Osmundacetone Inhibits Angiogenesis of Infantile Hemangiomas through Inducing Caspases and Reducing VEGFR2/MMP9


Cite item

Full Text

Abstract

Aim:This study aims to explore the potential of Osmundacetone (OSC) as a new treatment for infantile hemangiomas (IH), the most common benign tumors in infancy. Currently, propranolol serves as the primary treatment for IH, but its effectiveness is limited, and it poses challenges of drug resistance and side effects. Therefore, there is a pressing need to identify alternative therapies for IH.

Methods:The effects of OSC on the proliferation and apoptosis of HemECs (endothelial cells from hemangiomas) were assessed using CCK-8 assay, colony formation assay, HOCHEST 33342 staining, and flow cytometry. Western blot analysis was performed to investigate OSC's influence on Caspases and angiogenesis-related proteins. Animal models were established using HemECs and BALB/c mice, and histological and immunohistochemical staining were conducted to evaluate the impact of OSC on mouse hemangiomas, VEGFR2, and MMP9 expression.

Results:OSC treatment significantly reduced HemECs' viability and colony-forming ability, while promoting apoptosis, as indicated by increased HOCHEST 33342 staining. OSC upregulated the protein expression of Bax, PARP, Caspase9, Caspase3, AIF, Cyto C, FADD, and Caspase8 in HemECs. In animal models, OSC treatment effectively reduced hemangioma size and improved histopathological changes. OSC also suppressed VEGFR2 and MMP9 expression while elevating Caspase3 levels in mouse hemangiomas.

Conclusion:OSC demonstrated promising results in inhibiting HemECs' proliferation, inducing apoptosis, and ameliorating pathological changes in hemangiomas in mice. Moreover, it influenced the expression of crucial caspases and angiogenesis-related proteins. These findings suggest that OSC holds potential as a novel drug for clinical treatment of IH.

About the authors

Chen Ke

Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Changhan Chen

Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine

Email: info@benthamscience.net

Ming Yang

Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine

Email: info@benthamscience.net

Hao Chen

Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine

Email: info@benthamscience.net

Liqun Li

Plastic Surgery, First Affiliated Hospital of Wenzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

Youhui Ke

Department of Cosmetology,, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Torrence, D.; Antonescu, C.R. The genetics of vascular tumours: An update. Histopathology, 2022, 80(1), 19-32. doi: 10.1111/his.14458 PMID: 34958509
  2. Hasbani, D.J.; Hamie, L. Infantile Hemangiomas. Dermatol. Clin., 2022, 40(4), 383-392. doi: 10.1016/j.det.2022.06.004 PMID: 36243426
  3. Sebaratnam, D.F.; Rodríguez, B.A.; Wong, L.C.F.; Wargon, O. Infantile hemangioma. Part 2: Management. J. Am. Acad. Dermatol., 2021, 85(6), 1395-1404. doi: 10.1016/j.jaad.2021.08.020 PMID: 34419523
  4. Krowchuk, D.P.; Frieden, I.J.; Mancini, A.J.; Darrow, D.H.; Blei, F.; Greene, A.K.; Annam, A.; Baker, C.N.; Frommelt, P.C.; Hodak, A.; Pate, B.M.; Pelletier, J.L.; Sandrock, D.; Weinberg, S.T.; Whelan, M.A. Clinical practice guideline for the management of infantile hemangiomas. Pediatrics, 2019, 143(1), e20183475. doi: 10.1542/peds.2018-3475 PMID: 30584062
  5. Zhang, J.; Li, Y.; Zhang, B.; Chen, K.; Wang, Q.; Li, Z.; Sun, S.; Tian, J.; Sun, X.; Yao, C.; Xie, Y.; Hu, J.; Tian, J.; Zhan, S.; Liu, J.; Wu, J.; Sun, F.; Du, L.; Yu, J.; Zhang, Y.; Zhang, L.; Gao, R.; Wang, B.; Tang, J.; Zhu, M.; Mao, J.; Huang, Y.; Zheng, W.; Yang, F.; Pang, B. Evidence‐based traditional Chinese medicine research: Beijing declaration. J. Evid. Based Med., 2020, 13(2), 91-92. doi: 10.1111/jebm.12389 PMID: 32470228
  6. Lu, Y.; Jia, Y.; Xue, Z.; Li, N.; Liu, J.; Chen, H. Recent developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, structural characteristics, biological activities and application. Polymers, 2021, 13(9), 1441. doi: 10.3390/polym13091441 PMID: 33947037
  7. Béni, Z.; Dékány, M.; Sárközy, A.; Kincses, A.; Spengler, G.; Papp, V.; Hohmann, J.; Ványolós, A. Triterpenes and phenolic compounds from the fungus Fuscoporia torulosa: Isolation, structure determination and biological activity. Molecules, 2021, 26(6), 1657. doi: 10.3390/molecules26061657 PMID: 33809760
  8. Yang, Y.; He, P.; Hou, Y.; Liu, Z.; Zhang, X.; Li, N. Osmundacetone modulates mitochondrial metabolism in non-small cell lung cancer cells by hijacking the glutamine/glutamate/α-KG metabolic axis. Phytomedicine, 2022, 100, 154075. doi: 10.1016/j.phymed.2022.154075 PMID: 35413646
  9. Kowalska, M. Dębek, W.; Matuszczak, E. Infantile Hemangiomas: An update on pathogenesis and treatment. J. Clin. Med., 2021, 10(20), 4631. doi: 10.3390/jcm10204631 PMID: 34682753
  10. Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity, 2019, 50(6), 1352-1364. doi: 10.1016/j.immuni.2019.05.020 PMID: 31216460
  11. Léauté-Labrèze, C.; de la Roque, E.D.; Hubiche, T.; Boralevi, F.; Thambo, J.B.; Taïeb, A. Propranolol for severe hemangiomas of infancy. N. Engl. J. Med., 2008, 358(24), 2649-2651. doi: 10.1056/NEJMc0708819 PMID: 18550886
  12. Chang, L.; Lv, D.; Yu, Z.; Ma, G.; Ying, H.; Qiu, Y.; Gu, Y.; Jin, Y.; Chen, H.; Lin, X. Infantile hemangioma: factors causing recurrence after propranolol treatment. Pediatric Res., 2018, 83(1-1), 175-182. doi: 10.1038/pr.2017.220
  13. Gomez-Acevedo, H.; Dai, Y.; Strub, G.; Shawber, C.; Wu, J.K.; Richter, G.T. Identification of putative biomarkers for Infantile Hemangiomas and Propranolol treatment via data integration. Sci. Rep., 2020, 10(1), 3261. doi: 10.1038/s41598-020-60025-2 PMID: 32094357
  14. Green, D.R. Caspases and Their Substrates. Cold Spring Harb. Perspect. Biol., 2022, 14(3), 041012. doi: 10.1101/cshperspect.a041012 PMID: 35232877
  15. Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol., 2020, 38(1), 567-595. doi: 10.1146/annurev-immunol-073119-095439 PMID: 32017655
  16. Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol., 2021, 18(5), 1106-1121. doi: 10.1038/s41423-020-00630-3 PMID: 33785842
  17. Zhang, Y.; Wang, M.; Zhang, X.; Jiang, Z.; Zhang, Y.; Fu, X.; Li, Y.; Cao, D.; Han, J.; Tong, J. Helicid improves lipopolysaccharide-induced apoptosis of C6 cells by regulating SH2D5 DNA methylation via the CytC/Caspase9/Caspase3 signaling pathway. Contrast Media Mol. Imaging, 2022, 2022, 1-13. doi: 10.1155/2022/9242827 PMID: 35173561
  18. Duan, C.; Kuang, L.; Hong, C.; Xiang, X.; Liu, J.; Li, Q.; Peng, X.; Zhou, Y.; Wang, H.; Liu, L.; Li, T. Mitochondrial Drp1 recognizes and induces excessive mPTP opening after hypoxia through BAX-PiC and LRRK2-HK2. Cell Death Dis., 2021, 12(11), 1050. doi: 10.1038/s41419-021-04343-x PMID: 34741026
  19. Mandal, R.; Barrón, J.C.; Kostova, I.; Becker, S.; Strebhardt, K. Caspase-8: The double-edged sword. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(2), 188357. doi: 10.1016/j.bbcan.2020.188357 PMID: 32147543
  20. Luo, Q.; Wu, X.; Zhao, P.; Nan, Y.; Chang, W.; Zhu, X.; Su, D.; Liu, Z. OTUD1 activates caspase‐independent and caspase‐dependent apoptosis by promoting AIF nuclear translocation and MCL1 degradation. Adv. Sci. (Weinh.), 2021, 8(8), 2002874. doi: 10.1002/advs.202002874 PMID: 33898171
  21. Wu, S.W.; Su, C.H.; Ho, Y.C.; Huang-Liu, R.; Tseng, C.C.; Chiang, Y.W.; Yeh, K.L.; Lee, S.S.; Chen, W.Y.; Chen, C.J.; Li, Y.C.; Lee, C.Y.; Kuan, Y.H. Genotoxic effects of 1-nitropyrene in macrophages are mediated through a p53-dependent pathway involving cytochrome c release, caspase activation, and PARP-1 cleavage. Ecotoxicol. Environ. Saf., 2021, 213, 112062. doi: 10.1016/j.ecoenv.2021.112062 PMID: 33618169
  22. Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell, 2019, 176(6), 1248-1264. doi: 10.1016/j.cell.2019.01.021 PMID: 30849371
  23. Porta, M.; Striglia, E. Intravitreal anti-VEGF agents and cardiovascular risk. Intern. Emerg. Med., 2020, 15(2), 199-210. doi: 10.1007/s11739-019-02253-7 PMID: 31848994
  24. DiStefano, P.V.; Glading, A.J. VEGF signalling enhances lesion burden in KRIT1 deficient mice. J. Cell. Mol. Med., 2020, 24(1), 632-639. doi: 10.1111/jcmm.14773 PMID: 31746130
  25. Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem., 2020, 194, 112260. doi: 10.1016/j.ejmech.2020.112260 PMID: 32224379
  26. Huang, L.J.; Li, G.; Ding, Y.; Sun, J.H.; Wu, T.T.; Zhao, W.; Zeng, Y.S. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice. Exp. Neurol., 2019, 320, 112965. doi: 10.1016/j.expneurol.2019.112965 PMID: 31132364
  27. Li, H.; Cai, E.; Cheng, H.; Ye, X.; Ma, R.; Zhu, H.; Chang, X. FGA controls VEGFA secretion to promote angiogenesis by activating the VEGFR2-FAK signalling pathway. Front. Endocrinol., 2022, 13, 791860. doi: 10.3389/fendo.2022.791860 PMID: 35498401

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers