Antitumoral Potential of Artepillin C, a Compound Derived from Brazilian Propolis, against Breast Cancer Cell Lines


Cite item

Full Text

Abstract

Background::Breast cancer is the most commonly diagnosed cancer among women worldwide with limited treatment options. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is one of the main constituents of Brazilian propolis presenting different activities, including antitumoral effects against various types of cancer.

Objective::We evaluated the antitumoral potential and mechanisms of action of artepillin C against two distinct human breast cancer cell lines, MCF-7 and MDA-MB-231, to explore a new therapeutic candidate.

Methods::Cell viability was assessed by MTT assay and the long-term cytotoxicity was performed by clonogenic assay. The morphological changes were observed by light microscopy, analysis of cell death pathway by Annexin V FITC/propidium iodide (PI), lactate dehydrogenase (LDH) by colorimetry, DNA fragmentation by agarose gel and senescence by β-galactosidase. Detection of total reactive oxygen species (ROS) by fluorescence microscopy and determination of mitochondrial transmembrane potential by flow cytometry were also performed.

Results::Artepillin C presented a strong and dose-time-dependent cytotoxic effect on MCF-7 and MDA-MB-231 cell lines, with cytotoxicity more evident in MCF-7. In both cancer cell lines, the clonogenic potential was significantly reduced and the morphology of the cells was changed. The treatment also induced death by necrosis and late apoptosis in MCF-7 and MDA-MB-231 and induced cell senescence in MCF-7. Also, artepillin C increased total ROS in both cancer cells and decreased mitochondrial membrane potential in MDA-MB-231 cells.

Conclusion::Artepillin C presented antitumoral potential in two human breast cancer cell lines, MCF-7, and MDA-MB-231, suggesting a new promising option for the treatment and/or chemopreventive strategy for breast cancer.

About the authors

Lyvia de Freitas Meirelles

Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM),

Email: info@benthamscience.net

Analine de Assis Carvalho

Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM),

Email: info@benthamscience.net

Gabrielle Ferreira Damke

Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM),

Email: info@benthamscience.net

Raquel Souza

Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM),Maringá, Paraná

Email: info@benthamscience.net

Edilson Damke

Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM),

Email: info@benthamscience.net

Patrícia de Souza Bonfim-Mendonça

Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM),

Email: info@benthamscience.net

Djaceli de Oliveira Dembogurski

Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Universidade Federal do Mato Grosso do Sul

Email: info@benthamscience.net

Denise da Silva

Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Universidade Federal do Mato Grosso do Sul

Email: info@benthamscience.net

Marcia Consolaro

Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM),

Author for correspondence.
Email: info@benthamscience.net

Vania da Silva

Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá (UEM),

Email: info@benthamscience.net

References

  1. Anastasiadi, Z.; Lianos, G.D.; Ignatiadou, E.; Harissis, H.V.; Mitsis, M. Breast cancer in young women: An overview. Updates Surg., 2017, 69(3), 313-317. doi: 10.1007/s13304-017-0424-1 PMID: 28260181
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  3. Greaney, M.L.; Sprunck-Harrild, K.; Ruddy, K.J.; Ligibel, J.; Barry, W.T.; Baker, E.; Meyer, M.; Emmons, K.M.; Partridge, A.H. Study protocol for Young & Strong: A cluster randomized design to increase attention to unique issues faced by young women with newly diagnosed breast cancer. BMC Public Health, 2015, 15(1), 37. doi: 10.1186/s12889-015-1346-9 PMID: 25636332
  4. Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150. doi: 10.1016/S0140-6736(16)31891-8 PMID: 27865536
  5. Breast cancer. breast cancer information & overview. Accessed on https://www.cancer.org/cancer/breast-cancer.html (Accessed November 22 2022).
  6. Abdulkareem, I.H.; Zurmi, I.B. Review of hormonal treatment of breast cancer. Niger. J. Clin. Pract., 2012, 15(1), 9-14. doi: 10.4103/1119-3077.94088 PMID: 22437080
  7. Weigelt, B.; Peterse, J.L.; van’t Veer, L.J. Breast cancer metastasis: Markers and models. Nat. Rev. Cancer, 2005, 5(8), 591-602. doi: 10.1038/nrc1670 PMID: 16056258
  8. Sepúlveda, C.; Núñez, O.; Torres, A.; Guzmán, L.; Wehinger, S. Antitumor activity of propolis: Recent advances in cellular perspectives, animal models and possible applications. Food Rev. Int., 2020, 36(5), 429-455. doi: 10.1080/87559129.2019.1649692
  9. Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Far, F.B.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; Aref, A.R.; Ashrafizadeh, M.; Zarrabi, A.; Sethi, G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res., 2021, 171, 105759. doi: 10.1016/j.phrs.2021.105759 PMID: 34245864
  10. Liu, H.; Li, J.; Yuan, W.; Hao, S.; Wang, M.; Wang, F.; Xuan, H. Bioactive components and mechanisms of poplar propolis in inhibiting proliferation of human hepatocellular carcinoma HepG2 cells. Biomed. Pharmacother., 2021, 144, 112364. doi: 10.1016/j.biopha.2021.112364 PMID: 34700230
  11. Veiga, R.S.; De Mendonça, S.; Mendes, P.B.; Paulino, N.; Mimica, M.J.; Lagareiro, N.A.A.; Lira, I.S.; López, B.G.C.; Negrão, V.; Marcucci, M.C. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J. Appl. Microbiol., 2017, 122(4), 911-920. doi: 10.1111/jam.13400 PMID: 28066967
  12. Messerli, S.M.; Ahn, M.R.; Kunimasa, K.; Yanagihara, M.; Tatefuji, T.; Hashimoto, K.; Mautner, V.; Uto, Y.; Hori, H.; Kumazawa, S.; Kaji, K.; Ohta, T.; Maruta, H.; Artepillin, C.; Artepillin, C. ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytother. Res., 2009, 23(3), 423-427. doi: 10.1002/ptr.2658 PMID: 19003952
  13. Paulino, N.; Abreu, S.R.L.; Uto, Y.; Koyama, D.; Nagasawa, H.; Hori, H.; Dirsch, V.M.; Vollmar, A.M.; Scremin, A.; Bretz, W.A. Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur. J. Pharmacol., 2008, 587(1-3), 296-301. doi: 10.1016/j.ejphar.2008.02.067 PMID: 18474366
  14. Souza, R.P.; Bonfim-Mendonça, P.S.; Damke, G.M.Z.F.; de-Assis Carvalho, A.R.B.; Ratti, B.A.; Dembogurski, D.S.O.; da-Silva, V.R.S.; Silva, S.O.; Da-Silva, D.B.; Bruschi, M.L.; Maria-Engler, S.S.; Consolaro, M.E.L. Artepillin C induces selective oxidative stress and inhibits migration and invasion in a comprehensive panel of human cervical cancer cell lines. Anticancer. Agents Med. Chem., 2019, 18(12), 1750-1760. doi: 10.2174/1871520618666180604092930 PMID: 29866020
  15. Twentyman, P.R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer, 1987, 56(3), 279-285. doi: 10.1038/bjc.1987.190 PMID: 3663476
  16. Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319. doi: 10.1038/nprot.2006.339 PMID: 17406473
  17. Damke, G.M.Z.F.; Damke, E.; de Souza Bonfim-Mendonça, P.; Ratti, B.A.; de Freitas Meirelles, L.E.; da Silva, V.R.S.; Gonçalves, R.S.; César, G.B.; de Oliveira Silva, S.; Caetano, W.; Hioka, N.; Souza, R.P.; Consolaro, M.E.L. Selective photodynamic effects on cervical cancer cells provided by P123 Pluronic®-based nanoparticles modulating hypericin delivery. Life Sci., 2020, 255, 117858. doi: 10.1016/j.lfs.2020.117858 PMID: 32497635
  18. Gary, R.K.; Kindell, S.M. Quantitative assay of senescence-associated β-galactosidase activity in mammalian cell extracts. Anal. Biochem., 2005, 343(2), 329-334. doi: 10.1016/j.ab.2005.06.003 PMID: 16004951
  19. Lakshmanan, I.; Batra, S. Protocol for apoptosis assay by flow cytometry using annexin v staining method. Bio Protoc., 2013, 3(6), 1-4. doi: 10.21769/BioProtoc.374 PMID: 27430005
  20. Geeviman, K.; Babu, D.; Prakash, B.P. Pantoprazole induces mitochondrial apoptosis and attenuates NF-ΚB signaling in glioma cells. Cell. Mol. Neurobiol., 2018, 38(8), 1491-1504. doi: 10.1007/s10571-018-0623-4 PMID: 30302629
  21. Shimizu, K.; Das, S.K.; Hashimoto, T.; Sowa, Y.; Yoshida, T.; Sakai, T.; Matsuura, Y.; Kanazawa, K. Artepillin C in Brazilian propolis induces G0/G1 arrest via stimulation of Cip1/p21 expression in human colon cancer cells. Mol. Carcinog., 2005, 44(4), 293-299. doi: 10.1002/mc.20148 PMID: 16224795
  22. Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Yamada, N.; Ohta, S.; Ichihara, K.; Akao, Y. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression. Phytomedicine, 2014, 21(8-9), 1070-1077. doi: 10.1016/j.phymed.2014.04.006 PMID: 24854570
  23. Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb. Protoc., 2018, 2018(6), pdb.prot095497. doi: 10.1101/pdb.prot095497 PMID: 29858337
  24. Nam, G.; Rangasamy, S.; Ju, H.; Samson, A.A.S.; Song, J.M. Cell death mechanistic study of photodynamic therapy against breast cancer cells utilizing liposomal delivery of 5,10,15,20-tetrakis(benzobthiophene) porphyrin. J. Photochem. Photobiol. B, 2017, 166, 116-125. doi: 10.1016/j.jphotobiol.2016.11.006 PMID: 27889618
  25. Sarkisian, C.J.; Keister, B.A.; Stairs, D.B.; Boxer, R.B.; Moody, S.E.; Chodosh, L.A. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol., 2007, 9(5), 493-505. doi: 10.1038/ncb1567 PMID: 17450133
  26. Roninson, I.B.; Dokmanovic, M. Induction of senescence-associated growth inhibitors in the tumor-suppressive function of retinoids. J. Cell. Biochem., 2003, 88(1), 83-94. doi: 10.1002/jcb.10320 PMID: 12461777
  27. Muller, M. Cellular senescence: Molecular mechanisms, in vivo significance, and redox considerations. Antioxid. Redox Signal., 2009, 11(1), 59-98. doi: 10.1089/ars.2008.2104 PMID: 18976161
  28. Elmore, L.W.; Rehder, C.W.; Di, X.; McChesney, P.A.; Jackson-Cook, C.K.; Gewirtz, D.A.; Holt, S.E. Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J. Biol. Chem., 2002, 277(38), 35509-35515. doi: 10.1074/jbc.M205477200 PMID: 12101184
  29. Jones, K.R.; Elmore, L.W.; Jackson-Cook, C.; Demasters, G.; Povirk, L.F.; Holt, S.E.; Gewirtz, D.A. p53-Dependent accelerated senescence induced by ionizing radiation in breast tumour cells. Int. J. Radiat. Biol., 2005, 81(6), 445-458. doi: 10.1080/09553000500168549 PMID: 16308915
  30. Theodossiou, T.A.; Ali, M.; Grigalavicius, M.; Grallert, B.; Dillard, P.; Schink, K.O.; Olsen, C.E.; Wälchli, S.; Inderberg, E.M.; Kubin, A.; Peng, Q.; Berg, K. Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT–tamoxifen hybrid therapy. NPJ Breast Cancer, 2019, 5(1), 13. doi: 10.1038/s41523-019-0108-8 PMID: 30993194
  31. Rodrigues, D.M.; Portapilla, G.B.; Silva, G.M.; Duarte, A.; Rotta, C.G.; da Silva, C.H.T.P.; de Albuquerque, S.; Bastos, J.K.; Campo, V.L. Synthesis, antitumor activity and in silico analyses of amino acid derivatives of artepillin C, drupanin and baccharin from green propolis. Bioorg. Med. Chem., 2021, 47, 116372. doi: 10.1016/j.bmc.2021.116372 PMID: 34454129

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers