Immunologic Mechanisms of BCc1 Nanomedicine Synthesized by Nanochelating Technology in Breast Tumor-bearing Mice: Immunomodulation and Tumor Suppression


Cite item

Full Text

Abstract

Introduction:The side effects of anti-cancer chemotherapy remain a concern for patients. So, designing alternative medications seems inevitable. In this research, the immunological mechanisms of BCc1 nanomedicine on tumor-bearing mice were investigated.

Methods:BALB/c mice underwent tumor transplantation and were assigned into four groups. Group 1 was orally administered with PBS buffer, Group 2 was orally administered BCc1 10 mg/kg, and Group 3 was orally administered BCc1 40 mg/kg daily, respectively. In addition, a group of mice was administered Cyclophosphamide, 20 mg/kg daily. The weight and tumor volume of mice were evaluated bi-weekly. After 24 days of treatment, cytokines and CTL assay in the spleen cell and the tumor were assessed. Furthermore, the spleen, liver, kidney, lung, gut, and uterine tissue were stained with hematoxylin and eosin. Finally, the tumor samples were stained and analyzed for FOXP3. The survival rate of mice was recorded.

Results:The results confirmed the histological safety of BCc1. This nanomedicine, especially BCc1 10 mg/kg, led to a strong IFN-γ response and suppressed TGF-β cytokine. The frequency of Treg in the tumor tissue of BCc1 nanomedicine groups was decreased. In addition, nanomedicine repressed tumor volume and tumor weight significantly, which was comparable to Cyclophosphamide. These immunologic events increased the survival rate of BCc1-treated groups. The results indicate that BCc1 nanomedicine can suppress tumor growth and thereby increase the survival rate of experimental mice.

Conclusion:It seems a modulation in the tumor microenvironment and polarization toward a Th1 response may be involved. So, BCc1 nanomedicine is efficient for human cancer therapy.

About the authors

Pegah Karimi

Department of Research and Development, Sodour Ahrar Shargh Company

Email: info@benthamscience.net

Saideh Fakharzadeh

Department of Research and Development, Sodour Ahrar Shargh Company

Email: info@benthamscience.net

Somayeh Kalanaky

Department of Research and Development, Sodour Ahrar Shargh Company

Email: info@benthamscience.net

Maryam Hafizi

Department of Research and Development, Sodour Ahrar Shargh Company

Email: info@benthamscience.net

Mehrdad Hashemi

Department of Genetics, Faculty of Advanced Science and Technology,, Tehran Medical Sciences, Islamic Azad University

Email: info@benthamscience.net

Mehdi Mahdavi

Department of Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR)

Author for correspondence.
Email: info@benthamscience.net

Mohammad Nazaran

Department of Research and Development, Sodour Ahrar Shargh Company

Author for correspondence.
Email: info@benthamscience.net

References

  1. Cancer, I.A.R.o. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020., 2020. Available from: https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/
  2. Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150. doi: 10.1016/S0140-6736(16)31891-8 PMID: 27865536
  3. Greenwalt, I.; Zaza, N.; Das, S.; Li, B.D. Precision medicine and targeted therapies in breast cancer. Surg. Oncol. Clin. N. Am., 2020, 29(1), 51-62. doi: 10.1016/j.soc.2019.08.004 PMID: 31757313
  4. Magnuson, A.; Sedrak, M.S.; Gross, C.P.; Tew, W.P.; Klepin, H.D.; Wildes, T.M.; Muss, H.B.; Dotan, E.; Freedman, R.A.; O’Connor, T.; Dale, W.; Cohen, H.J.; Katheria, V.; Arsenyan, A.; Levi, A.; Kim, H.; Mohile, S.; Hurria, A.; Sun, C.L. Development and validation of a risk tool for predicting severe toxicity in older adults receiving chemotherapy for early-stage breast cancer. J. Clin. Oncol., 2021, 39(6), 608-618. doi: 10.1200/JCO.20.02063 PMID: 33444080
  5. Jing, J.; Feng, R.; Zhang, X.; Li, M.; Gao, J. Financial toxicity and its associated patient and cancer factors among women with breast cancer: a single-center analysis of low-middle income region in China. Breast Cancer Res. Treat., 2020, 181(2), 435-443. doi: 10.1007/s10549-020-05632-3 PMID: 32306169
  6. Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer chemotherapy.In: StatPearls. Treasure Island (FL): ; StatPearls Publishing, 2024. PMID: 33232037
  7. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
  8. Mignani, S.; El Kazzouli, S.; Bousmina, M.; Majoral, J.P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv. Drug Deliv. Rev., 2013, 65(10), 1316-1330. doi: 10.1016/j.addr.2013.01.001 PMID: 23415951
  9. Chen, Y.; Liu, R.; Li, C.; Song, Y.; Liu, G.; Huang, Q.; Yu, L.; Zhu, D.; Lu, C.; Lu, A.; Li, L.; Liu, Y. Nab-paclitaxel promotes the cancer-immunity cycle as a potential immunomodulator. Am. J. Cancer Res., 2021, 11(7), 3445-3460. PMID: 34354854
  10. Foote, M. Using nanotechnology to improve the characteristics of antineoplastic drugs: Improved characteristics of nab-paclitaxel compared with solvent-based paclitaxel. Biotechnol. Annu. Rev. (Amst), 2007, 13, 345-357. doi: 10.1016/S1387-2656(07)13012-X PMID: 17875482
  11. Hafizi, M.; Soleimani, M.; Noorian, S. Effects of BCc1 nanoparticle and its mixture with doxorubicin on survival of murine 4T1 tumor model. OncoTargets Ther., 2019, 18(12), 4691-4701. doi: 10.2147/OTT.S200446 PMID: 31354301 PMCID: PMC6590627
  12. Kalanaky, S.; Hafizi, M.; Fakharzadeh, S. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo. Drug Des. Devel. Ther., 2015, 30(10), 59-70. doi: 10.2147/DDDT.S89694 PMID: 26766901 PMCID: 4699513
  13. Fakharzadeh, S.; Argani, H.; Dadashzadeh, S.; Kalanaky, S.; Mohammadi Torbati, P.; Nazaran, M.H.; Basiri, A. BCc1 nanomedicine therapeutic effects in streptozotocin and high-fat diet induced diabetic kidney disease. Diabetes Metab. Syndr. Obes., 2020, 13, 1179-1188. doi: 10.2147/DMSO.S240757 PMID: 32368111
  14. Hafizi, M.; Kalanaky, S.; Moaiery, H. A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and quality of life in metastatic and non-metastatic gastric cancer patients. J. Nanobiotechnol., 2019, 17(1), 52. doi: 10.1186/s12951-019-0484-0 PMID: 30971278 PMCID: 6458717
  15. Hafizi, M.; Kalanaky, S.; Moaiery, H. An investigation on the effect of BCc1 nanomedicine on gastric cancer patients using EORTC QLQ-STO30 questionnaire. Int. J. Cancer Management., 2019, 12(11), e94190. doi: 10.5812/ijcm.94190
  16. Fakharzadeh, S.; Kalanaky, S.; Hafizi, M.; Goya, M.M.; Masoumi, Z.; Namaki, S.; Shakeri, N.; Abbasi, M.; Mahdavi, M.; Nazaran, M.H. The new nano-complex, Hep-c, improves the immunogenicity of the hepatitis B vaccine. Vaccine, 2013, 31(22), 2591-2597. doi: 10.1016/j.vaccine.2013.03.030 PMID: 23583463
  17. Kalanaky, S.; Fakharzadeh, S.; Karimi, P.; Hafizi, M.; Jamaati, H.; Hassanzadeh, S.M.; Khorasani, A.; Mahdavi, M.; Nazaran, M.H. Nanoadjuvants produced by advanced nanochelating technology in the inactivated-severe acute respiratory syndrome coronavirus-2 vaccine formulation: Preliminary results on cytokines and IgG responses. Viral Immunol., 2023, 36(6), 409-423. doi: 10.1089/vim.2023.0001 PMID: 37506342
  18. Ashrafi, S.; Shapouri, R.; Mahdavi, M. Immunological consequences of immunization with tumor lysate vaccine and propranolol as an adjuvant: A study on cytokine profiles in breast tumor microenvironment. Immunol. Lett., 2017, 181, 63-70. doi: 10.1016/j.imlet.2016.11.014 PMID: 27899275
  19. Ashrafi, S.; Shapouri, R.; Shirkhani, A.; Mahdavi, M. Anti-tumor effects of propranolol: Adjuvant activity on a transplanted murine breast cancer model. Biomed. Pharmacother., 2018, 104, 45-51. doi: 10.1016/j.biopha.2018.05.002 PMID: 29758415
  20. Ahmadi, N.; Jahantigh, H.R.; Noorbazargan, H.; Yazdi, M.H.; Mahdavi, M. Glucomannan as a dietary supplement for treatment of breast cancer in a mouse model. Vaccines (Basel), 2022, 10(10), 1746. doi: 10.3390/vaccines10101746 PMID: 36298611
  21. Available from: http://ethics.research.ac.ir/docs/Ethics-Lab-Animal-Codes.pdf
  22. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  23. Rezaei, M.; Hosseini, S.N.; Khavari-Nejad, R.A.; Najafi, F.; Mahdavi, M. HBs antigen and mannose loading on the surface of iron oxide nanoparticles in order to immuno-targeting: Fabrication, characterization, cellular and humoral immunoassay. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1543-1558. doi: 10.1080/21691401.2019.1577888 PMID: 31007088
  24. Hafizi, M.; Kalanaky, S.; Fakharzadeh, S. Safety and efficacy of the combination of BCc1 and Hep-S nanochelating-based medicines in hospitalized COVID-19 adult patients: A randomized, double-blind, placebo-controlled clinical trial., 2021, 19. doi: 10.21203/rs.3.rs-962691/v1
  25. Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. OncoImmunology, 2016, 5(6), e1163462. doi: 10.1080/2162402X.2016.1163462 PMID: 27471638
  26. Sun, Z.; Ren, Z.; Yang, K.; Liu, Z.; Cao, S.; Deng, S.; Xu, L.; Liang, Y.; Guo, J.; Bian, Y.; Xu, H.; Shi, J.; Wang, F.; Fu, Y.X.; Peng, H. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control. Nat. Commun., 2019, 10(1), 3874. doi: 10.1038/s41467-019-11782-w PMID: 31462678
  27. Li, X.; Lu, P.; Li, B.; Zhang, W.; Yang, R.; Chu, Y.; Luo, K. Interleukin 2 and interleukin 10 function synergistically to promote CD8 + T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer. Int. J. Biochem. Cell Biol., 2017, 87, 1-7. doi: 10.1016/j.biocel.2017.03.003 PMID: 28274688
  28. Paluskievicz, C.M.; Cao, X.; Abdi, R.; Zheng, P.; Liu, Y.; Bromberg, J.S. T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol., 2019, 10, 2453. doi: 10.3389/fimmu.2019.02453 PMID: 31681327
  29. Koyama, S.; Nishikawa, H. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J. Immunother. Cancer, 2021, 9(7), e002591. doi: 10.1136/jitc-2021-002591
  30. Kwaśniak, K.; Czarnik-Kwaśniak, J.; Maziarz, A.; Aebisher, D.; Zielińska, K.; Karczmarek-Borowska, B.; Tabarkiewicz, J. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent. Eur. J. Immunol., 2019, 44(2), 190-200. doi: 10.5114/ceji.2018.76273 PMID: 31530989
  31. Hsu, H-J.; Jiang, S-J.; Chang, C-M.; Lam, H.Y.P. Interleukin-10: A double-edged sword in breast cancer. Tzu-Chi Med. J., 2021, 33(3), 203-211. doi: 10.4103/tcmj.tcmj_162_20 PMID: 34386356
  32. Pinzon-Charry, A.; Maxwell, T.; López, J.A. Dendritic cell dysfunction in cancer: A mechanism for immunosuppression. Immunol. Cell Biol., 2005, 83(5), 451-461. doi: 10.1111/j.1440-1711.2005.01371.x PMID: 16174093
  33. Lv, Z.; Liu, M.; Shen, J.; Xiang, D.; Ma, Y.; Ji, Y. Association of serum interleukin 10, interleukin 17A and transforming growth factor α levels with human benign and malignant breast diseases. Exp. Ther. Med., 2018, 15(6), 5475-5480. doi: 10.3892/etm.2018.6109 PMID: 29904427
  34. Mocellin, S.; Marincola, F.M.; Young, H.A. Interleukin-10 and the immune response against cancer: A counterpoint. J. Leukoc. Biol., 2005, 78(5), 1043-1051. doi: 10.1189/jlb.0705358 PMID: 16204623
  35. Ahmad, N.; Ammar, A.; Storr, S.J.; Green, A.R.; Rakha, E.; Ellis, I.O.; Martin, S.G. IL-6 and IL-10 are associated with good prognosis in early stage invasive breast cancer patients. Cancer Immunol. Immunother., 2018, 67(4), 537-549. doi: 10.1007/s00262-017-2106-8 PMID: 29256156
  36. Mattiuz, R.; Brousse, C.; Ambrosini, M.; Cancel, J.C.; Bessou, G.; Mussard, J.; Sanlaville, A.; Caux, C.; Bendriss-Vermare, N.; Valladeau-Guilemond, J.; Dalod, M.; Crozat, K. Type 1 conventional dendritic cells and interferons are required for spontaneous CD4 + and CD8 + T‐cell protective responses to breast cancer. Clin. Transl. Immunology, 2021, 10(7), e1305. doi: 10.1002/cti2.1305 PMID: 34277006
  37. Kiyomi, A.; Makita, M.; Ozeki, T.; Li, N.; Satomura, A.; Tanaka, S.; Onda, K.; Sugiyama, K.; Iwase, T.; Hirano, T. Characterization and clinical implication of Th1/Th2/Th17 cytokines produced from three-dimensionally cultured tumor tissues resected from breast cancer patients. Transl. Oncol., 2015, 8(4), 318-326. doi: 10.1016/j.tranon.2015.06.004 PMID: 26310378
  38. Punt, S.; Fleuren, G.J.; Kritikou, E.; Lubberts, E.; Trimbos, J.B.; Jordanova, E.S.; Gorter, A. Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. OncoImmunology, 2015, 4(1), e984539. doi: 10.4161/2162402X.2014.984539 PMID: 25949866
  39. Welte, T.; Zhang, X.H.F. Interleukin-17 could promote breast cancer progression at several stages of the disease. Mediators Inflamm., 2015, 2015, 1-6. doi: 10.1155/2015/804347 PMID: 26783383
  40. Laprevotte, E.; Cochaud, S.; du Manoir, S.; Lapierre, M.; Dejou, C.; Philippe, M.; Giustiniani, J.; Frewer, K.A.; Sanders, A.J.; Jiang, W.G.; Michaud, H.A.; Colombo, P.E.; Bensussan, A.; Alberici, G.; Bastid, J.; Eliaou, J.F.; Bonnefoy, N. The IL-17B-IL-17 receptor B pathway promotes resistance to paclitaxel in breast tumors through activation of the ERK1/2 pathway. Oncotarget, 2017, 8(69), 113360-113372. doi: 10.18632/oncotarget.23008 PMID: 29371916
  41. Ma, M.; Huang, W.; Kong, D. IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int. Immunopharmacol., 2018, 59, 148-156. doi: 10.1016/j.intimp.2018.04.013 PMID: 29655056
  42. Song, X.; Wei, C.; Li, X. The potential role and status of IL-17 family cytokines in breast cancer. Int. Immunopharmacol., 2021, 95, 107544. doi: 10.1016/j.intimp.2021.107544 PMID: 33740640
  43. Oshi, M.; Asaoka, M.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Ishikawa, T.; Endo, I.; Takabe, K. CD8 T cell score as a prognostic biomarker for triple negative breast cancer. Int. J. Mol. Sci., 2020, 21(18), 6968. doi: 10.3390/ijms21186968 PMID: 32971948
  44. Garcia-Hernandez, M.L.; Hamada, H.; Reome, J.B.; Misra, S.K.; Tighe, M.P.; Dutton, R.W. Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J. Immunol., 2010, 184(8), 4215-4227. doi: 10.4049/jimmunol.0902995 PMID: 20237297
  45. Kuen, D.S.; Kim, B.S.; Chung, Y. IL-17-producing cells in tumor immunity: friends or foes? Immune Netw., 2020, 20(1) e6 doi: 10.4110/in.2020.20.e6 PMID: 32158594
  46. Terhune, J.; Berk, E.; Czerniecki, B. Dendritic cell-induced Th1 and Th17 cell differentiation for cancer therapy. Vaccines (Basel), 2013, 1(4), 527-549. doi: 10.3390/vaccines1040527 PMID: 26344346
  47. Xu, X.; Wang, R.; Su, Q.; Huang, H.; Zhou, P.; Luan, J.; Liu, J.; Wang, J.; Chen, X. Expression of Th1- Th2- and Th17-associated cytokines in laryngeal carcinoma. Oncol. Lett., 2016, 12(3), 1941-1948. doi: 10.3892/ol.2016.4854 PMID: 27588143
  48. Tzai, T.S.; Shiau, A.L.; Wu, C.L.; Tsai, Y.S. Postoperative administration of interleukin-12 significantly enhances the anti-tumor immune response of MBT-2 bladder cancer bearing mice. Proc. Natl. Sci. Counc. Repub. China B, 2000, 24(2), 56-62. PMID: 10809081
  49. Imamura, T.; Hikita, A.; Inoue, Y. The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer, 2012, 19(2), 118-124. doi: 10.1007/s12282-011-0321-2 PMID: 22139728
  50. Feng, X.H.; Derynck, R. Specificity and versatility in TGF-β signaling through SMADS. Annu. Rev. Cell Dev. Biol., 2005, 21(1), 659-693. doi: 10.1146/annurev.cellbio.21.022404.142018 PMID: 16212511
  51. Kang, Y.; Siegel, P.M.; Shu, W.; Drobnjak, M.; Kakonen, S.M.; Cordón-Cardo, C.; Guise, T.A.; Massagué, J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003, 3(6), 537-549. doi: 10.1016/S1535-6108(03)00132-6 PMID: 12842083
  52. Katsuno, Y.; Hanyu, A.; Kanda, H.; Ishikawa, Y.; Akiyama, F.; Iwase, T.; Ogata, E.; Ehata, S.; Miyazono, K.; Imamura, T. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene, 2008, 27(49), 6322-6333. doi: 10.1038/onc.2008.232 PMID: 18663362
  53. Chen, B.; Yuan, Y.; Sun, L.; Chen, J.; Yang, M.; Yin, Y.; Xu, Y. MKL1 mediates TGF-β induced RhoJ transcription to promote breast cancer cell migration and invasion. Front. Cell Dev. Biol., 2020, 8, 832. doi: 10.3389/fcell.2020.00832 PMID: 32984327
  54. Krneta, T.; Gillgrass, A.; Poznanski, S.; Chew, M.; Lee, A.J.; Kolb, M.; Ashkar, A.A. M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner. J. Leukoc. Biol., 2017, 101(1), 285-295. doi: 10.1189/jlb.3A1215-552R PMID: 27493241
  55. Xu, L.; Xu, W.; Wen, Z.; Xiong, S. In situ prior proliferation of CD4+ CCR6+ regulatory T cells facilitated by TGF-β secreting DCs is crucial for their enrichment and suppression in tumor immunity. PLoS One, 2011, 6(5), e20282. doi: 10.1371/journal.pone.0020282 PMID: 21655250
  56. Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front. Immunol., 2018, 9, 444. doi: 10.3389/fimmu.2018.00444 PMID: 29593717
  57. Egelston, C.A.; Avalos, C.; Tu, T.Y.; Rosario, A.; Wang, R.; Solomon, S.; Srinivasan, G.; Nelson, M.S.; Huang, Y.; Lim, M.H.; Simons, D.L.; He, T.F.; Yim, J.H.; Kruper, L.; Mortimer, J.; Yost, S.; Guo, W.; Ruel, C.; Frankel, P.H.; Yuan, Y.; Lee, P.P. Resident memory CD8+ T cells within cancer islands mediate survival in breast cancer patients. JCI Insight, 2019, 4(19), e130000. doi: 10.1172/jci.insight.130000 PMID: 31465302
  58. Selnø, A.T.H.; Schlichtner, S.; Yasinska, I.M.; Sakhnevych, S.S.; Fiedler, W.; Wellbrock, J.; Klenova, E.; Pavlova, L.; Gibbs, B.F.; Degen, M.; Schnyder, I.; Aliu, N.; Berger, S.M.; Fasler-Kan, E.; Sumbayev, V.V. Transforming growth factor beta type 1 (TGF-β) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells. Aging (Albany NY), 2020, 12(23), 23478-23496. doi: 10.18632/aging.202343 PMID: 33295886
  59. Chatterjee, S.; Chatterjee, A.; Jana, S.; Dey, S.; Roy, H.; Das, M.K.; Alam, J.; Adhikary, A.; Chowdhury, A.; Biswas, A.; Manna, D.; Bhattacharyya, A. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis, 2021, 42(1), 38-47. doi: 10.1093/carcin/bgaa092 PMID: 32832992
  60. Stüber, T.; Monjezi, R.; Wallstabe, L.; Kühnemundt, J.; Nietzer, S.L.; Dandekar, G.; Wöckel, A.; Einsele, H.; Wischhusen, J.; Hudecek, M. Inhibition of TGF-β-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J. Immunother. Cancer, 2020, 8(1), e000676. doi: 10.1136/jitc-2020-000676 PMID: 32303620
  61. Yao, Y.; Guo, Q.; Cao, Y.; Qiu, Y.; Tan, R.; Yu, Z.; Zhou, Y.; Lu, N. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 282. doi: 10.1186/s13046-018-0960-7 PMID: 30477536
  62. Hanks, B.A.; Lee, J.D.; Morse, M.; Clay, T.M.; Lyerly, H.K.; Blobe, G.C. Role of the type III TGF-b receptor in mediating immunosuppression during breast cancer progression. J. Clin. Oncol., 2010, 28(15_suppl), 10577-10577. doi: 10.1200/jco.2010.28.15_suppl.10577
  63. Bianchini, G.; Gianni, L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol., 2014, 15(2), e58-e68. doi: 10.1016/S1470-2045(13)70477-7 PMID: 24480556
  64. Edechi, C.; Ikeogu, N.; Uzonna, J.; Myal, Y. Regulation of immunity in breast cancer. Cancers (Basel), 2019, 11(8), 1080. doi: 10.3390/cancers11081080 PMID: 31366131
  65. Laryionava, K.; Sklenarova, H.; Heußner, P.; Haun, M.W.; Stiggelbout, A.M.; Hartmann, M.; Winkler, E.C. Cancer patients’ preferences for quantity or quality of life: German translation and validation of the quality and quantity questionnaire. Oncol. Res. Treat., 2014, 37(9), 472-478. doi: 10.1159/000366250 PMID: 25231687
  66. Stiggelbout, A.M.; De Haes, J.C.J.M.; Kiebert, G.M.; Kievit, J.; Leer, J.W.H. Tradeoffs between quality and quantity of life: Development of the QQ Questionnaire for Cancer Patient Attitudes. Med. Decis. Making, 1996, 16(2), 184-192. doi: 10.1177/0272989X9601600211 PMID: 8778537
  67. Shrestha, A.; Martin, C.; Burton, M.; Walters, S.; Collins, K.; Wyld, L. Quality of life versus length of life considerations in cancer patients: A systematic literature review. Psychooncology, 2019, 28(7), 1367-1380. doi: 10.1002/pon.5054 PMID: 30838697

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers