An Outlook of the Structure Activity Relationship (SAR) of Naphthalimide Derivatives as Anticancer Agents


Cite item

Full Text

Abstract

The efficacy of drugs against cancer in clinical settings may be limited due to pharmacokinetic issues, side effects and the emergence of drug resistance. However, a class of anticancer drugs known as naphthalimides have proven to be very effective. These derivatives have demonstrated to be effective in treating different types of cancers and exhibit strong DNA binding affinity. The anticancer properties of the naphthalimide derivatives allow them to target a number of cancer cell lines. Researchers have investigated the anticancer activity of numerous naphthalimide derivatives, such as heterocyclic fused, non-fused substituted, metal-substituted and carboxamide derivatives. Surprisingly, some derivatives demonstrate greater activity than the reference norms, such as cisplatin, amonafide, mitonafide and others and are selective against many cell lines. The primary objective of this research is to comprehend the effects of various substitution patterns on the structure-activity relationship (SAR) of these derivatives and the instances in which they enhance or reduce this biological activity.

About the authors

Aeyaz Bhat

Department of Chemistry, School of Physical Sciences, Lovely Professional University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kamal, A.; Bolla, N.R.; Srikanth, P.S.; Srivastava, A.K. Naphthalimide derivatives with therapeutic characteristics: A patent review. Expert Opin. Ther. Pat., 2013, 23(3), 299-317. doi: 10.1517/13543776.2013.746313 PMID: 23369185
  2. Tandon, R.; Luxami, V.; Kaur, H.; Tandon, N.; Paul, K. 1,8-Naphthalimide: A potent DNA intercalator and target for cancer therapy. Chem. Rec., 2017, 17(10), 956-993. doi: 10.1002/tcr.201600134 PMID: 28375569
  3. Shen, K.; Sun, L.; Zhang, H.; Xu, Y.; Qian, X.; Lu, Y.; Li, Q.; Ni, L.; Liu, J. A ROS-mediated lysosomal–mitochondrial pathway is induced by a novel Amonafide analogue, 7c, in human Hela cervix carcinoma cells. Cancer Lett., 2013, 333(2), 229-238. doi: 10.1016/j.canlet.2013.01.038 PMID: 23376642
  4. Su, G.H.; Sohn, T.A.; Ryu, B.; Kern, S.E. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res., 2000, 60(12), 3137-3142. PMID: 10866300
  5. Pain, A.; Samanta, S.; Dutta, S.; Saxena, A.K.; Shanmugavel, M.; Kampasi, H.; Quazi, G.N.; Sanyal, U. Synthesis and evaluation of substituted naphthalimide nitrogen mustards as rationally designed anticancer compounds. Acta Pol. Pharm., 2003, 60(4), 285-291. PMID: 14714857
  6. Shao, J.; Li, Y.; Wang, Z.; Xiao, M.; Yin, P.; Lu, Y.; Qian, X.; Xu, Y.; Liu, J. 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. Int. Immunopharmacol., 2013, 17(2), 216-228. doi: 10.1016/j.intimp.2013.06.008 PMID: 23810444
  7. Banerjee, S.; Veale, E.B.; Phelan, C.M.; Murphy, S.A.; Tocci, G.M.; Gillespie, L.J.; Frimannsson, D.O.; Kelly, J.M.; Gunnlaugsson, T. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev., 2013, 42(4), 1601-1618. doi: 10.1039/c2cs35467e PMID: 23325367
  8. Braña, M.; Ramos, A. Naphthalimides as anti-cancer agents: Synthesis and biological activity. Curr. Med. Chem. Anticancer Agents, 2001, 1(3), 237-255. doi: 10.2174/1568011013354624 PMID: 12678756
  9. Lv, M.; Xu, H. Overview of naphthalimide analogs as anticancer agents. Curr. Med. Chem., 2009, 16(36), 4797-4813. doi: 10.2174/092986709789909576 PMID: 19929786
  10. Ge, C.; Chang, L.; Zhao, Y.; Chang, C.; Xu, X.; He, H.; Wang, Y.; Dai, F.; Xie, S.; Wang, C. Design, synthesis and evaluation of naphthalimide derivatives as potential anticancer agents for hepatocellular carcinoma. Molecules, 2017, 22(2), 342. doi: 10.3390/molecules22020342 PMID: 28241441
  11. Tomczyk, M.D.; Walczak, K.Z. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem., 2018, 159, 393-422. doi: 10.1016/j.ejmech.2018.09.055 PMID: 30312931
  12. Bhat, A.A.; Singh, I.; Tandon, N.; Tandon, R. Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). Eur. J. Med. Chem., 2023, 246, 114954. doi: 10.1016/j.ejmech.2022.114954 PMID: 36481599
  13. Skladanowski, A.; Bozko, P.; Sabisz, M. DNA structure and integrity checkpoints during the cell cycle and their role in drug targeting and sensitivity of tumor cells to anticancer treatment. Chem. Rev., 2009, 109(7), 2951-2973. doi: 10.1021/cr900026u PMID: 19522503
  14. Bhat, A.A.; Tandon, N.; Tandon, R. Pyrrolidine derivatives as Anti‐diabetic agents: Current status and future prospects. ChemistrySelect, 2022, 7(6), e202103757. doi: 10.1002/slct.202103757
  15. Bloodgood, B.L.; Sharma, N.; Browne, H.A.; Trepman, A.Z.; Greenberg, M.E. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature, 2013, 503(7474), 121-125. doi: 10.1038/nature12743 PMID: 24201284
  16. Chen, Z.; Xu, Y.; Qian, X. Naphthalimides and analogues as antitumor agents: A review on molecular design, bioactivity and mechanism of action. Chin. Chem. Lett., 2018, 29(12), 1741-1756. doi: 10.1016/j.cclet.2018.09.020
  17. Ingrassia, L.; Lefranc, F.; Kiss, R.; Mijatovic, T. Naphthalimides and azonafides as promising anti-cancer agents. Curr. Med. Chem., 2009, 16(10), 1192-1213. doi: 10.2174/092986709787846659 PMID: 19355879
  18. Kokosza, K.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D.G. Design, antiviral and cytostatic properties of isoxazolidine-containing amonafide analogues. Bioorg. Med. Chem., 2015, 23(13), 3135-3146. doi: 10.1016/j.bmc.2015.04.079 PMID: 26001344
  19. Bhat, A.A.; Tandon, N.; Singh, I.; Tandon, R. Structure-activity relationship (SAR) and antibacterial activity of pyrrolidine based hybrids: A review. J. Mol. Struct., 2023, 1283, 135175. doi: 10.1016/j.molstruc.2023.135175
  20. George, N.; Singh, G.; Singh, R.; Singh, G. Anita Devi; Singh, H.; Kaur, G.; Singh, J. Microwave accelerated green approach for tailored 1,2,3–triazoles via CuAAC. Sustain. Chem. Pharm., 2022, 30, 100824. doi: 10.1016/j.scp.2022.100824
  21. Tumiatti, V.; Milelli, A.; Minarini, A.; Micco, M.; Gasperi Campani, A.; Roncuzzi, L.; Baiocchi, D.; Marinello, J.; Capranico, G.; Zini, M.; Stefanelli, C.; Melchiorre, C. Design, synthesis, and biological evaluation of substituted naphthalene imides and diimides as anticancer agent. J. Med. Chem., 2009, 52(23), 7873-7877. doi: 10.1021/jm901131m PMID: 19954251
  22. Machado, K.E.; Oliveira, K.N.; Santos-Bubniak, L.; Licínio, M.A.; Nunes, R.J.; Santos-Silva, M.C. Evaluation of apoptotic effect of cyclic imide derivatives on murine B16F10 melanoma cells. Bioorg. Med. Chem., 2011, 19(21), 6285-6291. doi: 10.1016/j.bmc.2011.09.008 PMID: 21964182
  23. Singh, G.; George, N.; Singh, R.; Singh, G.; Kaur, J.D.; Kaur, G.; Singh, H.; Singh, J. CuAAC-derived selective fluorescent probe as a recognition agent for Pb(II) and Hg(II): DFT and docking studies. ACS Omega, 2022, 7(43), 39159-39168. doi: 10.1021/acsomega.2c05050 PMID: 36340062
  24. George, N.; Singh, G.; Singh, R.; Singh, G. Priyanka; Singh, H.; Kaur, G.; Singh, J. Click modified bis-appended Schiff base 1,2,3-triazole chemosensor for detection of Pb(II)ion and computational studies. J. Mol. Struct., 2023, 1288, 135666. doi: 10.1016/j.molstruc.2023.135666
  25. Armitage, B.A. DNA binders and related subjects; Springer Science & Business Media, 2005, p. 253.
  26. Wani, A.K.; Akhtar, N.; Mir, T.G.; Singh, R.; Jha, P.K.; Mallik, S.K.; Sinha, S.; Tripathi, S.K.; Jain, A.; Jha, A.; Devkota, H.P.; Prakash, A. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules, 2023, 13(2), 194. doi: 10.3390/biom13020194 PMID: 36830564
  27. Gholami, L.; Ivari, J.R.; Nasab, N.K.; Oskuee, R.K.; Sathyapalan, T.; Sahebkar, A. Recent advances in lung cancer therapy based on nanomaterials: A review. Curr. Med. Chem., 2023, 30(3), 335-355. doi: 10.2174/0929867328666210810160901 PMID: 34375182
  28. Kamaike, K.; Sano, M.; Sakata, D.; Nishihara, Y.; Amino, H.; Ohtsuki, A.; Okada, Y.; Miyakawa, T.; Kogawara, M.; Tsutsumi, M.; Takahashi, M.; Kawashima, E.; Ota, K.; Miyaoka, H. Synthesis and evaluation of MGB polyamide-oligonucleotide conjugates as gene expression control compounds. J. Nucleic Acids, 2023, 2023, 1-20. doi: 10.1155/2023/2447998 PMID: 36960406
  29. Craig, J.S.; Melidis, L.; Williams, H.D.; Dettmer, S.J.; Heidecker, A.A.; Altmann, P.J.; Guan, S.; Campbell, C.; Browning, D.F.; Sigel, R.K.O.; Johannsen, S.; Egan, R.T.; Aikman, B.; Casini, A.; Pöthig, A.; Hannon, M.J. Organometallic pillarplexes that bind DNA 4-way holliday junctions and forks. J. Am. Chem. Soc., 2023, 145(25), 13570-13580. doi: 10.1021/jacs.3c00118 PMID: 37318835
  30. Singh, G.; George, N.; Singh, R.; Singh, G. Sushma; Kaur, G.; Singh, H.; Singh, J. Ion recognition by 1,2,3‐triazole moieties synthesized via "click chemistry". Appl. Organomet. Chem., 2023, 37(1), e6897. doi: 10.1002/aoc.6897
  31. Vasudevan, S.; Smith, J.A.; Wojdyla, M.; McCabe, T.; Fletcher, N.C.; Quinn, S.J.; Kelly, J.M.; Quinn, S.J.; Kelly, J.M. Substituted dipyridophenazine complexes of Cr(iii): Synthesis, enantiomeric resolution and binding interactions with calf thymus DNA. Dalton Trans., 2010, 39(16), 3990-3998. doi: 10.1039/c000150c PMID: 20372725
  32. Bhat, A.A.; Tandon, N.; Tandon, R. Pyrrolidine derivatives as antibacterial agents, current status and future prospects: A patent review. Pharm. Pat. Anal., 2022, 11(6), 187-198. doi: 10.4155/ppa-2022-0015 PMID: 36366974
  33. Seredinski, S.; Boos, F.; Günther, S.; Oo, J.A.; Warwick, T.; Izquierdo Ponce, J.; Lillich, F.F.; Proschak, E.; Knapp, S.; Gilsbach, R.; Pflüger-Müller, B.; Brandes, R.P.; Leisegang, M.S. DNA topoisomerase inhibition with the HIF inhibitor acriflavine promotes transcription of lncRNAs in endothelial cells. Mol. Ther. Nucleic Acids, 2022, 27, 1023-1035. doi: 10.1016/j.omtn.2022.01.016 PMID: 35228897
  34. Irfandi, R.; Santi, S.; Raya, I.; Ahmad, A. Ahmad Fudholi; Sari, D.R.T.; Prihantono, Study of new Zn(II)Prolinedithiocarbamate as a potential agent for breast cancer: Characterization and molecular docking. J. Mol. Struct., 2022, 1252, 132101. doi: 10.1016/j.molstruc.2021.132101
  35. Lerman, L.S. The structure of the DNA-acridine complex. Proc. Natl. Acad. Sci. USA, 1963, 49(1), 94-102. doi: 10.1073/pnas.49.1.94 PMID: 13929834
  36. Becker, H.C.; Nordén, B. DNA binding thermodynamics and sequence specificity of chiral piperazinecarbonyloxyalkyl derivatives of anthracene and pyrene. J. Am. Chem. Soc., 2000, 122(35), 8344-8349. doi: 10.1021/ja000464x
  37. Khalifa, M.M.; Al-Karmalawy, A.A.; Elkaeed, E.B.; Nafie, M.S.; Tantawy, M.A.; Eissa, I.H.; Mahdy, H.A. Topo II inhibition and DNA intercalation by new phthalazine-based derivatives as potent anticancer agents: Design, synthesis, anti-proliferative, docking, and in vivo studies. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 299-314. doi: 10.1080/14756366.2021.2007905 PMID: 34894955
  38. Karimi-Maleh, H.; Liu, Y.; Li, Z.; Darabi, R.; Orooji, Y.; Karaman, C.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Fu, L.; Rostamnia, S.; Rajendran, S.; Sanati, A.L.; Sadeghifar, H.; Ghalkhani, M. Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere, 2023, 332, 138815. doi: 10.1016/j.chemosphere.2023.138815 PMID: 37146774
  39. Satange, R.; Kao, S.H.; Chien, C.M.; Chou, S.H.; Lin, C.C.; Neidle, S.; Hou, M.H. Staggered intercalation of DNA duplexes with base-pair modulation by two distinct drug molecules induces asymmetric backbone twisting and structure polymorphism. Nucleic Acids Res., 2022, 50(15), 8867-8881. doi: 10.1093/nar/gkac629 PMID: 35871296
  40. Ghosh, A.; Trajkovski, M.; Teulade-Fichou, M.P.; Gabelica, V.; Plavec, J. Phen‐DC 3 induces refolding of human telomeric DNA into a chair‐type antiparallel G‐Quadruplex through ligand intercalation. Angew. Chem., 2022, 134(40), e202207384. doi: 10.1002/ange.202207384
  41. Karimi-Maleh, H.; Erk, N. Gemcitabine drug intercalation with ds-DNA at surface of ds-DNA/Pt–ZnO/SWCNTs/GCE biosensor: A DNA-biosensor for gemcitabine monitoring confirmed by molecular docking study. Chemosphere, 2023, 336, 139268. doi: 10.1016/j.chemosphere.2023.139268 PMID: 37343636
  42. Tandon, R.; Luxami, V.; Tandon, N.; Paul, K. Recent developments on 1,8-Naphthalimide moiety as potential target for anticancer agents. Bioorg. Chem., 2022, 121, 105677. doi: 10.1016/j.bioorg.2022.105677 PMID: 35202852
  43. Berman, H.M.; Young, P.R. The interaction of intercalating drugs with nucleic acids. Annu. Rev. Biophys. Bioeng., 1981, 10(1), 87-114. doi: 10.1146/annurev.bb.10.060181.000511 PMID: 7020585
  44. Wilson, W.D.; Jones, R.L. Intercalating drugs: DNA binding and molecular pharmacology. Adv. Pharmacol., 1981, 18, 177-222. doi: 10.1016/S1054-3589(08)60255-0 PMID: 6172965
  45. Martínez, R.; Chacón-García, L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr. Med. Chem., 2005, 12(2), 127-151. doi: 10.2174/0929867053363414 PMID: 15638732
  46. Biebricher, A.S.; Heller, I.; Roijmans, R.F.H.; Hoekstra, T.P.; Peterman, E.J.G.; Wuite, G.J.L. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nat. Commun., 2015, 6(1), 7304. doi: 10.1038/ncomms8304 PMID: 26084388
  47. Hendershot, J.M.; O’Brien, P.J. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping. Nucleic Acids Res., 2014, 42(20), 12681-12690. doi: 10.1093/nar/gku919 PMID: 25324304
  48. Chen, A.Y.; Liu, L.F. DNA topoisomerases: Essential enzymes and lethal targets. Annu. Rev. Pharmacol. Toxicol., 1994, 34(1), 191-218. doi: 10.1146/annurev.pa.34.040194.001203 PMID: 8042851
  49. Webb, M.R.; Ebeler, S.E. A gel electrophoresis assay for the simultaneous determination of topoisomerase I inhibition and DNA intercalation. Anal. Biochem., 2003, 321(1), 22-30. doi: 10.1016/S0003-2697(03)00459-7 PMID: 12963051
  50. Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol., 2007, 18(6), 497-503. doi: 10.1016/j.copbio.2007.09.006 PMID: 17988854
  51. El-Zahabi, M.; Amin, Y.; Sakr, H.; El-Hady, O. An overview of imides and their analogues as anticancer agents. Al-Azh. J. Pharmacol. Sci., 2022, 66(2), 99-125. doi: 10.21608/ajps.2022.268400
  52. Bolognese, A.; Correale, G.; Manfra, M.; Lavecchia, A.; Mazzoni, O.; Novellino, E.; Barone, V.; La Colla, P.; Loddo, R. Antitumor agents. 2. Synthesis, structure-activity relationships, and biological evaluation of substituted 5H-pyridophenoxazin-5-ones with potent antiproliferative activity. J. Med. Chem., 2002, 45(24), 5217-5223. doi: 10.1021/jm020918w PMID: 12431049
  53. Tempone, A.G.; Pieper, P.; Borborema, S.E.T.; Thevenard, F.; Lago, J.H.G.; Croft, S.L.; Anderson, E.A. Marine alkaloids as bioactive agents against protozoal neglected tropical diseases and malaria. Nat. Prod. Rep., 2021, 38(12), 2214-2235. doi: 10.1039/D0NP00078G PMID: 34913053
  54. Zhang, L.; Su, F.; Kong, X.; Lee, F.; Sher, S.; Day, K.; Tian, Y.; Meldrum, D.R. 1,8‐Naphthalimide derivative dyes with large stokes shifts for targeting live‐cell mitochondria. ChemBioChem, 2016, 17(18), 1719-1724. doi: 10.1002/cbic.201600169 PMID: 27319799
  55. Zhang, J.; Dumur, F.; Xiao, P.; Graff, B.; Bardelang, D.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Structure design of naphthalimide derivatives: Toward versatile photoinitiators for near-UV/visible LEDs, 3D printing, and water-soluble photoinitiating systems. Macromolecules, 2015, 48(7), 2054-2063. doi: 10.1021/acs.macromol.5b00201
  56. Ventura, B.; Bertocco, A.; Braga, D.; Catalano, L.; d’Agostino, S.; Grepioni, F.; Taddei, P. Luminescence properties of 1, 8-naphthalimide derivatives in solution, in their crystals, and in co-crystals: Toward room-temperature phosphorescence from organic materials. J. Phys. Chem. C, 2014, 118(32), 18646-18658. doi: 10.1021/jp5049309
  57. Gong, H.H.; Addla, D.; Lv, J.S.; Zhou, C.H. Heterocyclic naphthalimides as new skeleton structure of compounds with increasingly expanding relational medicinal applications. Curr. Top. Med. Chem., 2016, 16(28), 3303-3364. doi: 10.2174/1568026616666160506145943 PMID: 27150364
  58. Xin, M.; Wei, J.H.; Yang, C.H.; Liang, G.B.; Su, D.; Ma, X.L.; Zhang, Y. Design, synthesis and biological evaluation of 3-nitro-1,8-naphthalimides as potential antitumor agents. Bioorg. Med. Chem. Lett., 2020, 30(8), 127051. doi: 10.1016/j.bmcl.2020.127051 PMID: 32111436
  59. Rong, R.X.; Wang, S.S.; Liu, X.; Li, R.F.; Wang, K.R.; Cao, Z.R.; Li, X.L. Lysosomes-targeting imaging and anticancer properties of novel bis-naphthalimide derivatives. Bioorg. Med. Chem. Lett., 2018, 28(4), 742-747. doi: 10.1016/j.bmcl.2018.01.008 PMID: 29342415
  60. Dai, F.; He, H.; Xu, X.; Chen, S.; Wang, C.; Feng, C.; Tian, Z.; Dong, H.; Xie, S. Synthesis and biological evaluation of naphthalimide-polyamine conjugates modified by alkylation as anticancer agents through p53 pathway. Bioorg. Chem., 2018, 77, 16-24. doi: 10.1016/j.bioorg.2017.12.036 PMID: 29316508
  61. Shaikh, S.A.; Bhat, S.S.; Hegde, P.L.; Revankar, V.K.; Kate, A.; Kirtani, D.; Kumbhar, A.A.; Kumbar, V.; Bhat, K. Synthesis, structural characterization, protein binding, DNA cleavage and anticancer activity of fluorophore labelled copper(II) complexes based on 1,8-naphthalimide conjugates. New J. Chem., 2021, 45(35), 16319-16332. doi: 10.1039/D1NJ02696H
  62. Yildiz, U.; Kandemir, I.; Cömert, F.; Akkoç, S.; Coban, B. Synthesis of naphthalimide derivatives with potential anticancer activity, their comparative ds- and G-quadruplex-DNA binding studies and related biological activities. Mol. Biol. Rep., 2020, 47(3), 1563-1572. doi: 10.1007/s11033-019-05239-y PMID: 32095985
  63. Liang, G.B.; Wei, J.H.; Jiang, H.; Huang, R.Z.; Qin, J.T.; Wang, H.L.; Wang, H.S.; Zhang, Y. Design, synthesis and antitumor evaluation of new 1,8-naphthalimide derivatives targeting nuclear DNA. Eur. J. Med. Chem., 2021, 210, 112951. doi: 10.1016/j.ejmech.2020.112951 PMID: 33109400
  64. Chen, R.; Yuan, C.; Jaiswal, Y.; Huo, L.; Li, D.; Williams, L.; Zhong, J.; Liang, Y. Synthesis and biological evaluation of some 1, 8-naphthalimide-acridinyl hybrids. J. Chem., 2020, 2020, 1-11. doi: 10.1155/2020/7989852
  65. Shankaraiah, N.; Kumar, N.P.; Tokala, R.; Gayatri, B.S.; Talla, V.; Santos, L.S. Synthesis of new 1, 2, 3-triazolo-naphthalimide/phthalimide conjugates via ‘Click’Reaction: DNA intercalation and cytotoxic studies. J. Braz. Chem. Soc., 2019, 30, 454-461.
  66. Sankara Rao, N.; Nagesh, N.; Lakshma Nayak, V.; Sunkari, S.; Tokala, R.; Kiranmai, G.; Regur, P.; Shankaraiah, N.; Kamal, A. Design and synthesis of DNA-intercalative naphthalimide-benzothiazole/cinnamide derivatives: Cytotoxicity evaluation and topoisomerase-IIα inhibition. MedChemComm, 2019, 10(1), 72-79. doi: 10.1039/C8MD00395E PMID: 30774856
  67. Huang, Y.; Wu, C.X.; Song, Y.; Huang, M.; Tian, D.N.; Yang, X.B.; Fan, Y.R. Synthesis, DNA binding, and anticancer properties of bis-naphthalimide derivatives with lysine-modified polyamine linkers. Molecules, 2018, 23(2), 266. doi: 10.3390/molecules23020266 PMID: 29382135
  68. Tung, C.H.; Lu, Y.T.; Kao, W.T.; Liu, J.W.; Lai, Y.H.; Jiang, S.J.; Chen, H.P.; Shih, T.L. Discovery of a more potent anticancer agent than C4 ‐benzazole 1,8‐naphthalimide derivatives against murine melanoma. J. Chin. Chem. Soc., 2020, 67(7), 1254-1262. doi: 10.1002/jccs.202000019
  69. Ma, W.; Zhang, S.; Tian, Z.; Xu, Z.; Zhang, Y.; Xia, X.; Chen, X.; Liu, Z. Potential anticancer agent for selective damage to mitochondria or lysosomes: Naphthalimide-modified fluorescent biomarker half-sandwich iridium (III) and ruthenium (II) complexes. Eur. J. Med. Chem., 2019, 181, 111599. doi: 10.1016/j.ejmech.2019.111599 PMID: 31408807
  70. Streciwilk, W.; Terenzi, A.; Cheng, X.; Hager, L.; Dabiri, Y.; Prochnow, P.; Bandow, J.E.; Wölfl, S.; Keppler, B.K.; Ott, I. Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects, cellular uptake and DNA-interaction. Eur. J. Med. Chem., 2018, 156, 148-161. doi: 10.1016/j.ejmech.2018.06.056 PMID: 30006161
  71. Singh, I.; Luxami, V.; Paul, K. Synthesis and in vitro evaluation of naphthalimide–benzimidazole conjugates as potential antitumor agents. Org. Biomol. Chem., 2019, 17(21), 5349-5366. doi: 10.1039/C8OB02973C PMID: 31099353
  72. Chen, Q.M.; Li, Z.; Tian, G.X.; Chen, Y.; Wu, X.H. 1,2,3-triazole-dithiocarbamate-naphthalimides: Synthesis, characterization, and biological evaluation. J. Chem. Res., 2021, 45(3-4), 258-264. doi: 10.1177/1747519820966971
  73. Roos, L.; Malan, F.P.; Landman, M. Naphthalimide-NHC complexes: Synthesis and properties in catalytic, biological and photophysical applications. Coord. Chem. Rev., 2021, 449, 214201. doi: 10.1016/j.ccr.2021.214201
  74. Langdon-Jones, E.E.; Lloyd, D.; Hayes, A.J.; Wainwright, S.D.; Mottram, H.J.; Coles, S.J.; Horton, P.N.; Pope, S.J.A. Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications. Inorg. Chem., 2015, 54(13), 6606-6615. doi: 10.1021/acs.inorgchem.5b00954 PMID: 26086352
  75. Jothi, D.; Iyer, S.K. A highly sensitive naphthalimide based fluorescent "turn-on" sensor for H2S and its bio-imaging applications. J. Photochem. Photobiol. Chem., 2022, 427, 113802. doi: 10.1016/j.jphotochem.2022.113802
  76. Rahal, M.; Mokbel, H.; Graff, B.; Pertici, V.; Gigmes, D.; Toufaily, J.; Hamieh, T.; Dumur, F.; Lalevée, J. Naphthalimide‐based dyes as photoinitiators under visible light irradiation and their applications: Photocomposite synthesis, 3D printing and polymerization in water. ChemPhotoChem, 2021, 5(5), 476-490. doi: 10.1002/cptc.202000306
  77. Wang, H.; Wu, H.; Xue, L.; Shi, Y.; Li, X. A naphthalimide fluorophore with efficient intramolecular PET and ICT Processes: Application in molecular logic. Org. Biomol. Chem., 2011, 9(15), 5436-5444. doi: 10.1039/c1ob05481c PMID: 21660342
  78. Dong, H.Q.; Wei, T.B.; Ma, X.Q.; Yang, Q.Y.; Zhang, Y.F.; Sun, Y.J.; Shi, B-B.; Yao, H.; Zhang, Y-M.; Lin, Q. 1,8-Naphthalimide-based fluorescent chemosensors: Recent advances and perspectives. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(39), 13501-13529. doi: 10.1039/D0TC03681A
  79. Yu, H.; Guo, Y.; Zhu, W.; Havener, K.; Zheng, X. Recent advances in 1,8-naphthalimide-based small-molecule fluorescent probes for organelles imaging and tracking in living cells. Coord. Chem. Rev., 2021, 444, 214019. doi: 10.1016/j.ccr.2021.214019
  80. Kang, J.; Gopala, L.; Reddy Tangadanchu, V.K.; Gao, W.W.; Zhou, C.H. Novel naphthalimide nitroimidazoles as multitargeting antibacterial agents against resistant Acinetobacter baumannii. Future Med. Chem., 2018, 10(7), 711-724. doi: 10.4155/fmc-2017-0160 PMID: 29671618
  81. Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev., 2010, 39(10), 3936-3953. doi: 10.1039/b910560n PMID: 20818454
  82. Naeem, N.; Tahir, T.; Ans, M.; Rasool, A.; Aqil, S.R.; Iqbal, J. Molecular engineering strategy of naphthalimide based small donor molecules for high-performance organic solar cells. Comput. Theor. Chem., 2021, 1204, 113416. doi: 10.1016/j.comptc.2021.113416
  83. Tandon, N. Thakur, R.; Tandon, R.; Singh, I.; Paul, K.; Ahmad Bhat, A. C‐H functionalized molecules: Synthesis, reaction mechanism, and biological activity. Asian J. Org. Chem., 2023, 12(7), e202300017. doi: 10.1002/ajoc.202300017
  84. Xu, H.; Zhang, S.; Gu, Y.; Lu, H. Naphthalimide appended isoquinoline fluorescent probe for specific detection of Al3+ ions and its application in living cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 265, 120364. doi: 10.1016/j.saa.2021.120364 PMID: 34520897
  85. Ye, F.; Liang, X.M.; Xu, K.X.; Pang, X.X.; Chai, Q.; Fu, Y. A novel dithiourea-appended naphthalimide "on-off" fluorescent probe for detecting Hg2+ and Ag+ and its application in cell imaging. Talanta, 2019, 200, 494-502. doi: 10.1016/j.talanta.2019.03.076 PMID: 31036214
  86. Li, Y.; Qiu, Y.; Zhang, J.; Zhu, X.; Zhu, B.; Liu, X.; Zhang, X.; Zhang, H. Naphthalimide derived fluorescent probes with turn-on response for Au3+ and the application for biological visualization. Biosens. Bioelectron., 2016, 83, 334-338. doi: 10.1016/j.bios.2016.04.034 PMID: 27135938
  87. Mati, S.S.; Roy, S.S.; Chall, S.; Bhattacharya, S.; Bhattacharya, S.C. Unveiling the groove binding mechanism of a biocompatible naphthalimide-based organoselenocyanate with calf thymus DNA: an "ex vivo" fluorescence imaging application appended by biophysical experiments and molecular docking simulations. J. Phys. Chem. B, 2013, 117(47), 14655-14665. doi: 10.1021/jp4090553 PMID: 24205834
  88. Khanday, F.A.; Santhanam, L.; Kasuno, K.; Yamamori, T.; Naqvi, A.; DeRicco, J.; Bugayenko, A.; Mattagajasingh, I.; Disanza, A.; Scita, G.; Irani, K. Sos-mediated activation of rac1 by p66shc. J. Cell Biol., 2006, 172(6), 817-822. doi: 10.1083/jcb.200506001 PMID: 16520382
  89. Wani, A.K.; Singh, J.; Shukla, S. Therapeutic application and toxicity associated with Crocus sativus (saffron) and its phytochemicals. In: Pharmacological Research-Modern Chinese Medicine; , 2022; p. 100136.
  90. Bhat, A.A.; Shakeel, A.; Rafiq, S.; Farooq, I.; Malik, A.Q.; Alghuthami, M.E.; Alharthi, S.; Qanash, H.; Alharthy, S.A. Juglans regia Linn.: A Natural repository of vital phytochemical and pharmacological compounds. Life, 2023, 13(2), 380. doi: 10.3390/life13020380 PMID: 36836737
  91. Jisha, V.S.; Thomas, A.J.; Ramaiah, D. Fluorescence ratiometric selective recognition of Cu2+ ions by dansyl-naphthalimide dyads. J. Org. Chem., 2009, 74(17), 6667-6673. doi: 10.1021/jo901164w PMID: 19639990
  92. Ott, I.; Qian, X.; Xu, Y.; Vlecken, D.H.W.; Marques, I.J.; Kubutat, D.; Will, J.; Sheldrick, W.S.; Jesse, P.; Prokop, A.; Bagowski, C.P. A gold(I) phosphine complex containing a naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J. Med. Chem., 2009, 52(3), 763-770. doi: 10.1021/jm8012135 PMID: 19123857
  93. Han, C.; Sun, S.B.; Ji, X.; Wang, J.Y. Recent advances in 1,8-naphthalimide-based responsive small-molecule fluorescent probes with a modified C4 position for the detection of biomolecules. Trends Analyt. Chem., 2023, 167, 117242. doi: 10.1016/j.trac.2023.117242

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers