastasis. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(1), 121-132. doi: 10.1093/abbs/gmx123 PMID: 29190313
- Derynck, R.; Turley, S.J.; Akhurst, R.J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol., 2021, 18(1), 9-34. doi: 10.1038/s41571-020-0403-1 PMID: 32710082
- Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci., 2018, 14(2), 111-123. doi: 10.7150/ijbs.23230
- Hata, A.; Chen, Y.G. TGF-β signaling from receptors to smads. Cold Spring Harb. Perspect. Biol., 2016, 8(9), a022061. doi: 10.1101/cshperspect.a022061
- Tzavlaki, K.; Moustakas, A. TGF-β Signaling. Biomolecules, 2020, 10(3), 487. doi: 10.3390/biom10030487 PMID: 32210029
- Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol., 2012, 12(4), 253-268. doi: 10.1038/nri3175 PMID: 22437938
- Su, Y.L.; Banerjee, S.; White, S.; Kortylewski, M. STAT3 in tumor-associated myeloid cells: multitasking to disrupt immunity. Int. J. Mol. Sci., 2018, 19(6), 1803. doi: 10.3390/ijms19061803 PMID: 29921770
- Peng, P.; Zhu, H.; Liu, D. TGFBI secreted by tumor-associated macrophages promotes glioblastoma stem cell-driven tumor growth via integrin αvβ5-Src-Stat3 signaling. Theranostics, 2022, 12(9), 4221-4236. doi: 10.7150/thno.69605
- Nadella, V.; Garg, M.; Kapoor, S.; Barwal, T.S.; Jain, A.; Prakash, H. Emerging neo adjuvants for harnessing therapeutic potential of M1 tumor associated macrophages (TAM) against solid tumors: Enusage of plasticity. Ann. Transl. Med., 2020, 8(16), 1029. doi: 10.21037/atm-20-695 PMID: 32953829
- Li, H. Chen, A.; Yuan, Q.; Chen, W.; Zhong, H.; Teng, M.; Xu, C.; Qiu, Y.; Cao, J. NF-κB/Twist axis is involved in chysin inhibition of ovarian cancer stem cell features induced by co-treatment of TNF-α and TGF-β. Int. J. Clin. Exp. Pathol., 2019, 12(1), 101-112. PMID: 31933724
- Vergani, E.; Dugo, M.; Cossa, M.; Frigerio, S.; Di Guardo, L.; Gallino, G.; Mattavelli, I.; Vergani, B.; Lalli, L.; Tamborini, E.; Valeri, B.; Gargiuli, C.; Shahaj, E.; Ferrarini, M.; Ferrero, E.; Gomez Lira, M.; Huber, V.; Del Vecchio, M.; Sensi, M.; Leone, B.E.; Santinami, M.; Rivoltini, L.; Rodolfo, M.; Vallacchi, V. miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators. Cell Commun. Signal., 2020, 18(1), 156. doi: 10.1186/s12964-020-00601-1 PMID: 32967672
- Allegra, A.; Mirabile, G.; Ettari, R.; Pioggia, G.; Gangemi, S. The impact of curcumin on immune response: An Immunomodulatory strategy to treat sepsis. Int. J. Mol. Sci., 2022, 23(23), 14710. doi: 10.3390/ijms232314710
- Bose, S.; Panda, A.K.; Mukherjee, S.; Sa, G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div., 2015, 10, 6. doi: 10.1186/s13008-015-0012-z
- Paul, S.; Sa, G. Curcumin as an adjuvant to cancer immunotherapy. Front. Oncol., 2021, 11, 675923. doi: 10.3389/fonc.2021.675923
- Jiang, M.; Qi, Y.; Huang, W.; Lin, Y.; Li, B. Curcumin Reprograms TAMs from a protumor phenotype towards an antitumor phenotype via inhibiting MAO-A/STAT6 Pathway. Cells, 2022, 11(21), 3473. doi: 10.3390/cells11213473 PMID: 36359867
- Oh, J.G.; Hwang, D.J.; Heo, T.H. Direct regulation of IL-2 by curcumin. Biochem. Biophys. Res. Commun., 2018, 495(1), 300-305. doi: 10.1016/j.bbrc.2017.11.039 PMID: 29127008
- Zhang, X.; Tian, W.; Cai, X.; Wang, X.; Dang, W.; Tang, H.; Cao, H.; Wang, L.; Chen, T. Hydrazinocurcumin Encapsuled nanoparticles "re-educate" tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One, 2013, 8(6), e65896. doi: 10.1371/journal.pone.0065896 PMID: 23825527
- Shiri, S.; Alizadeh, A.M.; Baradaran, B.; Farhanghi, B.; Shanehbandi, D.; Khodayari, S.; Khodayari, H.; Tavassoli, A. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment. Asian Pac. J. Cancer Prev., 2015, 16(9), 3917-3922. doi: 10.7314/APJCP.2015.16.9.3917 PMID: 25987060
- Xu, L.; Wang, X.; Wang, X.Y.; Yao, Q.H. Chen, YB signaling pathway to repair intestinal mucosal injury induced by 5-FU chemotherapy for colon. Zhongguo Zhongyao Zazhi, 2021, 46(3), 670-677. doi: 10.19540/j.cnki.cjcmm.20201106.401
- Weir, N.M.; Selvendiran, K.; Kutala, V.K.; Tong, L.; Vishwanath, S.; Rajaram, M.; Tridandapani, S.; Anant, S.; Kuppusamy, P. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating akt and p38 mAPK. Cancer Biol. Ther., 2007, 6(2), 178-184. doi: 10.4161/cbt.6.2.3577 PMID: 17218783
- Zhao, H.Y.; Zhang, Y.Y.; Xing, T. M2 macrophages, but not M1 macrophages, support megakaryopoiesis by upregulating PI3K-AKT pathway activity. Signal Transduct. Target. Ther., 2021, 6(1), 234. doi: 10.1038/s41392-021-00627-y
- Zhao, S.J.; Kong, F.Q.; Jie, J. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics, 2020, 10(1), 17-35. doi: 10.7150/thno.36930
- Yu, L.L.; Wu, J.G.; Dai, N.; Yu, H.G.; Si, J.M. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol. Rep., 2011, 26(5), 1197-1203. doi: 10.3892/or.2011.1410 PMID: 21811763
Supplementary files
