Osmundacetone Inhibits Angiogenesis of Infantile Hemangiomas through Inducing Caspases and Reducing VEGFR2/MMP9
- Authors: Ke C.1, Chen C.2, Yang M.2, Chen H.2, Li L.3, Ke Y.4
-
Affiliations:
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
- Plastic Surgery, First Affiliated Hospital of Wenzhou Medical University
- Department of Cosmetology,, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine,
- Issue: Vol 24, No 2 (2024)
- Pages: 125-131
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644047
- DOI: https://doi.org/10.2174/0118715206273410231103100600
- ID: 644047
Cite item
Full Text
Abstract
Aim:This study aims to explore the potential of Osmundacetone (OSC) as a new treatment for infantile hemangiomas (IH), the most common benign tumors in infancy. Currently, propranolol serves as the primary treatment for IH, but its effectiveness is limited, and it poses challenges of drug resistance and side effects. Therefore, there is a pressing need to identify alternative therapies for IH.
Methods:The effects of OSC on the proliferation and apoptosis of HemECs (endothelial cells from hemangiomas) were assessed using CCK-8 assay, colony formation assay, HOCHEST 33342 staining, and flow cytometry. Western blot analysis was performed to investigate OSC's influence on Caspases and angiogenesis-related proteins. Animal models were established using HemECs and BALB/c mice, and histological and immunohistochemical staining were conducted to evaluate the impact of OSC on mouse hemangiomas, VEGFR2, and MMP9 expression.
Results:OSC treatment significantly reduced HemECs' viability and colony-forming ability, while promoting apoptosis, as indicated by increased HOCHEST 33342 staining. OSC upregulated the protein expression of Bax, PARP, Caspase9, Caspase3, AIF, Cyto C, FADD, and Caspase8 in HemECs. In animal models, OSC treatment effectively reduced hemangioma size and improved histopathological changes. OSC also suppressed VEGFR2 and MMP9 expression while elevating Caspase3 levels in mouse hemangiomas.
Conclusion:OSC demonstrated promising results in inhibiting HemECs' proliferation, inducing apoptosis, and ameliorating pathological changes in hemangiomas in mice. Moreover, it influenced the expression of crucial caspases and angiogenesis-related proteins. These findings suggest that OSC holds potential as a novel drug for clinical treatment of IH.
Keywords
About the authors
Chen Ke
Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University
Email: info@benthamscience.net
Changhan Chen
Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
Email: info@benthamscience.net
Ming Yang
Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
Email: info@benthamscience.net
Hao Chen
Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
Email: info@benthamscience.net
Liqun Li
Plastic Surgery, First Affiliated Hospital of Wenzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
Youhui Ke
Department of Cosmetology,, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine,
Author for correspondence.
Email: info@benthamscience.net
References
- Torrence, D.; Antonescu, C.R. The genetics of vascular tumours: An update. Histopathology, 2022, 80(1), 19-32. doi: 10.1111/his.14458 PMID: 34958509
- Hasbani, D.J.; Hamie, L. Infantile Hemangiomas. Dermatol. Clin., 2022, 40(4), 383-392. doi: 10.1016/j.det.2022.06.004 PMID: 36243426
- Sebaratnam, D.F.; Rodríguez, B.A.; Wong, L.C.F.; Wargon, O. Infantile hemangioma. Part 2: Management. J. Am. Acad. Dermatol., 2021, 85(6), 1395-1404. doi: 10.1016/j.jaad.2021.08.020 PMID: 34419523
- Krowchuk, D.P.; Frieden, I.J.; Mancini, A.J.; Darrow, D.H.; Blei, F.; Greene, A.K.; Annam, A.; Baker, C.N.; Frommelt, P.C.; Hodak, A.; Pate, B.M.; Pelletier, J.L.; Sandrock, D.; Weinberg, S.T.; Whelan, M.A. Clinical practice guideline for the management of infantile hemangiomas. Pediatrics, 2019, 143(1), e20183475. doi: 10.1542/peds.2018-3475 PMID: 30584062
- Zhang, J.; Li, Y.; Zhang, B.; Chen, K.; Wang, Q.; Li, Z.; Sun, S.; Tian, J.; Sun, X.; Yao, C.; Xie, Y.; Hu, J.; Tian, J.; Zhan, S.; Liu, J.; Wu, J.; Sun, F.; Du, L.; Yu, J.; Zhang, Y.; Zhang, L.; Gao, R.; Wang, B.; Tang, J.; Zhu, M.; Mao, J.; Huang, Y.; Zheng, W.; Yang, F.; Pang, B. Evidence‐based traditional Chinese medicine research: Beijing declaration. J. Evid. Based Med., 2020, 13(2), 91-92. doi: 10.1111/jebm.12389 PMID: 32470228
- Lu, Y.; Jia, Y.; Xue, Z.; Li, N.; Liu, J.; Chen, H. Recent developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, structural characteristics, biological activities and application. Polymers, 2021, 13(9), 1441. doi: 10.3390/polym13091441 PMID: 33947037
- Béni, Z.; Dékány, M.; Sárközy, A.; Kincses, A.; Spengler, G.; Papp, V.; Hohmann, J.; Ványolós, A. Triterpenes and phenolic compounds from the fungus Fuscoporia torulosa: Isolation, structure determination and biological activity. Molecules, 2021, 26(6), 1657. doi: 10.3390/molecules26061657 PMID: 33809760
- Yang, Y.; He, P.; Hou, Y.; Liu, Z.; Zhang, X.; Li, N. Osmundacetone modulates mitochondrial metabolism in non-small cell lung cancer cells by hijacking the glutamine/glutamate/α-KG metabolic axis. Phytomedicine, 2022, 100, 154075. doi: 10.1016/j.phymed.2022.154075 PMID: 35413646
- Kowalska, M. Dębek, W.; Matuszczak, E. Infantile Hemangiomas: An update on pathogenesis and treatment. J. Clin. Med., 2021, 10(20), 4631. doi: 10.3390/jcm10204631 PMID: 34682753
- Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity, 2019, 50(6), 1352-1364. doi: 10.1016/j.immuni.2019.05.020 PMID: 31216460
- Léauté-Labrèze, C.; de la Roque, E.D.; Hubiche, T.; Boralevi, F.; Thambo, J.B.; Taïeb, A. Propranolol for severe hemangiomas of infancy. N. Engl. J. Med., 2008, 358(24), 2649-2651. doi: 10.1056/NEJMc0708819 PMID: 18550886
- Chang, L.; Lv, D.; Yu, Z.; Ma, G.; Ying, H.; Qiu, Y.; Gu, Y.; Jin, Y.; Chen, H.; Lin, X. Infantile hemangioma: factors causing recurrence after propranolol treatment. Pediatric Res., 2018, 83(1-1), 175-182. doi: 10.1038/pr.2017.220
- Gomez-Acevedo, H.; Dai, Y.; Strub, G.; Shawber, C.; Wu, J.K.; Richter, G.T. Identification of putative biomarkers for Infantile Hemangiomas and Propranolol treatment via data integration. Sci. Rep., 2020, 10(1), 3261. doi: 10.1038/s41598-020-60025-2 PMID: 32094357
- Green, D.R. Caspases and Their Substrates. Cold Spring Harb. Perspect. Biol., 2022, 14(3), 041012. doi: 10.1101/cshperspect.a041012 PMID: 35232877
- Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol., 2020, 38(1), 567-595. doi: 10.1146/annurev-immunol-073119-095439 PMID: 32017655
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol., 2021, 18(5), 1106-1121. doi: 10.1038/s41423-020-00630-3 PMID: 33785842
- Zhang, Y.; Wang, M.; Zhang, X.; Jiang, Z.; Zhang, Y.; Fu, X.; Li, Y.; Cao, D.; Han, J.; Tong, J. Helicid improves lipopolysaccharide-induced apoptosis of C6 cells by regulating SH2D5 DNA methylation via the CytC/Caspase9/Caspase3 signaling pathway. Contrast Media Mol. Imaging, 2022, 2022, 1-13. doi: 10.1155/2022/9242827 PMID: 35173561
- Duan, C.; Kuang, L.; Hong, C.; Xiang, X.; Liu, J.; Li, Q.; Peng, X.; Zhou, Y.; Wang, H.; Liu, L.; Li, T. Mitochondrial Drp1 recognizes and induces excessive mPTP opening after hypoxia through BAX-PiC and LRRK2-HK2. Cell Death Dis., 2021, 12(11), 1050. doi: 10.1038/s41419-021-04343-x PMID: 34741026
- Mandal, R.; Barrón, J.C.; Kostova, I.; Becker, S.; Strebhardt, K. Caspase-8: The double-edged sword. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188357. doi: 10.1016/j.bbcan.2020.188357 PMID: 32147543
- Luo, Q.; Wu, X.; Zhao, P.; Nan, Y.; Chang, W.; Zhu, X.; Su, D.; Liu, Z. OTUD1 activates caspase‐independent and caspase‐dependent apoptosis by promoting AIF nuclear translocation and MCL1 degradation. Adv. Sci. (Weinh.), 2021, 8(8), 2002874. doi: 10.1002/advs.202002874 PMID: 33898171
- Wu, S.W.; Su, C.H.; Ho, Y.C.; Huang-Liu, R.; Tseng, C.C.; Chiang, Y.W.; Yeh, K.L.; Lee, S.S.; Chen, W.Y.; Chen, C.J.; Li, Y.C.; Lee, C.Y.; Kuan, Y.H. Genotoxic effects of 1-nitropyrene in macrophages are mediated through a p53-dependent pathway involving cytochrome c release, caspase activation, and PARP-1 cleavage. Ecotoxicol. Environ. Saf., 2021, 213, 112062. doi: 10.1016/j.ecoenv.2021.112062 PMID: 33618169
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell, 2019, 176(6), 1248-1264. doi: 10.1016/j.cell.2019.01.021 PMID: 30849371
- Porta, M.; Striglia, E. Intravitreal anti-VEGF agents and cardiovascular risk. Intern. Emerg. Med., 2020, 15(2), 199-210. doi: 10.1007/s11739-019-02253-7 PMID: 31848994
- DiStefano, P.V.; Glading, A.J. VEGF signalling enhances lesion burden in KRIT1 deficient mice. J. Cell. Mol. Med., 2020, 24(1), 632-639. doi: 10.1111/jcmm.14773 PMID: 31746130
- Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem., 2020, 194, 112260. doi: 10.1016/j.ejmech.2020.112260 PMID: 32224379
- Huang, L.J.; Li, G.; Ding, Y.; Sun, J.H.; Wu, T.T.; Zhao, W.; Zeng, Y.S. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice. Exp. Neurol., 2019, 320, 112965. doi: 10.1016/j.expneurol.2019.112965 PMID: 31132364
- Li, H.; Cai, E.; Cheng, H.; Ye, X.; Ma, R.; Zhu, H.; Chang, X. FGA controls VEGFA secretion to promote angiogenesis by activating the VEGFR2-FAK signalling pathway. Front. Endocrinol., 2022, 13, 791860. doi: 10.3389/fendo.2022.791860 PMID: 35498401
Supplementary files
