Pseudolaric Acid B Inhibits FLT4-induced Proliferation and Migration in Non-small Cell Lung Cancer


Cite item

Full Text

Abstract

Objectives:Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from Pseudolarix kaempferi. This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC.

Methods:Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCIH1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins.

Results:PAB showed strong affinity to FLT4 with a KD value of 3.01 × 10- 6 M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/β-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells.

Conclusion:PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.

About the authors

Panpan Lei

School of Pharmacy, Health Science Center, Xi’an Jiaotong University

Email: info@benthamscience.net

Jinna Liang

School of Pharmacy, Health Science Center, Xi'an Jiaotong University

Email: info@benthamscience.net

Xinyue Su

School of Pharmacy, Health Science Center, Xi'an Jiaotong University

Email: info@benthamscience.net

Jiapan Gao

School of Pharmacy, Health Science Center, Xi'an Jiaotong University

Email: info@benthamscience.net

Bingxi Ren

School of Pharmacy, Health Science Center, Xi'an Jiaotong University

Email: info@benthamscience.net

Xiaoyu Ma

School of Pharmacy, Health Science Center, Xi'an Jiaotong University

Email: info@benthamscience.net

Yuxiu Zhang

School of Pharmacy, Health Science Center, Xi'an Jiaotong University

Email: info@benthamscience.net

Weina Ma

School of Pharmacy, Health Science Center, Xi'an Jiaotong University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wu, F.; Wang, L.; Zhou, C. Lung cancer in China: current and prospect. Curr. Opin. Oncol., 2021, 33(1), 40-46. doi: 10.1097/CCO.0000000000000703 PMID: 33165004
  2. Desai, A.; Peters, S. Immunotherapy-based combinations in metastatic NSCLC. Cancer Treat. Rev., 2023, 116, 102545. doi: 10.1016/j.ctrv.2023.102545 PMID: 37030062
  3. Remark, R.; Becker, C.; Gomez, J.E.; Damotte, D.; Dieu-Nosjean, M.C.; Sautès-Fridman, C.; Fridman, W.H.; Powell, C.A.; Altorki, N.K.; Merad, M.; Gnjatic, S. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am. J. Respir. Crit. Care Med., 2015, 191(4), 377-390. doi: 10.1164/rccm.201409-1671PP PMID: 25369536
  4. Xiao, H.; Zhao, R.; Meng, W.; Liao, Y. Effects and translatomics characteristics of a small-molecule inhibitor of METTL3 against non-small cell lung cancer. J. Pharm. Anal., 2023, 13(6), 625-639. doi: 10.1016/j.jpha.2023.04.009 PMID: 37440912
  5. Alexander, M.; Kim, S.Y.; Cheng, H. Update 2020: Management of Non-Small Cell Lung Cancer. Lung, 2020, 198(6), 897-907. doi: 10.1007/s00408-020-00407-5 PMID: 33175991
  6. Chen, P.; Liu, Y.; Wen, Y.; Zhou, C. Non‐small cell lung cancer in China. Cancer Commun. (Lond.), 2022, 42(10), 937-970. doi: 10.1002/cac2.12359 PMID: 36075878
  7. Alessi, J.V.; Elkrief, A.; Ricciuti, B.; Wang, X.; Cortellini, A.; Vaz, V.R.; Lamberti, G.; Frias, R.L.; Venkatraman, D.; Fulgenzi, C.A.M.; Pecci, F.; Recondo, G.; Di Federico, A.; Barrichello, A.; Park, H.; Nishino, M.; Hambelton, G.M.; Egger, J.V.; Ladanyi, M.; Digumarthy, S.; Johnson, B.E.; Christiani, D.C.; Lin, X.; Gainor, J.F.; Lin, J.J.; Pinato, D.J.; Schoenfeld, A.J.; Awad, M.M. Clinicopathologic and genomic factors impacting efficacy of first-line chemoimmunotherapy in advanced NSCLC. J. Thorac. Oncol., 2023, 18(6), 731-743. doi: 10.1016/j.jtho.2023.01.091 PMID: 36775193
  8. Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103194. doi: 10.1016/j.critrevonc.2020.103194 PMID: 33316418
  9. Aoki, M.N.; Amarante, M.K.; de Oliveira, C.E.C.; Watanabe, M.A.E. Biomarkers in non-small cell lung cancer: Perspectives of individualized targeted therapy. Anticancer. Agents Med. Chem., 2019, 18(15), 2070-2077. doi: 10.2174/1871520618666180827102101 PMID: 30147015
  10. Lei, T.; Xu, T.; Zhang, N.; Zou, X.; Kong, Z.; Wei, C.; Wang, Z. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis. Pharmacol. Res., 2023, 188, 106668. doi: 10.1016/j.phrs.2023.106668 PMID: 36681369
  11. Paik, P.K.; Fan, P.D.; Qeriqi, B.; Namakydoust, A.; Daly, B.; Ahn, L.; Kim, R.; Plodkowski, A.; Ni, A.; Chang, J.; Fanaroff, R.; Ladanyi, M.; de Stanchina, E.; Rudin, C.M. Targeting NFE2L2/KEAP1 mutations in advanced NSCLC with the TORC1/2 inhibitor TAK-228. J. Thorac. Oncol., 2023, 18(4), 516-526. doi: 10.1016/j.jtho.2022.09.225 PMID: 36240971
  12. Skribek, M.; Rounis, K.; Tsakonas, G.; Ekman, S. Complications following novel therapies for non‐small cell lung cancer. J. Intern. Med., 2022, 291(6), 732-754. doi: 10.1111/joim.13445 PMID: 35032058
  13. Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
  14. Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling? In control of vascular function. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359-371. doi: 10.1038/nrm1911 PMID: 16633338
  15. Saikia, Q.; Reeve, H.; Alzahrani, A.; Critchley, W.R.; Zeqiraj, E.; Divan, A.; Harrison, M.A.; Ponnambalam, S. VEGFR endocytosis: Implications for angiogenesis. Prog. Mol. Biol. Transl. Sci., 2023, 194, 109-139. doi: 10.1016/bs.pmbts.2022.06.021 PMID: 36631189
  16. Zhao, Y.; Guo, S.; Deng, J.; Shen, J.; Du, F.; Wu, X.; Chen, Y.; Li, M.; Chen, M.; Li, X.; Li, W.; Gu, L.; Sun, Y.; Wen, Q.; Li, J.; Xiao, Z. VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: Targeting the tumor microenvironment. Int. J. Biol. Sci., 2022, 18(9), 3845-3858. doi: 10.7150/ijbs.70958 PMID: 35813484
  17. Shibuya, M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem., 2013, 153(1), 13-19. doi: 10.1093/jb/mvs136 PMID: 23172303
  18. Wautier, J.L.; Wautier, M.P. Vascular permeability in diseases. Int. J. Mol. Sci., 2022, 23(7), 3645. doi: 10.3390/ijms23073645 PMID: 35409010
  19. Christinger, H.W.; Fuh, G.; de Vos, A.M.; Wiesmann, C. The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J. Biol. Chem., 2004, 279(11), 10382-10388. doi: 10.1074/jbc.M313237200 PMID: 14684734
  20. Zheng, H.; Chen, C.; Luo, Y.; Yu, M.; He, W.; An, M.; Gao, B.; Kong, Y.; Ya, Y.; Lin, Y.; Li, Y.; Xie, K.; Huang, J.; Lin, T. Tumor‐derived exosomal BCYRN1 activates WNT5A/VEGF‐C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin. Transl. Med., 2021, 11(7), e497. doi: 10.1002/ctm2.497 PMID: 34323412
  21. Jannaway, M.; Iyer, D.; Mastrogiacomo, D.M.; Li, K.; Sung, D.C.; Yang, Y.; Kahn, M.L.; Scallan, J.P. VEGFR3 is required for button junction formation in lymphatic vessels. Cell Rep., 2023, 42(7), 112777. doi: 10.1016/j.celrep.2023.112777 PMID: 37454290
  22. Kuonqui, K.; Campbell, A.C.; Sarker, A.; Roberts, A.; Pollack, B.L.; Park, H.J.; Shin, J.; Brown, S.; Mehrara, B.J.; Kataru, R.P. Dysregulation of lymphatic endothelial VEGFR3 signaling in disease. Cells, 2023, 13(1), 68. doi: 10.3390/cells13010068 PMID: 38201272
  23. Han, K.Y.; Chang, J.H.; Dugas-Ford, J.; Alexander, J.S.; Azar, D.T. Involvement of lysosomal degradation in VEGF‐C‐induced down‐regulation of VEGFR‐3. FEBS Lett., 2014, 588(23), 4357-4363. doi: 10.1016/j.febslet.2014.09.034 PMID: 25281926
  24. Zhao, L.; Zhu, Z.; Yao, C.; Huang, Y.; Zhi, E.; Chen, H.; Tian, R.; Li, P.; Yuan, Q.; Xue, Y.; Wan, Z.; Yang, C.; Gong, Y.; He, Z.; Li, Z. VEGFC/VEGFR3 signaling regulates mouse spermatogonial cell proliferation via the activation of AKT/MAPK and cyclin D1 pathway and mediates the apoptosis by affecting caspase 3/9 and Bcl-2. Cell Cycle, 2018, 17(2), 225-239. doi: 10.1080/15384101.2017.1407891 PMID: 29169284
  25. Ma, L.; Li, W.; Zhang, Y.; Qi, L.; Zhao, Q.; Li, N.; Lu, Y.; Zhang, L.; Zhou, F.; Wu, Y.; He, Y.; Yu, H.; He, Y.; Wei, B.; Wang, H. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy, 2022, 18(6), 1385-1400. doi: 10.1080/15548627.2021.1985338 PMID: 34632918
  26. Huang, B.; Lu, Y.; Gui, M.; Guan, J.; Lin, M.; Zhao, J.; Mao, Q.; Lin, J. Qingjie Fuzheng Granule suppresses lymphangiogenesis in colorectal cancer via the VEGF-C/VEGFR-3 dependent PI3K/AKT pathway. Biomed. Pharmacother., 2021, 137, 111331. doi: 10.1016/j.biopha.2021.111331 PMID: 33578235
  27. Korhonen, E.A.; Murtomäki, A.; Jha, S.K.; Anisimov, A.; Pink, A.; Zhang, Y.; Stritt, S.; Liaqat, I.; Stanczuk, L.; Alderfer, L.; Sun, Z.; Kapiainen, E.; Singh, A.; Sultan, I.; Lantta, A.; Leppänen, V.M.; Eklund, L.; He, Y.; Augustin, H.G.; Vaahtomeri, K.; Saharinen, P.; Mäkinen, T.; Alitalo, K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. J. Clin. Invest., 2022, 132(15), e155478. doi: 10.1172/JCI155478 PMID: 35763346
  28. Yamashita, M.; Niisato, M.; Kawasaki, Y.; Karaman, S.; Robciuc, M.R.; Shibata, Y.; Ishida, Y.; Nishio, R.; Masuda, T.; Sugai, T.; Ono, M.; Tuder, R.M.; Alitalo, K.; Yamauchi, K. VEGF-C/VEGFR-3 signalling in macrophages ameliorates acute lung injury. Eur. Respir. J., 2022, 59(4), 2100880. doi: 10.1183/13993003.00880-2021 PMID: 34446463
  29. Chang, T.M.; Chu, P.Y.; Lin, H.Y.; Huang, K.W.; Hung, W.C.; Shan, Y.S.; Chen, L.T.; Tsai, H.J. PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation. J. Biomed. Sci., 2022, 29(1), 92. doi: 10.1186/s12929-022-00875-2 PMID: 36336681
  30. Torres-Ruiz, S.; Tormo, E.; Garrido-Cano, I.; Lameirinhas, A.; Rojo, F.; Madoz-Gúrpide, J.; Burgués, O.; Hernando, C.; Bermejo, B.; Martínez, M.T.; Lluch, A.; Cejalvo, J.M.; Eroles, P. High VEGFR3 expression reduces doxorubicin efficacy in triple-negative breast cancer. Int. J. Mol. Sci., 2023, 24(4), 3601. doi: 10.3390/ijms24043601 PMID: 36835014
  31. Yan, Z.; Hua, H.; Xu, Y.; Samaranayake, L.P. Potent antifungal activity of pure compounds from traditional chinese medicine extracts against six oral Candida species and the synergy with fluconazole against azole-resistant Candida albicans. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-6. doi: 10.1155/2012/106583 PMID: 22454653
  32. Yin, M.; Li, N.; Zhang, L.; Lin, J.; Wang, Q.; Gu, L.; Zheng, H.; Zhao, G.; Li, C. Pseudolaric acid B ameliorates fungal keratitis progression by suppressing inflammation and reducing fungal load. ACS Infect. Dis., 2023, 9(6), 1196-1205. doi: 10.1021/acsinfecdis.2c00536 PMID: 37141176
  33. Miao, Y.; Yin, Q.; Ping, L.; Sheng, H.; Chang, J.; Li, W.; Lv, S. Pseudolaric acid B triggers ferritinophagy and ferroptosis via upregulating NCOA4 in lung adenocarcinoma cells. J. Cancer Res. Ther., 2023, 19(6), 1646-1653. doi: 10.4103/jcrt.jcrt_806_23 PMID: 38156933
  34. Yao, G.; Yang, J.; Li, Q.; Zhang, Y.; Qi, M.; Fan, S.; Hayashi, T.; Tashiro, S.; Onodera, S.; Ikejima, T. Activation of p53 contributes to pseudolaric acid B-induced senescence in human lung cancer cells in vitro. Acta Pharmacol. Sin., 2016, 37(7), 919-929. doi: 10.1038/aps.2016.8 PMID: 27041461
  35. Yin, Z.; Cai, H.; Wang, Z.; Jiang, Y. Pseudolaric acid B inhibits proliferation, invasion, and angiogenesis in esophageal squamous cell carcinoma through regulating CD147. Drug Des. Devel. Ther., 2020, 14, 4561-4573. doi: 10.2147/DDDT.S269915 PMID: 33149553
  36. Wang, Z.; Ding, Y.; Wang, X.; Lu, S.; Wang, C.; He, C.; Wang, L.; Piao, M.; Chi, G.; Luo, Y.; Ge, P. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett., 2018, 428, 21-33. doi: 10.1016/j.canlet.2018.04.021 PMID: 29702192
  37. Wong, V.K.W.; Chiu, P.; Chung, S.S.M.; Chow, L.M.C.; Zhao, Y.Z.; Yang, B.B.; Ko, B.C.B. Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo. Clin. Cancer Res., 2005, 11(16), 6002-6011. doi: 10.1158/1078-0432.CCR-05-0209 PMID: 16115945
  38. Sun, Q.; Li, Y. The inhibitory effect of pseudolaric acid B on gastric cancer and multidrug resistance via Cox-2/PKC-α/P-gp pathway. PLoS One, 2014, 9(9), e107830. doi: 10.1371/journal.pone.0107830 PMID: 25250794
  39. Yu, H.J.; Kim, J.H.; Choi, S.J.; Cho, S.D. In vitro antimetastatic potential of pseudolaric acid B in HSC-3 human tongue squamous carcinoma cell line. Arch. Oral Biol., 2024, 162, 105940. doi: 10.1016/j.archoralbio.2024.105940 PMID: 38479277
  40. Wu, X.; Sheng, H.; Zhao, L.; Jiang, M.; Lou, H.; Miao, Y.; Cheng, N.; Zhang, W.; Ding, D.; Li, W. Co-loaded lapatinib/PAB by ferritin nanoparticles eliminated ECM-detached cluster cells via modulating EGFR in triple-negative breast cancer. Cell Death Dis., 2022, 13(6), 557. doi: 10.1038/s41419-022-05007-0 PMID: 35725558
  41. Ma, W.; Yang, L.; Lv, Y.; Fu, J.; Zhang, Y.; He, L. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method. J. Chromatogr. A, 2017, 1503, 12-20. doi: 10.1016/j.chroma.2017.04.053 PMID: 28495080
  42. Bei, Y.; Huang, Z.; Feng, X.; Li, L.; Wei, M.; Zhu, Y.; Liu, S.; Chen, C.; Yin, M.; Jiang, H.; Xiao, J. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. J. Sport Health Sci., 2022, 11(4), 466-478. doi: 10.1016/j.jshs.2022.02.005 PMID: 35218948
  43. Kamranvar, S.A.; Rani, B.; Johansson, S. Cell Cycle Regulation by Integrin-Mediated Adhesion. Cells, 2022, 11(16), 2521. doi: 10.3390/cells11162521 PMID: 36010598
  44. Pons-Tostivint, E.; Bennouna, J. Treatments for non-small-cell lung cancer: The multiple options for precision medicine. Curr. Oncol., 2022, 29(10), 7106-7108. doi: 10.3390/curroncol29100558 PMID: 36290835
  45. Gao, Y.; Liu, P.; Shi, R. Anlotinib as a molecular targeted therapy for tumors. (Review) Oncol. Lett., 2020, 20(2), 1001-1014. doi: 10.3892/ol.2020.11685 PMID: 32724339
  46. Chen, F.; Takenaka, K.; Ogawa, E.; Yanagihara, K.; Otake, Y.; Wada, H.; Tanaka, F. Flt-4-positive endothelial cell density and its clinical significance in non-small cell lung cancer. Clin. Cancer Res., 2004, 10(24), 8548-8553. doi: 10.1158/1078-0432.CCR-04-0950 PMID: 15623638
  47. Donnem, T.; Al-Saad, S.; Al-Shibli, K.; Busund, L.T.; Bremnes, R.M. Co-expression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer. Ann. Oncol., 2010, 21(2), 223-231. doi: 10.1093/annonc/mdp296 PMID: 19628565
  48. Ma, W.; Wang, C.; Liu, R.; Wang, N.; Lv, Y.; Dai, B.; He, L. Advances in cell membrane chromatography. J. Chromatogr. A, 2021, 1639, 461916. doi: 10.1016/j.chroma.2021.461916 PMID: 33548663
  49. Chai, X.; Gu, Y.; Lv, L.; Chen, C.; Feng, F.; Cao, Y.; Liu, Y.; Zhu, Z.; Hong, Z.; Chai, Y.; Chen, X. Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system. J. Pharm. Anal., 2022, 12(5), 725-732. doi: 10.1016/j.jpha.2022.05.006 PMID: 36320599
  50. Fu, J.; Jia, Q.; Liang, P.; Wang, S.; Zhou, H.; Zhang, L.; Wang, H.; Gao, C.; Lv, Y.; Han, S.; He, L. Enhanced stability designs of cell membrane chromatography for screening drug leads. J. Sep. Sci., 2022, 45(14), 2498-2507. doi: 10.1002/jssc.202200200 PMID: 35561141
  51. Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ., 2022, 29(5), 946-960. doi: 10.1038/s41418-022-00988-z PMID: 35361964
  52. Schafer, K.A. The cell cycle: A review. Vet. Pathol., 1998, 35(6), 461-478. doi: 10.1177/030098589803500601 PMID: 9823588
  53. Qu, L.; Liu, Y.; Deng, J.; Ma, X.; Fan, D. Ginsenoside Rk3 is a novel PI3K/AKT-targeting therapeutics agent that regulates autophagy and apoptosis in hepatocellular carcinoma. J. Pharm. Anal., 2023, 13(5), 463-482. doi: 10.1016/j.jpha.2023.03.006 PMID: 37305788
  54. Swanton, C. Cell-cycle targeted therapies. Lancet Oncol., 2004, 5(1), 27-36. doi: 10.1016/S1470-2045(03)01321-4 PMID: 14700606
  55. Barnaba, N.; LaRocque, J.R. Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma. Cell Cycle, 2021, 20(11), 1041-1051. doi: 10.1080/15384101.2021.1922806 PMID: 33966611
  56. Bao, Y.; Wu, X.; Jin, X.; Kanematsu, A.; Nojima, M.; Kakehi, Y.; Yamamoto, S. Apigenin inhibits renal cell carcinoma cell proliferation through G2/M phase cell cycle arrest. Oncol. Rep., 2022, 47(3), 60. doi: 10.3892/or.2022.8271 PMID: 35088891
  57. Yao, G.; Qi, M.; Ji, X.; Fan, S.; Xu, L.; Hayashi, T.; Tashiro, S.; Onodera, S.; Ikejima, T. ATM–p53 pathway causes G2/M arrest, but represses apoptosis in pseudolaric acid B-treated HeLa cells. Arch. Biochem. Biophys., 2014, 558, 51-60. doi: 10.1016/j.abb.2014.05.029 PMID: 24929187
  58. Oh, E.T.; Kim, H.G.; Kim, C.H.; Lee, J.; Kim, C.; Lee, J.S.; Cho, Y.; Park, H.J. NQO1 regulates cell cycle progression at the G2/M phase. Theranostics, 2023, 13(3), 873-895. doi: 10.7150/thno.77444 PMID: 36793872
  59. Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411(6835), 342-348. doi: 10.1038/35077213 PMID: 11357141
  60. Polacheck, W.J.; Zervantonakis, I.K.; Kamm, R.D. Tumor cell migration in complex microenvironments. Cell. Mol. Life Sci., 2013, 70(8), 1335-1356. doi: 10.1007/s00018-012-1115-1 PMID: 22926411
  61. Karimi, E.; Yu, M.W.; Maritan, S.M.; Perus, L.J.M.; Rezanejad, M.; Sorin, M.; Dankner, M.; Fallah, P.; Doré, S.; Zuo, D.; Fiset, B.; Kloosterman, D.J.; Ramsay, L.; Wei, Y.; Lam, S.; Alsajjan, R.; Watson, I.R.; Roldan Urgoiti, G.; Park, M.; Brandsma, D.; Senger, D.L.; Chan, J.A.; Akkari, L.; Petrecca, K.; Guiot, M.C.; Siegel, P.M.; Quail, D.F.; Walsh, L.A. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature, 2023, 614(7948), 555-563. doi: 10.1038/s41586-022-05680-3 PMID: 36725935
  62. Yin, L.; Liu, X.; Shao, X.; Feng, T.; Xu, J.; Wang, Q.; Hua, S. The role of exosomes in lung cancer metastasis and clinical applications: an updated review. J. Transl. Med., 2021, 19(1), 312. doi: 10.1186/s12967-021-02985-1 PMID: 34281588
  63. Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; Veronesi, G.; Reck, M. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol., 2023, 34(4), 358-376. doi: 10.1016/j.annonc.2022.12.013 PMID: 36669645
  64. Li, H.J.; Ke, F.Y.; Lin, C.C.; Lu, M.Y.; Kuo, Y.H.; Wang, Y.P.; Liang, K.H.; Lin, S.C.; Chang, Y.H.; Chen, H.Y.; Yang, P.C.; Wu, H.C. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling–driven epithelial-to-mesenchymal transition. Cancer Res., 2021, 81(15), 4094-4109. doi: 10.1158/0008-5472.CAN-20-3543 PMID: 34145039
  65. Li, Y.; Liu, C.; Zhang, X.; Huang, X.; Liang, S.; Xing, F.; Tian, H. CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β-catenin signalling pathway. Br. J. Cancer, 2022, 126(12), 1684-1694. doi: 10.1038/s41416-022-01747-0 PMID: 35194191
  66. Gore, A.V.; Swift, M.R.; Cha, Y.R.; Lo, B.; McKinney, M.C.; Li, W.; Castranova, D.; Davis, A.; Mukouyama, Y.; Weinstein, B.M. Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3. Development, 2011, 138(22), 4875-4886. doi: 10.1242/dev.068460 PMID: 22007135
  67. Li, Z.; Mao, L.; Yu, B.; Liu, H.; Zhang, Q.; Bian, Z.; Zhang, X.; Liao, W.; Sun, S. GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells. J. Pharm. Anal., 2022, 12(2), 339-349. doi: 10.1016/j.jpha.2021.06.007 PMID: 35582406
  68. Su, J.L.; Yang, P.C.; Shih, J.Y.; Yang, C.Y.; Wei, L.H.; Hsieh, C.Y.; Chou, C.H.; Jeng, Y.M.; Wang, M.Y.; Chang, K.J.; Hung, M.C.; Kuo, M.L. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell, 2006, 9(3), 209-223. doi: 10.1016/j.ccr.2006.02.018 PMID: 16530705
  69. Guan, L.; Fan, P.; Wang, Y.; Liu, X.; Liu, R.; Ma, W.; Bai, H. Lymphangiogenic responses of lymphatic endothelial cells to steady direct-current electric fields. Cell Adhes. Migr., 2023, 17(1), 1-14. doi: 10.1080/19336918.2023.2271260 PMID: 37889090
  70. Feng, Y.; Hu, J.; Ma, J.; Feng, K.; Zhang, X.; Yang, S.; Wang, W.; Zhang, J.; Zhang, Y. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur. J. Cancer, 2011, 47(15), 2353-2363. doi: 10.1016/j.ejca.2011.05.006 PMID: 21680174
  71. Wang, J.; Gong, M.; Fan, X.; Huang, D.; Zhang, J.; Huang, C. Autophagy-related signaling pathways in non-small cell lung cancer. Mol. Cell. Biochem., 2022, 477(2), 385-393. doi: 10.1007/s11010-021-04280-5 PMID: 34757567
  72. Yangming-Fan Jianjun-Ge, Pentoxifylline prevents restenosis by inhibiting cell proliferation via p38MAPK pathway in rat vein graft model. Cell Transplant., 2022, 31. doi: 10.1177/09636897221122999 PMID: 36066039
  73. Reddy, D.; Kumavath, R.; Ghosh, P.; Barh, D.; Lanatoside, C. Lanatoside C induces G2/M cell cycle arrest and suppresses cancer cell growth by attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR signaling pathways. Biomolecules, 2019, 9(12), 792. doi: 10.3390/biom9120792 PMID: 31783627
  74. Tong, J.; Yin, S.; Dong, Y.; Guo, X.; Fan, L.; Ye, M.; Hu, H. Pseudolaric acid B induces caspase-dependent apoptosis and autophagic cell death in prostate cancer cells. Phytother. Res., 2013, 27(6), 885-891. doi: 10.1002/ptr.4808 PMID: 22903438
  75. Luo, D.; He, F.; Liu, J.; Dong, X.; Fang, M.; Liang, Y.; Chen, M.; Gui, X.; Wang, W.; Zeng, L.; Fan, X.; Wu, Q. Pseudolaric acid B suppresses NSCLC progression through the ROS/AMPK/mTOR/autophagy signalling pathway. Biomed. Pharmacother., 2024, 175, 116614. doi: 10.1016/j.biopha.2024.116614 PMID: 38670047

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers