A Novel Combinatorial Regimen Using Sorafenib and Uttroside B, A US FDA-designated Orphan Drug, for the Treatment of Hepatocellular Carcinoma
- Authors: Keerthana C.1, Aiswarya S.1, Rayginia T.1, Vijayan Y.1, James S.1, Shifana S.1, Sundaram S.2, Induja D.3, Lankalapalli R.4, Harikumar K.1, Anto R.1
-
Affiliations:
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
- Department of Pathology, Government Medical College
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology
- Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology
- Issue: Vol 24, No 19 (2024)
- Pages: 1431-1441
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644015
- DOI: https://doi.org/10.2174/0118715206316190240527160242
- ID: 644015
Cite item
Full Text
Abstract
Introduction:Sorafenib (Sor) is the first-line treatment option in clinics for treating advanced unresectable hepatocellular carcinoma (HCC). However, acquired chemoresistance and adverse side effects associated with Sor monotherapy limit its clinical benefits. We have previously reported the exceptional anti-HCC potential of uttroside B (Utt-B), a furostanol saponin isolated in our lab from Solanum nigrum Linn. leaves. The current study has evaluated the supremacy of a combinatorial regimen of Sor and Utt-B over Sor monotherapy.
Methods:MTT assay was used for In vitro cytotoxicity studies. A clonogenic assay was conducted to assess the anti-proliferative effect of the combination. Annexin V/PI staining, confocal microscopy, FACS cell cycle analysis, and Western blotting experiments were performed to validate the pro-apoptotic potential of the combination in HepG2 and Huh7 cell lines. Pharmacological safety evaluation was performed in Swiss albino mice.
Results:Our results indicate that Utt-B augments Sor-induced cytotoxicity in HepG2 and Huh7 cells. The combination inhibits the proliferation of liver cancer cells by inducing apoptosis through activation of the caspases 7 and 3, leading to PARP cleavage. Furthermore, the combination does not induce any acute toxicity in vivo, even at a dose five times that of the effective therapeutic dose.
Conclusion:Our results highlight the potential of Utt-B as an effective chemosensitizer, which can augment the efficacy of Sor against HCC and circumvent Sor-induced toxic side effects. Moreover, this is the first and only report to date on the chemosensitizing potential of Utt-B and the only report that demonstrates the therapeutic efficacy and pharmacological safety of a novel combinatorial regimen involving Utt-B and Sor for combating HCC.
About the authors
Chenicheri Keerthana
Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
Email: info@benthamscience.net
Sreekumar Aiswarya
Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
Email: info@benthamscience.net
Tennyson Rayginia
Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
Email: info@benthamscience.net
Yadu Vijayan
Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
Email: info@benthamscience.net
Shirly James
Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
Email: info@benthamscience.net
Sadiq Shifana
Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
Email: info@benthamscience.net
Sankar Sundaram
Department of Pathology, Government Medical College
Email: info@benthamscience.net
D.K. Induja
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology
Email: info@benthamscience.net
Ravi Lankalapalli
Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology
Email: info@benthamscience.net
Kuzhuvelil Harikumar
Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
Email: info@benthamscience.net
Ruby Anto
Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Liu, X.T.; Huang, Y.; Liu, D.; Jiang, Y.C.; Zhao, M.; Chung, L.H.; Han, X.D.; Zhao, Y.; Chen, J.; Coleman, P.; Ting, K.K.; Tran, C.; Su, Y.; Dennis, C.V.; Bhatnagar, A.; Liu, K.; Don, A.S.; Vadas, M.A.; Gorrell, M.D.; Zhang, S.; Murray, M.; Kavurma, M.M.; McCaughan, G.W.; Gamble, J.R.; Qi, Y. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis. J. Transl. Med., 2024, 22(1), 43. doi: 10.1186/s12967-023-04830-z PMID: 38200582
- Keating, G.M.; Santoro, A. Sorafenib. Drugs, 2009, 69(2), 223-240. doi: 10.2165/00003495-200969020-00006 PMID: 19228077
- Hsu, C-H.; Shen, Y.C.; Shao, Y.Y.; Hsu, C.; Cheng, A.L. Sorafenib in advanced hepatocellular carcinoma: Current status and future perspectives. J. Hepatocell. Carcinoma, 2014, 1, 85-99. PMID: 27508178
- Rimassa, L.; Santoro, A. Sorafenib therapy in advanced hepatocellular carcinoma: The SHARP trial. Expert Rev. Anticancer Ther., 2009, 9(6), 739-745. doi: 10.1586/era.09.41 PMID: 19496710
- Sanoff, H.K.; Chang, Y.; Lund, J.L.; ONeil, B.H.; Dusetzina, S.B. Sorafenib effectiveness in advanced hepatocellular carcinoma. Oncologist, 2016, 21(9), 1113-1120. doi: 10.1634/theoncologist.2015-0478 PMID: 27185615
- Hampton, T. Cancer drug trials show modest benefit: Drugs target liver, gastric, head and neck cancers. JAMA, 2007, 298(3), 273-275. doi: 10.1001/jama.298.3.273 PMID: 17635880
- Otsuka, T.; Eguchi, Y.; Kawazoe, S.; Yanagita, K.; Ario, K.; Kitahara, K.; Kawasoe, H.; Kato, H.; Mizuta, T. Skin toxicities and survival in advanced hepatocellular carcinoma patients treated with sorafenib. Hepatol. Res., 2012, 42(9), 879-886. doi: 10.1111/j.1872-034X.2012.00991.x PMID: 22469363
- Blanchet, B.; Billemont, B.; Barete, S.; Garrigue, H.; Cabanes, L.; Coriat, R.; Francès, C.; Knebelmann, B.; Goldwasser, F. Toxicity of sorafenib: Clinical and molecular aspects. Expert Opin. Drug Saf., 2010, 9(2), 275-287. doi: 10.1517/14740330903510608 PMID: 20078249
- Di Costanzo, G.G.; Tortora, R.; De Luca, M.; Galeota, L.A.; Lampasi, F.; Tartaglione, M.T.; Picciotto, F.P.; Imparato, M.; Mattera, S.; Cordone, G.; Ascione, A. Impact of age on toxicity and efficacy of sorafenib-targeted therapy in cirrhotic patients with hepatocellular carcinoma. Med. Oncol., 2013, 30(1), 446. doi: 10.1007/s12032-012-0446-y PMID: 23307255
- Lai, X.; Wan, Q.; Jiao, S.F.; Sun, X.C.; Hu, J.F.; Peng, H.W. Cardiovascular toxicities following the use of tyrosine kinase inhibitors in hepatocellular cancer patients: A retrospective, pharmacovigilance study. Expert Opin. Drug Saf., 2024, 23(3), 287-296. doi: 10.1080/14740338.2023.2251398 PMID: 37608525
- Jiang, L.; Li, L.; Liu, Y.; Zhan, M.; Lu, L.; Yuan, S.; Liu, Y. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front. Pharmacol., 2023, 14, 1097277. doi: 10.3389/fphar.2023.1097277 PMID: 36891274
- Zhu, Y.; Zheng, B.; Wang, H.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol. Sin., 2017, 38(5), 614-622. doi: 10.1038/aps.2017.5 PMID: 28344323
- Wang, T.; Hong, Y.; Chen, Z.; Wu, D.; Li, Y.; Wu, X.; Huang, H.; Zhang, Q.; Jia, C. Synergistic effects of α-Mangostin and sorafenib in hepatocellular carcinoma: New insights into α-mangostin cytotoxicity. Biochem. Biophys. Res. Commun., 2021, 558, 14-21. doi: 10.1016/j.bbrc.2021.04.047 PMID: 33894673
- Kim, Y.S.; Lee, Y.M.; Oh, T.I.; Shin, D.; Kim, G.H.; Kan, S.Y.; Kang, H.; Kim, J.; Kim, B.; Yim, W.; Lim, J.H. Emodin sensitizes hepatocellular carcinoma cells to the anti-cancer effect of sorafenib through suppression of cholesterol metabolism. Int. J. Mol. Sci., 2018, 19(10), 3127. doi: 10.3390/ijms19103127 PMID: 30321984
- Yao, X.; Zhao, C.; Yin, H.; Wang, K.; Gao, J. Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol. Sin., 2020, 41(12), 1609-1620. doi: 10.1038/s41401-020-0395-5 PMID: 32300243
- Chan, Y.P.; Chuang, C.H.; Lee, I.; Yang, N.C. Lycopene in combination with sorafenib additively inhibits tumor metastasis in mice xenografted with lewis lung carcinoma cells. Front. Nutr., 2022, 9, 886988. doi: 10.3389/fnut.2022.886988 PMID: 35711540
- Rodriguez, S.; Skeet, K.; Mehmetoglu-Gurbuz, T.; Goldfarb, M.; Karri, S.; Rocha, J.; Shahinian, M.; Yazadi, A.; Poudel, S.; Subramani, R. Phytochemicals as an alternative or integrative option, in conjunction with conventional treatments for hepatocellular carcinoma. Cancers , 2021, 13(22), 5753. doi: 10.3390/cancers13225753 PMID: 34830907
- Zhu, X.F.; Sun, Z.L.; Ma, J.; Hu, B.; Yu, M.C.; Liu, X.J.; Yang, P.; Xu, Y.; Ju, D.; Mu, Q. Synergistic anticancer effect of flavonoids from Sophora alopecuroides with Sorafenib against hepatocellular carcinoma. Phytother. Res., 2023, 37(2), 592-610. doi: 10.1002/ptr.7637 PMID: 36180975
- Khatoon, E. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Seminars in Cancer Biology; Elsevier, 2022. doi: 10.1016/j.semcancer.2020.06.014
- Hu, Y.; Luo, Z.; Cai, S.; Xie, Q.; Zheng, S. Glycyrrhizic acid attenuates sorafenib resistance by inducing ferroptosisviatargeting mTOR signaling in hepatocellular carcinoma. Scand. J. Gastroenterol., 2024, 1-7. doi: 10.1080/00365521.2024.2315317 PMID: 38426342
- Zaafar, D.; Khalil, H.M.A.; Elnaggar, R.; Saad, D.Z.; Rasheed, R.A. Protective role of hesperetin in sorafenib-induced hepato- and neurotoxicity in mice via modulating apoptotic pathways and mitochondrial reprogramming. Life Sci., 2024, 336, 122295. doi: 10.1016/j.lfs.2023.122295 PMID: 38007145
- Feng, X.Q.; Rong, L.W.; Wang, R.X.; Zheng, X.L.; Zhang, L.; Zhang, L.; Lin, Y.; Wang, X.; Li, Z.P. Luteolin and sorafenib combination kills human hepatocellular carcinoma cells through apoptosis potentiation and JNK activation. Oncol. Lett., 2018, 16(1), 648-653. doi: 10.3892/ol.2018.8640 PMID: 29928452
- Mao, J.; Yang, H.; Cui, T.; Pan, P.; Kabir, N.; Chen, D.; Ma, J.; Chen, X.; Chen, Y.; Yang, Y. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur. J. Pharmacol., 2018, 832, 39-49. doi: 10.1016/j.ejphar.2018.05.027 PMID: 29782854
- Li, R.S.; Li, L.Y.; Zhu, X.F.; Li, X.; Wang, C.Y.; Qiu, S.J.; Zhou, J.; Fan, J.; Hu, B.; Mu, Q. Annonaceous acetogenins synergistically inhibit hepatocellular carcinoma with sorafenib. J. Nat. Prod., 2024, 87(1), 14-27. doi: 10.1021/acs.jnatprod.3c00667 PMID: 38233978
- Zheng, L.; Fang, S.; Chen, A.; Chen, W.; Qiao, E.; Chen, M.; Shu, G.; Zhang, D.; Kong, C.; Weng, Q.; Xu, S.; Zhao, Z.; Ji, J. Piperlongumine synergistically enhances the antitumour activity of sorafenib by mediating ROS-AMPK activation and targeting CPSF7 in liver cancer. Pharmacol. Res., 2022, 177, 106140. doi: 10.1016/j.phrs.2022.106140 PMID: 35202819
- Nath, L.R.; Gorantla, J.N.; Thulasidasan, A.K.T.; Vijayakurup, V.; Shah, S.; Anwer, S.; Joseph, S.M.; Antony, J.; Veena, K.S.; Sundaram, S.; Marelli, U.K.; Lankalapalli, R.S.; Anto, R.J. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Sci. Rep., 2016, 6(1), 36318. doi: 10.1038/srep36318 PMID: 27808117
- Nath, L.R.; Swetha, M.; Vijayakurup, V.; Thangarasu, A.K.; Haritha, N.H.; Shabna, A.; Aiswarya, S.U.; Rayginia, T.P.; Keerthana, C.K.; Kalimuthu, K.; Sundaram, S.; Lankalapalli, R.S.; Pillai, S.; Towner, R.; Isakov, N.; Anto, R.J. Blockade of uttroside b-induced autophagic pro-survival signals augments its chemotherapeutic efficacy against hepatocellular carcinoma. Front. Oncol., 2022, 12, 812598. doi: 10.3389/fonc.2022.812598 PMID: 35211405
- Swetha, M.; Keerthana, C.K.; Rayginia, T.P.; Nath, L.R.; Haritha, N.H.; Shabna, A.; Kalimuthu, K.; Thangarasu, A.K.; Aiswarya, S.U.; Jannet, S.; Pillai, S.; Harikumar, K.B.; Sundaram, S.; Anto, N.P.; Wu, D.H.; Lankalapalli, R.S.; Towner, R.; Isakov, N.; Deepa, S.S.; Anto, R.J. Augmented efficacy of uttroside B over sorafenib in a murine model of human hepatocellular carcinoma. Pharmaceuticals, 2022, 15(5), 636. doi: 10.3390/ph15050636 PMID: 35631464
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446. doi: 10.1158/0008-5472.CAN-09-1947 PMID: 20068163
- Hunter, J.E.; Butterworth, J.; Perkins, N.D.; Bateson, M.; Richardson, C.A. Using body temperature, food and water consumption as biomarkers of disease progression in mice with Eµ-myc lymphoma. Br. J. Cancer, 2014, 110(4), 928-934. doi: 10.1038/bjc.2013.818 PMID: 24407190
- Fan, G.; Wei, X.; Xu, X. Is the era of sorafenib over? A review of the literature. Ther. Adv. Med. Oncol., 2020, 12. doi: 10.1177/1758835920927602 PMID: 32518599
- Iyer, R.; Fetterly, G.; Lugade, A.; Thanavala, Y. Sorafenib: A clinical and pharmacologic review. Expert Opin. Pharmacother., 2010, 11(11), 1943-1955. doi: 10.1517/14656566.2010.496453 PMID: 20586710
- Baldan, F.G.; Coelho, F.Q.J.; Berlofa, V.M.; Oliveira, V.C.; Cursino, M.A.; Sampaio, A.L.; Brito, B.; Pereira, T.T.; de Oliveira, G.J.P.; de Godoy, T.N.; Passos, L.C.S.; Moriel, P. Outcomes in hepatocellular carcinoma patients undergoing sorafenib treatment: Toxicities, cellular oxidative stress, treatment adherence, and quality of life. Anticancer Drugs, 2020, 31(5), 523-527. doi: 10.1097/CAD.0000000000000902 PMID: 32107349
- Staufer, K.; Fischer, L.; Seegers, B.; Vettorazzi, E.; Nashan, B.; Sterneck, M. High toxicity of sorafenib for recurrent hepatocellular carcinoma after liver transplantation. Transpl. Int., 2012, 25(11), 1158-1164. doi: 10.1111/j.1432-2277.2012.01540.x PMID: 22882364
- Li, Y.; Gao, Z.H.; Qu, X.J. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 216-221. doi: 10.1111/bcpt.12365 PMID: 25495944
- Wong, H.; Tang, Y.F.; Yao, T.J.; Chiu, J.; Leung, R.; Chan, P.; Cheung, T.T.; Chan, A.C.; Pang, R.W.; Poon, R.; Fan, S.T.; Yau, T. The outcomes and safety of single-agent sorafenib in the treatment of elderly patients with advanced hepatocellular carcinoma (HCC). Oncologist, 2011, 16(12), 1721-1728. doi: 10.1634/theoncologist.2011-0192 PMID: 22135121
- Huang, Y.; Wang, K.; Gu, C.; Yu, G.; Zhao, D.; Mai, W.; Zhong, Y.; Liu, S.; Nie, Y.; Yang, H. Berberine, a natural plant alkaloid, synergistically sensitizes human liver cancer cells to sorafenib. Oncol. Rep., 2018, 40(3), 1525-1532. doi: 10.3892/or.2018.6552 PMID: 30015938
- Luo, J.; Li, L.; Zhu, Z.; Chang, B.; Deng, F.; Wang, D.; Lu, X.; Zuo, D.; Chen, Q.; Zhou, J. Fucoidan inhibits EGFR redistribution and potentiates sorafenib to overcome sorafenib-resistant hepatocellular carcinoma. Biomed. Pharmacother., 2022, 154, 113602. doi: 10.1016/j.biopha.2022.113602 PMID: 36029544
- Singh, D.; Khan, M.A.; Mishra, D.; Goel, A.; Ansari, M.A.; Akhtar, K.; Siddique, H.R. Apigenin enhances sorafenib anti-tumour efficacy in hepatocellular carcinoma. Transl. Oncol., 2024, 43, 101920. doi: 10.1016/j.tranon.2024.101920 PMID: 38394865
- Tong, L.W.; Le, J.Q.; Song, X.H.; Li, C.L.; Yu, S.J.; Lin, Y.Q.; Tu, Y.F.; Shao, J.W. Synergistic anti-tumor effect of dual drug co-assembled nanoparticles based on ursolic acid and sorafenib. Colloids Surf. B Biointerfaces, 2024, 234, 113724. doi: 10.1016/j.colsurfb.2023.113724 PMID: 38183870
- Hussain, Y.; Singh, J.; Meena, A.; Sinha, R.A.; Luqman, S. Escin‐sorafenib synergy up‐regulates LC3‐II and p62 to induce apoptosis in hepatocellular carcinoma cells. Environ. Toxicol., 2024, 39(2), 840-856. doi: 10.1002/tox.23988 PMID: 37853854
- Gao, M.; Deng, C.; Dang, F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr. Res., 2021, 65, 65. doi: 10.29219/fnr.v65.3602 PMID: 34776832
- Bort, A.; Spínola, E.; Rodríguez-Henche, N.; Díaz-Laviada, I. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation. Oncotarget, 2017, 8(50), 87684-87698. doi: 10.18632/oncotarget.21196 PMID: 29152112
- Nair, B.; Anto, R.J. M, S.; Nath, L.R. Kaempferol-mediated sensitization enhances chemotherapeutic efficacy of sorafenib against hepatocellular carcinoma: An in silico and in vitro approach. Adv. Pharm. Bull., 2020, 10(3), 472-476. doi: 10.34172/apb.2020.058 PMID: 32665908
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390. doi: 10.1056/NEJMoa0708857 PMID: 18650514
- Zhang, H.; Wang, Q.; Liu, J.; Cao, H. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib derived chemo resistance in hepatocellular carcinoma. Oncol. Lett., 2018, 15(6), 9377-9384. doi: 10.3892/ol.2018.8536 PMID: 29928334
- Kim, Y.; Jung, K.Y.; Kim, Y.H.; Xu, P.; Kang, B.E.; Jo, Y.; Pandit, N.; Kwon, J.; Gariani, K.; Gariani, J.; Lee, J.; Verbeek, J.; Nam, S.; Bae, S.J.; Ha, K.T.; Yi, H.S.; Shong, M.; Kim, K.H.; Kim, D.; Jung, H.J.; Lee, C.W.; Kim, K.R.; Schoonjans, K.; Auwerx, J.; Ryu, D. Inhibition of SIRT7 overcomes sorafenib acquired resistance by suppressing ERK1/2 phosphorylation via the DDX3X-mediated NLRP3 inflammasome in hepatocellular carcinoma. Drug Resist. Updat., 2024, 73, 101054. doi: 10.1016/j.drup.2024.101054 PMID: 38277756
- Wu, B.; Li, A.; Zhang, Y.; Liu, X.; Zhou, S.; Gan, H.; Cai, S.; Liang, Y.; Tang, X. Resistance of hepatocellular carcinoma to sorafenib can be overcome with co-delivery of PI3K/mTOR inhibitor BEZ235 and sorafenib in nanoparticles. Expert Opin. Drug Deliv., 2020, 17(4), 573-587. doi: 10.1080/17425247.2020.1730809 PMID: 32056461
- Zhai, B.; Hu, F.; Jiang, X.; Xu, J.; Zhao, D.; Liu, B.; Pan, S.; Dong, X.; Tan, G.; Wei, Z.; Qiao, H.; Jiang, H.; Sun, X. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther., 2014, 13(6), 1589-1598. doi: 10.1158/1535-7163.MCT-13-1043 PMID: 24705351
- Keerthana, C.K.; Rayginia, T.P.; Shifana, S.C.; Anto, N.P.; Kalimuthu, K.; Isakov, N.; Anto, R.J. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front. Immunol., 2023, 14, 1114582. doi: 10.3389/fimmu.2023.1114582 PMID: 36875093
- Ishijima, N.; Kanki, K.; Shimizu, H.; Shiota, G. Activation of AMP ‐activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib. Cancer Sci., 2015, 106(5), 567-575. doi: 10.1111/cas.12633 PMID: 25683251
- Lai, H.Y.; Tsai, H.H.; Yen, C.J.; Hung, L.Y.; Yang, C.C.; Ho, C.H.; Liang, H.Y.; Chen, F.W.; Li, C.F.; Wang, J.M. Metformin resensitizes sorafenib-resistant HCC cells through AMPK-dependent autophagy activation. Front. Cell Dev. Biol., 2021, 8, 596655. doi: 10.3389/fcell.2020.596655 PMID: 33681180
- Bort, A.; Sánchez, B.G.; Mateos-Gómez, P.A.; Vara-Ciruelos, D.; Rodríguez-Henche, N.; Díaz-Laviada, I. Targeting AMP ‐activated kinase impacts hepatocellular cancer stem cells induced by long‐term treatment with sorafenib. Mol. Oncol., 2019, 13(5), 1311-1331. doi: 10.1002/1878-0261.12488 PMID: 30959553
- Ling, S.; Song, L.; Fan, N.; Feng, T.; Liu, L.; Yang, X.; Wang, M.; Li, Y.; Tian, Y.; Zhao, F.; Liu, Y.; Huang, Q.; Hou, Z.; Xu, F.; Shi, L.; Li, Y. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway. Int. J. Oncol., 2017, 50(1), 297-309. doi: 10.3892/ijo.2016.3799 PMID: 27959383
Supplementary files
