Preparation of Lycium barbarum Active Glycopeptide and Investigation of Its Apoptotic Effects on Melanoma


Cite item

Full Text

Abstract

Introduction:The increasing number of studies have shown that Lycium barbarum polysaccharides possess anti-tumor effects. However, the determination of the active ingredients and their mechanism against melanoma inhibition are still unknown.

Methods:In this study, we aimed to investigate the mechanisms of action of Lycium barbarum active glycopeptide (LBAG) on melanoma. LBAG was extracted and isolated from the fruit of Lycium barbarum using aqueous alcoholic precipitation and identified using ultra-performance liquid chromatography-quadrupole-time of flightmass spectrometry. Various assays including cell apoptosis, cell cycle analysis, colony formation assay, cell scratch test, flow cytometry, and Western blot were performed to evaluate the effects of LBAG on melanoma.

Results:The results showed that LBAG has a molecular weight of 10-15 kDa and contains Man, Rha, GlcA, Glc, Gal, and Ara18 amino acids. Treatment with LBAG significantly decreased B16 cell proliferation and induced cell cycle arrest at the G0/G phase, accompanied by the accumulation of reactive oxygen species. Western blot analysis revealed that the phosphorylation of P38-MAPK and AKT, as well as the expression of N-acetyl-Lcysteine, were related to cell apoptosis and cell cycle regulation. In mouse xenografts, LBAG inhibited tumor growth through the P38-MAPK and AKT signaling pathways.

Conclusion:In conclusion, the anti-melanoma activity of LBAG may induce apoptosis in cancer cells through ROSmediated activation of the P38-MAPK and AKT signaling pathways. These findings provide a foundation for further research on the anti-melanoma potential of LBAG.

About the authors

Jinghua Qi

Centre for Novel Drug Research and Development,, Guangdong Pharmaceutical University

Email: info@benthamscience.net

Xingli Qi

Centre for Novel Drug Research and Development, Guangdong Pharmaceutical University

Email: info@benthamscience.net

Hongyuan Chen

Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals,, Guangdong Pharmaceutical University

Author for correspondence.
Email: info@benthamscience.net

Wen Rui

Centre for Novel Drug Research and Development,, Guangdong Pharmaceutical University,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Neelam, K.; Dey, S.; Sim, R.; Lee, J.; Au Eong, K.G. Fructus lycii: a natural dietary supplement for amelioration of retinal diseases. Nutrients, 2021, 13(1), 246. doi: 10.3390/nu13010246 PMID: 33467087
  2. Liu, H.; Zhu, L.; Chen, L.; Li, L. Therapeutic potential of traditional Chinese medicine in atherosclerosis: A review. Phytother. Res., 2022, 36(11), 4080-4100. doi: 10.1002/ptr.7590 PMID: 36029188
  3. Liu, C.; Madeira, L.A.; Sartori, J.R.; Pezzato, A.C.; Gonçalves, J.; Cruz, V.; Kuibida, K.V.; Pinheiro, D.F. Food and Chemical Toxicology, 2007 ‘DNA solutionR in cigarette filters reduces polycyclic aromatic hydrocarbon (PAH) levels in mainstream tobacco smoke’ M. Lodovici, V. Akpan, S. Caldini, B. Akanju, and P. Dolara. Food Chem. Toxicol., 2008, 46(12), 3851-3852. doi: 10.1016/j.fct.2008.09.011 PMID: 18835416
  4. Letizia, C.S.; Cocchiara, J.; Wellington, G.A.; Funk, C.; Api, A.M. Food and chemical toxicology. Food Chem. Toxicol., 2000, 38(Suppl. 3), S1-S236. PMID: 11056264
  5. Wu, D.T.; Guo, H.; Shang, L.; Shing-Chung, L.; Li, Z.; Lin, D.R.; Wen, Q. Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends Food Sci. Technol., 2018, 79, S0924224417306295.
  6. Meng, J.; Liu, Z.; Gou, C.L.; Rogers, K.M.; Yu, W.J.; Zhang, S.S.; Yuan, Y.W.; Zhang, L. Geographical origin of Chinese wolfberry (goji) determined by carbon isotope analysis of specific volatile compounds. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1105, 104-112. doi: 10.1016/j.jchromb.2018.12.011 PMID: 30580182
  7. Qi, Y.; Duan, G.; Fan, G.; Peng, N. Effect of Lycium barbarum polysaccharides on cell signal transduction pathways. Biomed. Pharmacother., 2022, 147, 112620. doi: 10.1016/j.biopha.2022.112620 PMID: 35032768
  8. Yao, R.; Heinrich, M.; Weckerle, C.S. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. J. Ethnopharmacol., 2018, 212, 50-66. doi: 10.1016/j.jep.2017.10.010 PMID: 29042287
  9. Liu, Z.C.; Yu, W.W.; Zhou, H.C.; Lan, Z.C.; Wu, T.; Xiong, S.M.; Yan, L.; Liu, H.B. Lycium barbarum polysaccharides ameliorate LPS-induced inflammation of RAW264.7 cells and modify the behavioral score of peritonitis mice. J. Food Biochem., 2021, 45(10), e13889. doi: 10.1111/jfbc.13889 PMID: 34426988
  10. Lei, X.; Huo, P.; Wang, Y.; Xie, Y.; Shi, Q.; Tu, H.; Yao, J.; Mo, Z.; Zhang, S. Lycium barbarum polysaccharides improve testicular spermatogenic function in streptozotocin-induced diabetic rats. Front. Endocrinol., 2020, 11, 164. doi: 10.3389/fendo.2020.00164 PMID: 32362869
  11. Duan, X.; Lan, Y.; Zhang, X.; Hou, S.; Chen, J.; Ma, B.; Xia, Y.; Su, C. Lycium barbarum Polysaccharides promote maturity of murine dendritic cells through toll-like receptor 4-Erk1/2-Blimp1 signaling pathway. J. Immunol. Res., 2020, 2020, 1-15. doi: 10.1155/2020/1751793 PMID: 33344654
  12. Feng, L.; Xiao, X.; Liu, J.; Wang, J.; Zhang, N.; Bing, T.; Liu, X.; Zhang, Z.; Shangguan, D. Immunomodulatory effects of Lycium barbarum polysaccharide extract and its uptake behaviors at the cellular level. Molecules, 2020, 25(6), 1351. doi: 10.3390/molecules25061351 PMID: 32188121
  13. Wang, Y.; Xiao, J.; Duan, Y.; Miao, M.; Huang, B.; Chen, J.; Cheng, G.; Zhou, X.; Jin, Y.; He, J.; Li, Z.; So, K.F. Lycium barbarum Polysaccharide Ameliorates Sjögren’s Syndrome in a Murine Model. Mol. Nutr. Food Res., 2021, 65(11), 2001118. doi: 10.1002/mnfr.202001118 PMID: 33825332
  14. Song, Q.; Yong, H.M.; Yang, L.V.L.; Liang, Y.Q.; Liu, Z.X.; Niu, D.S.; Bai, Z.G. Lycium barbarum polysaccharide protects against osteonecrosis of femoral head via regulating Runx2 expression. Injury, 2022, 53(4), 1361-1367. doi: 10.1016/j.injury.2021.12.056 PMID: 35082056
  15. Liang, R.; Zhao, Q.; Zhu, Q.; He, X.; Gao, M.; Wang, Y. Lycium barbarum polysaccharide protects ARPE 19 cells against H2O 2 induced oxidative stress via the Nrf2/HO 1 pathway. Mol. Med. Rep., 2021, 24(5), 769. doi: 10.3892/mmr.2021.12409 PMID: 34490478
  16. Liu, J.J.; Zhao, G.X.; He, L.L.; Wang, Z.; Zibrila, A.I.; Niu, B.C.; Gong, H.Y.; Xu, J.N.; Soong, L.; Li, C.F.; Lu, Y. Lycium barbarum polysaccharides inhibit ischemia/reperfusion-induced myocardial injury via the Nrf2 antioxidant pathway. Toxicol. Rep., 2021, 8, 657-667. doi: 10.1016/j.toxrep.2021.03.019 PMID: 33868952
  17. Wu, Q.; Liu, L.; Wang, X.; Lang, Z.; Meng, X.; Guo, S.; Yan, B.; Zhan, T.; Zheng, H.; Wang, H. Lycium barbarum polysaccharides attenuate kidney injury in septic rats by regulating Keap1-Nrf2/ARE pathway. Life Sci., 2020, 242, 117240. doi: 10.1016/j.lfs.2019.117240 PMID: 31891722
  18. Zhou, H.; Ding, S.; Sun, C.; Fu, J.; Yang, D.; Wang, X.; Wang, C.; Wang, L. Lycium barbarum extracts extend lifespan and alleviate proteotoxicity in Caenorhabditis elegans. Front. Nutr., 2022, 8, 815947. doi: 10.3389/fnut.2021.815947 PMID: 35096951
  19. Inulin and Lycium barbarum polysaccharides ameliorate diabetes by enhancing gut barrier via modulating gut microbiota and activating gut mucosal TLR2 + intraepithelial γδ T cells in rats. J. Funct. Foods, 2022, 79, 104407.
  20. Wan, F.; Ma, F.; Wu, J.; Qiao, X.; Chen, M.; Li, W.; Ma, L. Effect of Lycium barbarum Polysaccharide on decreasing serum amyloid A3 expression through inhibiting NF-κB activation in a mouse model of diabetic nephropathy. Anal. Cell. Pathol., 2022, 2022, 1-12. doi: 10.1155/2022/7847135 PMID: 35132370
  21. Yao, Q.; Zhou, Y.; Yang, Y.; Cai, L.; Xu, L.; Han, X.; Guo, Y.; Li, P.A. Activation of Sirtuin1 by Lyceum barbarum polysaccharides in protection against diabetic cataract. J. Ethnopharmacol., 2020, 261, 113165. doi: 10.1016/j.jep.2020.113165 PMID: 32730875
  22. Gao, L.L.; Li, Y.X.; Ma, J.M.; Guo, Y.Q.; Li, L.; Gao, Q.H.; Fan, Y.N.; Zhang, M.W.; Tao, X.J.; Yu, J.Q.; Yang, J.J. Correction to: Effect of Lycium barbarum polysaccharide supplementation in non-alcoholic fatty liver disease patients: Study protocol for a randomized controlled trial. Trials, 2021, 22(1), 672. doi: 10.1186/s13063-021-05649-z PMID: 34593033
  23. Zhang, M.; Li, F.; Pokharel, S.; Ma, T.; Wang, X.; Wang, Y.; Wang, W.; Lin, R. Lycium barbarum polysaccharide protects against Homocysteine-induced Vascular smooth muscle cell proliferation and phenotypic transformation via PI3K/Akt pathway. J. Mol. Histol., 2020, 51(6), 629-637. doi: 10.1007/s10735-020-09909-1 PMID: 32897463
  24. Liu, H.; Zhou, X.; Huang, S.; Yang, J.; Liu, R.; Liu, C. Lycium barbarum polysaccharides and wolfberry juice prevent DEHP-induced hepatotoxicity via PXR-regulated detoxification pathway. Molecules, 2021, 26(4), 859. doi: 10.3390/molecules26040859 PMID: 33562043
  25. Wang, H.; Li, Y.; Liu, J.; Di, D.; Liu, Y.; Wei, J. Hepatoprotective effect of crude polysaccharide isolated from Lycium barbarum L. against alcohol-induced oxidative damage involves Nrf2 signaling. Food Sci. Nutr., 2020, 8(12), 6528-6538. doi: 10.1002/fsn3.1942 PMID: 33312537
  26. Fanzhen, M. Function of Lycium barbarum polysaccharide on proliferation and apoptosis of human lung cancer A549 cells. World Sci-Tech R$D, 2012.
  27. Kwok, S.S.; Bu, Y.; Lo, A.C.Y.; Chan, T.C.Y.; So, K.F.; Lai, J.S.M.; Shih, K.C. A systematic review of potential therapeutic use of Lycium barbarum polysaccharides in disease. BioMed Res. Int., 2019, 2019, 1-18. doi: 10.1155/2019/4615745 PMID: 30891458
  28. Zhou, J.; Li, H.; Wang, F.; Wang, H.; Chai, R.; Li, J.; Jia, L.; Wang, K.; Zhang, P.; Zhu, L.; Yang, H. Effects of 2,4-dichlorophenoxyacetic acid on the expression of NLRP3 inflammasome and autophagy-related proteins as well as the protective effect of Lycium barbarum polysaccharide in neonatal rats. Environ. Toxicol., 2021, 36(12), 2454-2466. doi: 10.1002/tox.23358 PMID: 34464015
  29. Lakshmanan, Y.; Wong, F.S.Y.; Zuo, B.; So, K.F.; Bui, B.V.; Chan, H.H.L. Posttreatment intervention with Lycium Barbarum polysaccharides is neuroprotective in a rat model of chronic ocular hypertension. Invest. Ophthalmol. Vis. Sci., 2019, 60(14), 4606-4618. doi: 10.1167/iovs.19-27886 PMID: 31756254
  30. Tian, X.; Liang, T.; Liu, Y.; Ding, G.; Zhang, F.; Ma, Z. Extraction, structural characterization, and biological functions of Lycium Barbarum Polysaccharides: A review. Biomolecules, 2019, 9(9), 389. doi: 10.3390/biom9090389 PMID: 31438522
  31. Peng, X.; Tian, G. Structural characterization of the glycan part of glycoconjugate LbGp2 from Lycium barbarum L. Carbohydr. Res., 2001, 331(1), 95-99. doi: 10.1016/S0008-6215(00)00321-9 PMID: 11284511
  32. Huang, L.J.; Tian, G.Y.; Ji, G.Z. Structure elucidation of glycan of glycoconjugate LbGp3 isolated from the fruit of Lycium barbarum L. J. Asian Nat. Prod. Res., 1999, 1(4), 259-267. doi: 10.1080/10286029908039874 PMID: 11523546
  33. Peng, X.M.; Huang, L.J.; Qi, C.H.; Zhang, Y.X.; Tian, G.Y. Studies on chemistry and immuno- modulating mechanism of a glycoconjugate from Lycium barbarum L. Chin. J. Chem., 2001, 19(12), 1190-1197. doi: 10.1002/cjoc.20010191206
  34. Zhou, X.; Zhang, Z.; Shi, H.; Liu, Q.; Chang, Y.; Feng, W.; Zhu, S.; Sun, S. Effects of Lycium barbarum glycopeptide on renal and testicular injury induced by di(2-ethylhexyl) phthalate. Cell Stress Chaperones, 2022, 27(3), 257-271. doi: 10.1007/s12192-022-01266-0 PMID: 35362893
  35. Huang, Y.; Zheng, Y.; Yang, F.; Feng, Y.; Xu, K.; Wu, J.; Qu, S.; Yu, Z.; Fan, F.; Huang, L.; Qin, M.; He, Z.; Nie, K.; So, K.F. Lycium barbarum Glycopeptide prevents the development and progression of acute colitis by regulating the composition and diversity of the gut microbiota in mice. Front. Cell. Infect. Microbiol., 2022, 12, 921075. doi: 10.3389/fcimb.2022.921075 PMID: 36017369
  36. Guang, D.; Lu, L.; Jianguo, F. Experimental study on the enhancement of murine splenic lymphocyte proliferation by Lycium barbarum glycopeptide. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2004, 24(5), 518-520, 527. doi: 10.1007/BF02831125 PMID: 15641709
  37. Zhang, X.J.; Yu, H.Y.; Cai, Y.; Ke, M. Lycium barbarum polysaccharides inhibit proliferation and migration of bladder cancer cell lines BIU87 by suppressing Pi3K/AKT pathway. Oncotarget, 2017, 8(4), 5936-5942. doi: 10.18632/oncotarget.13963 PMID: 27992374
  38. Zhu, C.P.; Zhang, S.H. Lycium barbarum polysaccharide inhibits the proliferation of HeLa cells by inducing apoptosis. J. Sci. Food Agric., 2013, 93(1), 149-156. doi: 10.1002/jsfa.5743 PMID: 22696075
  39. Wang, W.; Liu, M.; Wang, Y.; Yang, T.; Li, D.; Ding, F.; Sun, H.; Bai, G.; Li, Q. Lycium barbarum polysaccharide promotes maturation of dendritic cell via notch signaling and strengthens dendritic cell mediated T lymphocyte cytotoxicity on colon cancer cell CT26-WT. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-10. doi: 10.1155/2018/2305683 PMID: 29619065
  40. Zhang, Q.; Lv, X.; Wu, T.; Ma, Q.; Teng, A.; Zhang, Y.; Zhang, M. Composition of Lycium barbarum polysaccharides and their apoptosis-inducing effect on human hepatoma SMMC-7721 cells. Food Nutr. Res., 2015, 59(1), 28696. doi: 10.3402/fnr.v59.28696 PMID: 26563650
  41. Chen, S.; Liang, L.; Wang, Y.; Diao, J.; Zhao, C.; Chen, G.; He, Y.; Luo, C.; Wu, X.; Zhang, Y. Synergistic immunotherapeutic effects of Lycium barbarum polysaccharide and interferon-α2b on the murine Renca renal cell carcinoma cell line in vitro and in vivo. Mol. Med. Rep., 2015, 12(5), 6727-6737. doi: 10.3892/mmr.2015.4230 PMID: 26300071
  42. Zeng, M.; Kong, Q.; Liu, F.; Chen, J.; Sang, H. The anticancer activity of lycium barbarum polysaccharide by inhibiting autophagy in human skin squamous cell carcinoma cells in vitro and in vivo. Int. J. Polym. Sci., 2019, 1-8. doi: 10.1155/2019/5065920
  43. Lou, L.; Chen, G.; Zhong, B.; Liu, F. Lycium barbarum polysaccharide induced apoptosis and inhibited proliferation in infantile hemangioma endothelial cells via down-regulation of PI3K/AKT signaling pathway. Biosci. Rep., 2019, 39(8), BSR20191182. doi: 10.1042/BSR20191182 PMID: 31383785
  44. Tian, G.Y.; Chen, W.; Feng, Y.C. Isolation, purification and properties of LbGP and characterization of its glycan-peptide bond. Acta Biochim. Biophys. Sin., 1995.
  45. You, S.; Liu, X.; Xu, G.; Ye, M.; Bai, L.; Lin, R.; Sha, X.; Liang, L.; Huang, J.; Zhou, C.; Rui, W.; Chen, H. Identification of bioactive polysaccharide from Pseudostellaria heterophylla with its anti-inflammatory effects. J. Funct. Foods, 2021, 78, 104353. doi: 10.1016/j.jff.2021.104353
  46. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254. doi: 10.1016/0003-2697(76)90527-3 PMID: 942051
  47. Li, C.Y.; Chen, H.Y.; Liu, W.P.; Rui, W. Multi-fingerprint profiling combined with chemometric methods for investigating the quality of Astragalus polysaccharides. Int. J. Biol. Macromol., 2019, 123, 766-774. doi: 10.1016/j.ijbiomac.2018.11.037 PMID: 30414905
  48. Makeeva, D.; Polikarpova, D.; Demyanova, E.; Roshchina, E.; Vakhitov, T.; Kartsova, L. Determination of native amino acids and lactic acid in Lactobacillus helveticusculture media by capillary electrophoresis using Cu2+and β-cyclodextrins as additives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1156, 122304. doi: 10.1016/j.jchromb.2020.122304 PMID: 32829136
  49. Tian, G.Y. Study on structure and bioactivity of glycoconjugate compounds of Fructus lycii; World Science Technology-Modernization of Traditional Chinese Medicine, 2003.
  50. French, S.W.; Oliva, J.; French, B.A.; Li, J.; Bardag-Gorce, F. Alcohol, nutrition and liver cancer: Role of toll-like receptor signaling. World J. Gastroenterol., 2010, 16(11), 1344-1348. doi: 10.3748/wjg.v16.i11.1344 PMID: 20238401
  51. Zhang, M.; Tang, X.; Wang, F.; Zhang, Q.; Zhang, Z. Characterization of Lycium barbarum polysaccharide and its effect on human hepatoma cells. Int. J. Biol. Macromol., 2013, 61, 270-275. doi: 10.1016/j.ijbiomac.2013.06.031 PMID: 23817098
  52. Deng, X.; Luo, S.; Luo, X.; Hu, M.; Ma, F.; Wang, Y.; Lai, X.; Zhou, L. Polysaccharides from Chinese herbal Lycium barbarum induced systemic and local immune responses in H22 tumor-bearing mice. J. Immunol. Res., 2018, 2018, 1-12. doi: 10.1155/2018/3431782 PMID: 29967800
  53. Deng, X.; Li, X.; Luo, S.; Zheng, Y.; Luo, X.; Zhou, L. Antitumor activity of Lycium barbarum polysaccharides with different molecular weights: an in vitro and in vivo study. Food Nutr. Res., 2017, 61(1), 1399770. doi: 10.1080/16546628.2017.1399770 PMID: 31139040
  54. Ma, W.; Zhou, Y.; Lou, W.; Wang, B.; Li, B.; Liu, X.; Yang, J.; Yang, B.; Liu, J.; Di, D. Mechanism regulating the inhibition of lung cancer A549 cell proliferation and structural analysis of the polysaccharide Lycium barbarum. Food Biosci., 2022, 47, 101664. doi: 10.1016/j.fbio.2022.101664
  55. Zong, A.; Cao, H.; Wang, F. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydr. Polym., 2012, 90(4), 1395-1410. doi: 10.1016/j.carbpol.2012.07.026 PMID: 22944395
  56. Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35, S78-S103. doi: 10.1016/j.semcancer.2015.03.001 PMID: 25936818
  57. Kim, S.H.; Yoo, E.S.; Woo, J.S.; Han, S.H.; Lee, J.H.; Jung, S.H.; Kim, H.J.; Jung, J.Y. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. Eur. J. Pharmacol., 2019, 860, 172568. doi: 10.1016/j.ejphar.2019.172568 PMID: 31348906
  58. Hirose, T.; Horvitz, H.R. An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. Nature, 2013, 500(7462), 354-358. doi: 10.1038/nature12329 PMID: 23851392
  59. Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 2016, 8(4), 603-619. doi: 10.18632/aging.100934 PMID: 27019364
  60. Kashyap, D.; Garg, V.K.; Goel, N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol., 2021, 125, 73-120. doi: 10.1016/bs.apcsb.2021.01.003 PMID: 33931145
  61. Sun, Y.; Li, J.; Zhang, Y.; Tu, Y.; Huang, C.; Tao, J.; Yang, M.; Yang, L. The polysaccharide extracted from Umbilicaria esculenta inhibits proliferation of melanoma cells through ros-activated mitochondrial apoptosis pathway. Biol. Pharm. Bull., 2018, 41(1), 57-64. doi: 10.1248/bpb.b17-00562 PMID: 29311483
  62. Susanti, N.M.P.; Tjahjono, D.H. Cyclin-dependent Kinase 4 and 6 inhibitors in cell cycle dysregulation for breast cancer treatment. Molecules, 2021, 26(15), 4462. doi: 10.3390/molecules26154462 PMID: 34361615
  63. Bury, M.; Le Calvé, B.; Ferbeyre, G.; Blank, V.; Lessard, F. New insights into CDK regulators: Novel opportunities for cancer therapy. Trends Cell Biol., 2021, 31(5), 331-344. doi: 10.1016/j.tcb.2021.01.010 PMID: 33676803
  64. Tavakolian, S.; Goudarzi, H.; Faghihloo, E. Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers. Infect. Agent. Cancer, 2020, 15(1), 27. doi: 10.1186/s13027-020-00295-7 PMID: 32377232
  65. Bendris, N.; Lemmers, B.; Blanchard, J.M. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle, 2015, 14(12), 1786-1798. doi: 10.1080/15384101.2014.998085 PMID: 25789852
  66. da Silva Milhorini, S.; de Lima Bellan, D.; Zavadinack, M.; Simas, F.F.; Smiderle, F.R.; de Santana-Filho, A.P.; Sassaki, G.L.; Iacomini, M. Antimelanoma effect of a fucoxylomannan isolated from Ganoderma lucidum fruiting bodies. Carbohydr. Polym., 2022, 294, 119823. doi: 10.1016/j.carbpol.2022.119823 PMID: 35868772
  67. Yang, Y.; Zhu, X.; Chen, Y.; Wang, X.; Chen, R. p38 and JNK MAPK, but not ERK1/2 MAPK, play important role in colchicine-induced cortical neurons apoptosis. Eur. J. Pharmacol., 2007, 576(1-3), 26-33. doi: 10.1016/j.ejphar.2007.07.067 PMID: 17716651
  68. Ballif, B.A.; Blenis, J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ., 2001, 12(8), 397-408. PMID: 11504705
  69. Park, H.B.; Baek, K.H. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(3), 188736. doi: 10.1016/j.bbcan.2022.188736 PMID: 35589008
  70. Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous melanoma: From pathogenesis to therapy (Review). Int. J. Oncol., 2018, 52(4), 1071-1080. doi: 10.3892/ijo.2018.4287 PMID: 29532857
  71. Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604. doi: 10.3109/10799893.2015.1030412 PMID: 26096166
  72. Xu, T.; Liu, R.; Lu, X.; Wu, X.; Heneberg, P.; Mao, Y.; Jiang, Q.; Loor, J.; Yang, Z. Lycium barbarum polysaccharides alleviate LPS-induced inflammatory responses through PPARγ/MAPK/NF-κB pathway in bovine mammary epithelial cells. J. Anim. Sci., 2022, 100(1), skab345. doi: 10.1093/jas/skab345 PMID: 34791267
  73. Qin, Y.; Yang, G.; Li, M.; Liu, H.J.; Zhong, W.L.; Yan, X.Q.; Qiao, K.L.; Yang, J.H.; Zhai, D.H.; Yang, W.; Chen, S.; Zhou, H.G.; Sun, T.; Yang, C. Dihydroartemisinin inhibits EMT induced by platinum-based drugs via Akt-Snail pathway. Oncotarget, 2017, 8(61), 103815-103827. doi: 10.18632/oncotarget.21793 PMID: 29262602
  74. Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer, 2022, 22(5), 280-297. doi: 10.1038/s41568-021-00435-0 PMID: 35102280
  75. Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol., 2018, 80, 50-64. doi: 10.1016/j.semcdb.2017.05.023 PMID: 28587975
  76. Jin, Y.; Li, Y.; Wang, L.; Fu, X.; Li, C. Physicochemical characterization of a polysaccharide from Rosa roxburghii Tratt fruit and its antitumor activity by activating ROS mediated pathways. Curr. Res. Food Sci., 2022, 5, 1581-1589. doi: 10.1016/j.crfs.2022.09.016 PMID: 36161228
  77. Guo, C.L.; Wang, L.J.; Zhao, Y.; Liu, H.; Li, X.Q.; Jiang, B.; Luo, J.; Guo, S.J.; Wu, N.; Shi, D.Y. A novel bromophenol derivative BOS-102 induces cell cycle arrest and apoptosis in human A549 lung cancer cells via ROS-mediated PI3K/Akt and the MAPK signaling pathway. Mar. Drugs, 2018, 16(2), 43. doi: 10.3390/md16020043 PMID: 29370087

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers