A Novel Combinatorial Regimen Using Sorafenib and Uttroside B, A US FDA-designated ‘Orphan Drug’, for the Treatment of Hepatocellular Carcinoma


Cite item

Full Text

Abstract

Introduction:Sorafenib (Sor) is the first-line treatment option in clinics for treating advanced unresectable hepatocellular carcinoma (HCC). However, acquired chemoresistance and adverse side effects associated with Sor monotherapy limit its clinical benefits. We have previously reported the exceptional anti-HCC potential of uttroside B (Utt-B), a furostanol saponin isolated in our lab from Solanum nigrum Linn. leaves. The current study has evaluated the supremacy of a combinatorial regimen of Sor and Utt-B over Sor monotherapy.

Methods:MTT assay was used for In vitro cytotoxicity studies. A clonogenic assay was conducted to assess the anti-proliferative effect of the combination. Annexin V/PI staining, confocal microscopy, FACS cell cycle analysis, and Western blotting experiments were performed to validate the pro-apoptotic potential of the combination in HepG2 and Huh7 cell lines. Pharmacological safety evaluation was performed in Swiss albino mice.

Results:Our results indicate that Utt-B augments Sor-induced cytotoxicity in HepG2 and Huh7 cells. The combination inhibits the proliferation of liver cancer cells by inducing apoptosis through activation of the caspases 7 and 3, leading to PARP cleavage. Furthermore, the combination does not induce any acute toxicity in vivo, even at a dose five times that of the effective therapeutic dose.

Conclusion:Our results highlight the potential of Utt-B as an effective chemosensitizer, which can augment the efficacy of Sor against HCC and circumvent Sor-induced toxic side effects. Moreover, this is the first and only report to date on the chemosensitizing potential of Utt-B and the only report that demonstrates the therapeutic efficacy and pharmacological safety of a novel combinatorial regimen involving Utt-B and Sor for combating HCC.

About the authors

Chenicheri Keerthana

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Sreekumar Aiswarya

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Tennyson Rayginia

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Yadu Vijayan

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Shirly James

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Sadiq Shifana

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Sankar Sundaram

Department of Pathology, Government Medical College

Email: info@benthamscience.net

D.K. Induja

Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology

Email: info@benthamscience.net

Ravi Lankalapalli

Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology

Email: info@benthamscience.net

Kuzhuvelil Harikumar

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Email: info@benthamscience.net

Ruby Anto

Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Liu, X.T.; Huang, Y.; Liu, D.; Jiang, Y.C.; Zhao, M.; Chung, L.H.; Han, X.D.; Zhao, Y.; Chen, J.; Coleman, P.; Ting, K.K.; Tran, C.; Su, Y.; Dennis, C.V.; Bhatnagar, A.; Liu, K.; Don, A.S.; Vadas, M.A.; Gorrell, M.D.; Zhang, S.; Murray, M.; Kavurma, M.M.; McCaughan, G.W.; Gamble, J.R.; Qi, Y. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis. J. Transl. Med., 2024, 22(1), 43. doi: 10.1186/s12967-023-04830-z PMID: 38200582
  3. Keating, G.M.; Santoro, A. Sorafenib. Drugs, 2009, 69(2), 223-240. doi: 10.2165/00003495-200969020-00006 PMID: 19228077
  4. Hsu, C-H.; Shen, Y.C.; Shao, Y.Y.; Hsu, C.; Cheng, A.L. Sorafenib in advanced hepatocellular carcinoma: Current status and future perspectives. J. Hepatocell. Carcinoma, 2014, 1, 85-99. PMID: 27508178
  5. Rimassa, L.; Santoro, A. Sorafenib therapy in advanced hepatocellular carcinoma: The SHARP trial. Expert Rev. Anticancer Ther., 2009, 9(6), 739-745. doi: 10.1586/era.09.41 PMID: 19496710
  6. Sanoff, H.K.; Chang, Y.; Lund, J.L.; O’Neil, B.H.; Dusetzina, S.B. Sorafenib effectiveness in advanced hepatocellular carcinoma. Oncologist, 2016, 21(9), 1113-1120. doi: 10.1634/theoncologist.2015-0478 PMID: 27185615
  7. Hampton, T. Cancer drug trials show modest benefit: Drugs target liver, gastric, head and neck cancers. JAMA, 2007, 298(3), 273-275. doi: 10.1001/jama.298.3.273 PMID: 17635880
  8. Otsuka, T.; Eguchi, Y.; Kawazoe, S.; Yanagita, K.; Ario, K.; Kitahara, K.; Kawasoe, H.; Kato, H.; Mizuta, T. Skin toxicities and survival in advanced hepatocellular carcinoma patients treated with sorafenib. Hepatol. Res., 2012, 42(9), 879-886. doi: 10.1111/j.1872-034X.2012.00991.x PMID: 22469363
  9. Blanchet, B.; Billemont, B.; Barete, S.; Garrigue, H.; Cabanes, L.; Coriat, R.; Francès, C.; Knebelmann, B.; Goldwasser, F. Toxicity of sorafenib: Clinical and molecular aspects. Expert Opin. Drug Saf., 2010, 9(2), 275-287. doi: 10.1517/14740330903510608 PMID: 20078249
  10. Di Costanzo, G.G.; Tortora, R.; De Luca, M.; Galeota, L.A.; Lampasi, F.; Tartaglione, M.T.; Picciotto, F.P.; Imparato, M.; Mattera, S.; Cordone, G.; Ascione, A. Impact of age on toxicity and efficacy of sorafenib-targeted therapy in cirrhotic patients with hepatocellular carcinoma. Med. Oncol., 2013, 30(1), 446. doi: 10.1007/s12032-012-0446-y PMID: 23307255
  11. Lai, X.; Wan, Q.; Jiao, S.F.; Sun, X.C.; Hu, J.F.; Peng, H.W. Cardiovascular toxicities following the use of tyrosine kinase inhibitors in hepatocellular cancer patients: A retrospective, pharmacovigilance study. Expert Opin. Drug Saf., 2024, 23(3), 287-296. doi: 10.1080/14740338.2023.2251398 PMID: 37608525
  12. Jiang, L.; Li, L.; Liu, Y.; Zhan, M.; Lu, L.; Yuan, S.; Liu, Y. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front. Pharmacol., 2023, 14, 1097277. doi: 10.3389/fphar.2023.1097277 PMID: 36891274
  13. Zhu, Y.; Zheng, B.; Wang, H.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol. Sin., 2017, 38(5), 614-622. doi: 10.1038/aps.2017.5 PMID: 28344323
  14. Wang, T.; Hong, Y.; Chen, Z.; Wu, D.; Li, Y.; Wu, X.; Huang, H.; Zhang, Q.; Jia, C. Synergistic effects of α-Mangostin and sorafenib in hepatocellular carcinoma: New insights into α-mangostin cytotoxicity. Biochem. Biophys. Res. Commun., 2021, 558, 14-21. doi: 10.1016/j.bbrc.2021.04.047 PMID: 33894673
  15. Kim, Y.S.; Lee, Y.M.; Oh, T.I.; Shin, D.; Kim, G.H.; Kan, S.Y.; Kang, H.; Kim, J.; Kim, B.; Yim, W.; Lim, J.H. Emodin sensitizes hepatocellular carcinoma cells to the anti-cancer effect of sorafenib through suppression of cholesterol metabolism. Int. J. Mol. Sci., 2018, 19(10), 3127. doi: 10.3390/ijms19103127 PMID: 30321984
  16. Yao, X.; Zhao, C.; Yin, H.; Wang, K.; Gao, J. Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol. Sin., 2020, 41(12), 1609-1620. doi: 10.1038/s41401-020-0395-5 PMID: 32300243
  17. Chan, Y.P.; Chuang, C.H.; Lee, I.; Yang, N.C. Lycopene in combination with sorafenib additively inhibits tumor metastasis in mice xenografted with lewis lung carcinoma cells. Front. Nutr., 2022, 9, 886988. doi: 10.3389/fnut.2022.886988 PMID: 35711540
  18. Rodriguez, S.; Skeet, K.; Mehmetoglu-Gurbuz, T.; Goldfarb, M.; Karri, S.; Rocha, J.; Shahinian, M.; Yazadi, A.; Poudel, S.; Subramani, R. Phytochemicals as an alternative or integrative option, in conjunction with conventional treatments for hepatocellular carcinoma. Cancers , 2021, 13(22), 5753. doi: 10.3390/cancers13225753 PMID: 34830907
  19. Zhu, X.F.; Sun, Z.L.; Ma, J.; Hu, B.; Yu, M.C.; Liu, X.J.; Yang, P.; Xu, Y.; Ju, D.; Mu, Q. Synergistic anticancer effect of flavonoids from Sophora alopecuroides with Sorafenib against hepatocellular carcinoma. Phytother. Res., 2023, 37(2), 592-610. doi: 10.1002/ptr.7637 PMID: 36180975
  20. Khatoon, E. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Seminars in Cancer Biology; Elsevier, 2022. doi: 10.1016/j.semcancer.2020.06.014
  21. Hu, Y.; Luo, Z.; Cai, S.; Xie, Q.; Zheng, S. Glycyrrhizic acid attenuates sorafenib resistance by inducing ferroptosisviatargeting mTOR signaling in hepatocellular carcinoma. Scand. J. Gastroenterol., 2024, 1-7. doi: 10.1080/00365521.2024.2315317 PMID: 38426342
  22. Zaafar, D.; Khalil, H.M.A.; Elnaggar, R.; Saad, D.Z.; Rasheed, R.A. Protective role of hesperetin in sorafenib-induced hepato- and neurotoxicity in mice via modulating apoptotic pathways and mitochondrial reprogramming. Life Sci., 2024, 336, 122295. doi: 10.1016/j.lfs.2023.122295 PMID: 38007145
  23. Feng, X.Q.; Rong, L.W.; Wang, R.X.; Zheng, X.L.; Zhang, L.; Zhang, L.; Lin, Y.; Wang, X.; Li, Z.P. Luteolin and sorafenib combination kills human hepatocellular carcinoma cells through apoptosis potentiation and JNK activation. Oncol. Lett., 2018, 16(1), 648-653. doi: 10.3892/ol.2018.8640 PMID: 29928452
  24. Mao, J.; Yang, H.; Cui, T.; Pan, P.; Kabir, N.; Chen, D.; Ma, J.; Chen, X.; Chen, Y.; Yang, Y. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur. J. Pharmacol., 2018, 832, 39-49. doi: 10.1016/j.ejphar.2018.05.027 PMID: 29782854
  25. Li, R.S.; Li, L.Y.; Zhu, X.F.; Li, X.; Wang, C.Y.; Qiu, S.J.; Zhou, J.; Fan, J.; Hu, B.; Mu, Q. Annonaceous acetogenins synergistically inhibit hepatocellular carcinoma with sorafenib. J. Nat. Prod., 2024, 87(1), 14-27. doi: 10.1021/acs.jnatprod.3c00667 PMID: 38233978
  26. Zheng, L.; Fang, S.; Chen, A.; Chen, W.; Qiao, E.; Chen, M.; Shu, G.; Zhang, D.; Kong, C.; Weng, Q.; Xu, S.; Zhao, Z.; Ji, J. Piperlongumine synergistically enhances the antitumour activity of sorafenib by mediating ROS-AMPK activation and targeting CPSF7 in liver cancer. Pharmacol. Res., 2022, 177, 106140. doi: 10.1016/j.phrs.2022.106140 PMID: 35202819
  27. Nath, L.R.; Gorantla, J.N.; Thulasidasan, A.K.T.; Vijayakurup, V.; Shah, S.; Anwer, S.; Joseph, S.M.; Antony, J.; Veena, K.S.; Sundaram, S.; Marelli, U.K.; Lankalapalli, R.S.; Anto, R.J. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Sci. Rep., 2016, 6(1), 36318. doi: 10.1038/srep36318 PMID: 27808117
  28. Nath, L.R.; Swetha, M.; Vijayakurup, V.; Thangarasu, A.K.; Haritha, N.H.; Shabna, A.; Aiswarya, S.U.; Rayginia, T.P.; Keerthana, C.K.; Kalimuthu, K.; Sundaram, S.; Lankalapalli, R.S.; Pillai, S.; Towner, R.; Isakov, N.; Anto, R.J. Blockade of uttroside b-induced autophagic pro-survival signals augments its chemotherapeutic efficacy against hepatocellular carcinoma. Front. Oncol., 2022, 12, 812598. doi: 10.3389/fonc.2022.812598 PMID: 35211405
  29. Swetha, M.; Keerthana, C.K.; Rayginia, T.P.; Nath, L.R.; Haritha, N.H.; Shabna, A.; Kalimuthu, K.; Thangarasu, A.K.; Aiswarya, S.U.; Jannet, S.; Pillai, S.; Harikumar, K.B.; Sundaram, S.; Anto, N.P.; Wu, D.H.; Lankalapalli, R.S.; Towner, R.; Isakov, N.; Deepa, S.S.; Anto, R.J. Augmented efficacy of uttroside B over sorafenib in a murine model of human hepatocellular carcinoma. Pharmaceuticals, 2022, 15(5), 636. doi: 10.3390/ph15050636 PMID: 35631464
  30. Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446. doi: 10.1158/0008-5472.CAN-09-1947 PMID: 20068163
  31. Hunter, J.E.; Butterworth, J.; Perkins, N.D.; Bateson, M.; Richardson, C.A. Using body temperature, food and water consumption as biomarkers of disease progression in mice with Eµ-myc lymphoma. Br. J. Cancer, 2014, 110(4), 928-934. doi: 10.1038/bjc.2013.818 PMID: 24407190
  32. Fan, G.; Wei, X.; Xu, X. Is the era of sorafenib over? A review of the literature. Ther. Adv. Med. Oncol., 2020, 12. doi: 10.1177/1758835920927602 PMID: 32518599
  33. Iyer, R.; Fetterly, G.; Lugade, A.; Thanavala, Y. Sorafenib: A clinical and pharmacologic review. Expert Opin. Pharmacother., 2010, 11(11), 1943-1955. doi: 10.1517/14656566.2010.496453 PMID: 20586710
  34. Baldan, F.G.; Coelho, F.Q.J.; Berlofa, V.M.; Oliveira, V.C.; Cursino, M.A.; Sampaio, A.L.; Brito, B.; Pereira, T.T.; de Oliveira, G.J.P.; de Godoy, T.N.; Passos, L.C.S.; Moriel, P. Outcomes in hepatocellular carcinoma patients undergoing sorafenib treatment: Toxicities, cellular oxidative stress, treatment adherence, and quality of life. Anticancer Drugs, 2020, 31(5), 523-527. doi: 10.1097/CAD.0000000000000902 PMID: 32107349
  35. Staufer, K.; Fischer, L.; Seegers, B.; Vettorazzi, E.; Nashan, B.; Sterneck, M. High toxicity of sorafenib for recurrent hepatocellular carcinoma after liver transplantation. Transpl. Int., 2012, 25(11), 1158-1164. doi: 10.1111/j.1432-2277.2012.01540.x PMID: 22882364
  36. Li, Y.; Gao, Z.H.; Qu, X.J. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 216-221. doi: 10.1111/bcpt.12365 PMID: 25495944
  37. Wong, H.; Tang, Y.F.; Yao, T.J.; Chiu, J.; Leung, R.; Chan, P.; Cheung, T.T.; Chan, A.C.; Pang, R.W.; Poon, R.; Fan, S.T.; Yau, T. The outcomes and safety of single-agent sorafenib in the treatment of elderly patients with advanced hepatocellular carcinoma (HCC). Oncologist, 2011, 16(12), 1721-1728. doi: 10.1634/theoncologist.2011-0192 PMID: 22135121
  38. Huang, Y.; Wang, K.; Gu, C.; Yu, G.; Zhao, D.; Mai, W.; Zhong, Y.; Liu, S.; Nie, Y.; Yang, H. Berberine, a natural plant alkaloid, synergistically sensitizes human liver cancer cells to sorafenib. Oncol. Rep., 2018, 40(3), 1525-1532. doi: 10.3892/or.2018.6552 PMID: 30015938
  39. Luo, J.; Li, L.; Zhu, Z.; Chang, B.; Deng, F.; Wang, D.; Lu, X.; Zuo, D.; Chen, Q.; Zhou, J. Fucoidan inhibits EGFR redistribution and potentiates sorafenib to overcome sorafenib-resistant hepatocellular carcinoma. Biomed. Pharmacother., 2022, 154, 113602. doi: 10.1016/j.biopha.2022.113602 PMID: 36029544
  40. Singh, D.; Khan, M.A.; Mishra, D.; Goel, A.; Ansari, M.A.; Akhtar, K.; Siddique, H.R. Apigenin enhances sorafenib anti-tumour efficacy in hepatocellular carcinoma. Transl. Oncol., 2024, 43, 101920. doi: 10.1016/j.tranon.2024.101920 PMID: 38394865
  41. Tong, L.W.; Le, J.Q.; Song, X.H.; Li, C.L.; Yu, S.J.; Lin, Y.Q.; Tu, Y.F.; Shao, J.W. Synergistic anti-tumor effect of dual drug co-assembled nanoparticles based on ursolic acid and sorafenib. Colloids Surf. B Biointerfaces, 2024, 234, 113724. doi: 10.1016/j.colsurfb.2023.113724 PMID: 38183870
  42. Hussain, Y.; Singh, J.; Meena, A.; Sinha, R.A.; Luqman, S. Escin‐sorafenib synergy up‐regulates LC3‐II and p62 to induce apoptosis in hepatocellular carcinoma cells. Environ. Toxicol., 2024, 39(2), 840-856. doi: 10.1002/tox.23988 PMID: 37853854
  43. Gao, M.; Deng, C.; Dang, F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr. Res., 2021, 65, 65. doi: 10.29219/fnr.v65.3602 PMID: 34776832
  44. Bort, A.; Spínola, E.; Rodríguez-Henche, N.; Díaz-Laviada, I. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation. Oncotarget, 2017, 8(50), 87684-87698. doi: 10.18632/oncotarget.21196 PMID: 29152112
  45. Nair, B.; Anto, R.J. M, S.; Nath, L.R. Kaempferol-mediated sensitization enhances chemotherapeutic efficacy of sorafenib against hepatocellular carcinoma: An in silico and in vitro approach. Adv. Pharm. Bull., 2020, 10(3), 472-476. doi: 10.34172/apb.2020.058 PMID: 32665908
  46. Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390. doi: 10.1056/NEJMoa0708857 PMID: 18650514
  47. Zhang, H.; Wang, Q.; Liu, J.; Cao, H. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib derived chemo resistance in hepatocellular carcinoma. Oncol. Lett., 2018, 15(6), 9377-9384. doi: 10.3892/ol.2018.8536 PMID: 29928334
  48. Kim, Y.; Jung, K.Y.; Kim, Y.H.; Xu, P.; Kang, B.E.; Jo, Y.; Pandit, N.; Kwon, J.; Gariani, K.; Gariani, J.; Lee, J.; Verbeek, J.; Nam, S.; Bae, S.J.; Ha, K.T.; Yi, H.S.; Shong, M.; Kim, K.H.; Kim, D.; Jung, H.J.; Lee, C.W.; Kim, K.R.; Schoonjans, K.; Auwerx, J.; Ryu, D. Inhibition of SIRT7 overcomes sorafenib acquired resistance by suppressing ERK1/2 phosphorylation via the DDX3X-mediated NLRP3 inflammasome in hepatocellular carcinoma. Drug Resist. Updat., 2024, 73, 101054. doi: 10.1016/j.drup.2024.101054 PMID: 38277756
  49. Wu, B.; Li, A.; Zhang, Y.; Liu, X.; Zhou, S.; Gan, H.; Cai, S.; Liang, Y.; Tang, X. Resistance of hepatocellular carcinoma to sorafenib can be overcome with co-delivery of PI3K/mTOR inhibitor BEZ235 and sorafenib in nanoparticles. Expert Opin. Drug Deliv., 2020, 17(4), 573-587. doi: 10.1080/17425247.2020.1730809 PMID: 32056461
  50. Zhai, B.; Hu, F.; Jiang, X.; Xu, J.; Zhao, D.; Liu, B.; Pan, S.; Dong, X.; Tan, G.; Wei, Z.; Qiao, H.; Jiang, H.; Sun, X. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther., 2014, 13(6), 1589-1598. doi: 10.1158/1535-7163.MCT-13-1043 PMID: 24705351
  51. Keerthana, C.K.; Rayginia, T.P.; Shifana, S.C.; Anto, N.P.; Kalimuthu, K.; Isakov, N.; Anto, R.J. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front. Immunol., 2023, 14, 1114582. doi: 10.3389/fimmu.2023.1114582 PMID: 36875093
  52. Ishijima, N.; Kanki, K.; Shimizu, H.; Shiota, G. Activation of AMP ‐activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib. Cancer Sci., 2015, 106(5), 567-575. doi: 10.1111/cas.12633 PMID: 25683251
  53. Lai, H.Y.; Tsai, H.H.; Yen, C.J.; Hung, L.Y.; Yang, C.C.; Ho, C.H.; Liang, H.Y.; Chen, F.W.; Li, C.F.; Wang, J.M. Metformin resensitizes sorafenib-resistant HCC cells through AMPK-dependent autophagy activation. Front. Cell Dev. Biol., 2021, 8, 596655. doi: 10.3389/fcell.2020.596655 PMID: 33681180
  54. Bort, A.; Sánchez, B.G.; Mateos-Gómez, P.A.; Vara-Ciruelos, D.; Rodríguez-Henche, N.; Díaz-Laviada, I. Targeting AMP ‐activated kinase impacts hepatocellular cancer stem cells induced by long‐term treatment with sorafenib. Mol. Oncol., 2019, 13(5), 1311-1331. doi: 10.1002/1878-0261.12488 PMID: 30959553
  55. Ling, S.; Song, L.; Fan, N.; Feng, T.; Liu, L.; Yang, X.; Wang, M.; Li, Y.; Tian, Y.; Zhao, F.; Liu, Y.; Huang, Q.; Hou, Z.; Xu, F.; Shi, L.; Li, Y. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway. Int. J. Oncol., 2017, 50(1), 297-309. doi: 10.3892/ijo.2016.3799 PMID: 27959383

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers