Pseudolaric Acid B Inhibits FLT4-induced Proliferation and Migration in Non-small Cell Lung Cancer
- Authors: Lei P.1, Liang J.2, Su X.2, Gao J.2, Ren B.2, Ma X.2, Zhang Y.2, Ma W.2
-
Affiliations:
- School of Pharmacy, Health Science Center, Xian Jiaotong University
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University
- Issue: Vol 24, No 19 (2024)
- Pages: 1419-1430
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/644010
- DOI: https://doi.org/10.2174/0118715206313028240819103933
- ID: 644010
Cite item
Full Text
Abstract
Objectives:Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from Pseudolarix kaempferi. This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC.
Methods:Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCIH1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins.
Results:PAB showed strong affinity to FLT4 with a KD value of 3.01 × 10- 6 M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/β-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells.
Conclusion:PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.
About the authors
Panpan Lei
School of Pharmacy, Health Science Center, Xian Jiaotong University
Email: info@benthamscience.net
Jinna Liang
School of Pharmacy, Health Science Center, Xi'an Jiaotong University
Email: info@benthamscience.net
Xinyue Su
School of Pharmacy, Health Science Center, Xi'an Jiaotong University
Email: info@benthamscience.net
Jiapan Gao
School of Pharmacy, Health Science Center, Xi'an Jiaotong University
Email: info@benthamscience.net
Bingxi Ren
School of Pharmacy, Health Science Center, Xi'an Jiaotong University
Email: info@benthamscience.net
Xiaoyu Ma
School of Pharmacy, Health Science Center, Xi'an Jiaotong University
Email: info@benthamscience.net
Yuxiu Zhang
School of Pharmacy, Health Science Center, Xi'an Jiaotong University
Email: info@benthamscience.net
Weina Ma
School of Pharmacy, Health Science Center, Xi'an Jiaotong University
Author for correspondence.
Email: info@benthamscience.net
References
- Wu, F.; Wang, L.; Zhou, C. Lung cancer in China: current and prospect. Curr. Opin. Oncol., 2021, 33(1), 40-46. doi: 10.1097/CCO.0000000000000703 PMID: 33165004
- Desai, A.; Peters, S. Immunotherapy-based combinations in metastatic NSCLC. Cancer Treat. Rev., 2023, 116, 102545. doi: 10.1016/j.ctrv.2023.102545 PMID: 37030062
- Remark, R.; Becker, C.; Gomez, J.E.; Damotte, D.; Dieu-Nosjean, M.C.; Sautès-Fridman, C.; Fridman, W.H.; Powell, C.A.; Altorki, N.K.; Merad, M.; Gnjatic, S. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am. J. Respir. Crit. Care Med., 2015, 191(4), 377-390. doi: 10.1164/rccm.201409-1671PP PMID: 25369536
- Xiao, H.; Zhao, R.; Meng, W.; Liao, Y. Effects and translatomics characteristics of a small-molecule inhibitor of METTL3 against non-small cell lung cancer. J. Pharm. Anal., 2023, 13(6), 625-639. doi: 10.1016/j.jpha.2023.04.009 PMID: 37440912
- Alexander, M.; Kim, S.Y.; Cheng, H. Update 2020: Management of Non-Small Cell Lung Cancer. Lung, 2020, 198(6), 897-907. doi: 10.1007/s00408-020-00407-5 PMID: 33175991
- Chen, P.; Liu, Y.; Wen, Y.; Zhou, C. Non‐small cell lung cancer in China. Cancer Commun. (Lond.), 2022, 42(10), 937-970. doi: 10.1002/cac2.12359 PMID: 36075878
- Alessi, J.V.; Elkrief, A.; Ricciuti, B.; Wang, X.; Cortellini, A.; Vaz, V.R.; Lamberti, G.; Frias, R.L.; Venkatraman, D.; Fulgenzi, C.A.M.; Pecci, F.; Recondo, G.; Di Federico, A.; Barrichello, A.; Park, H.; Nishino, M.; Hambelton, G.M.; Egger, J.V.; Ladanyi, M.; Digumarthy, S.; Johnson, B.E.; Christiani, D.C.; Lin, X.; Gainor, J.F.; Lin, J.J.; Pinato, D.J.; Schoenfeld, A.J.; Awad, M.M. Clinicopathologic and genomic factors impacting efficacy of first-line chemoimmunotherapy in advanced NSCLC. J. Thorac. Oncol., 2023, 18(6), 731-743. doi: 10.1016/j.jtho.2023.01.091 PMID: 36775193
- Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103194. doi: 10.1016/j.critrevonc.2020.103194 PMID: 33316418
- Aoki, M.N.; Amarante, M.K.; de Oliveira, C.E.C.; Watanabe, M.A.E. Biomarkers in non-small cell lung cancer: Perspectives of individualized targeted therapy. Anticancer. Agents Med. Chem., 2019, 18(15), 2070-2077. doi: 10.2174/1871520618666180827102101 PMID: 30147015
- Lei, T.; Xu, T.; Zhang, N.; Zou, X.; Kong, Z.; Wei, C.; Wang, Z. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis. Pharmacol. Res., 2023, 188, 106668. doi: 10.1016/j.phrs.2023.106668 PMID: 36681369
- Paik, P.K.; Fan, P.D.; Qeriqi, B.; Namakydoust, A.; Daly, B.; Ahn, L.; Kim, R.; Plodkowski, A.; Ni, A.; Chang, J.; Fanaroff, R.; Ladanyi, M.; de Stanchina, E.; Rudin, C.M. Targeting NFE2L2/KEAP1 mutations in advanced NSCLC with the TORC1/2 inhibitor TAK-228. J. Thorac. Oncol., 2023, 18(4), 516-526. doi: 10.1016/j.jtho.2022.09.225 PMID: 36240971
- Skribek, M.; Rounis, K.; Tsakonas, G.; Ekman, S. Complications following novel therapies for non‐small cell lung cancer. J. Intern. Med., 2022, 291(6), 732-754. doi: 10.1111/joim.13445 PMID: 35032058
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
- Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling? In control of vascular function. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359-371. doi: 10.1038/nrm1911 PMID: 16633338
- Saikia, Q.; Reeve, H.; Alzahrani, A.; Critchley, W.R.; Zeqiraj, E.; Divan, A.; Harrison, M.A.; Ponnambalam, S. VEGFR endocytosis: Implications for angiogenesis. Prog. Mol. Biol. Transl. Sci., 2023, 194, 109-139. doi: 10.1016/bs.pmbts.2022.06.021 PMID: 36631189
- Zhao, Y.; Guo, S.; Deng, J.; Shen, J.; Du, F.; Wu, X.; Chen, Y.; Li, M.; Chen, M.; Li, X.; Li, W.; Gu, L.; Sun, Y.; Wen, Q.; Li, J.; Xiao, Z. VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: Targeting the tumor microenvironment. Int. J. Biol. Sci., 2022, 18(9), 3845-3858. doi: 10.7150/ijbs.70958 PMID: 35813484
- Shibuya, M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem., 2013, 153(1), 13-19. doi: 10.1093/jb/mvs136 PMID: 23172303
- Wautier, J.L.; Wautier, M.P. Vascular permeability in diseases. Int. J. Mol. Sci., 2022, 23(7), 3645. doi: 10.3390/ijms23073645 PMID: 35409010
- Christinger, H.W.; Fuh, G.; de Vos, A.M.; Wiesmann, C. The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J. Biol. Chem., 2004, 279(11), 10382-10388. doi: 10.1074/jbc.M313237200 PMID: 14684734
- Zheng, H.; Chen, C.; Luo, Y.; Yu, M.; He, W.; An, M.; Gao, B.; Kong, Y.; Ya, Y.; Lin, Y.; Li, Y.; Xie, K.; Huang, J.; Lin, T. Tumor‐derived exosomal BCYRN1 activates WNT5A/VEGF‐C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin. Transl. Med., 2021, 11(7), e497. doi: 10.1002/ctm2.497 PMID: 34323412
- Jannaway, M.; Iyer, D.; Mastrogiacomo, D.M.; Li, K.; Sung, D.C.; Yang, Y.; Kahn, M.L.; Scallan, J.P. VEGFR3 is required for button junction formation in lymphatic vessels. Cell Rep., 2023, 42(7), 112777. doi: 10.1016/j.celrep.2023.112777 PMID: 37454290
- Kuonqui, K.; Campbell, A.C.; Sarker, A.; Roberts, A.; Pollack, B.L.; Park, H.J.; Shin, J.; Brown, S.; Mehrara, B.J.; Kataru, R.P. Dysregulation of lymphatic endothelial VEGFR3 signaling in disease. Cells, 2023, 13(1), 68. doi: 10.3390/cells13010068 PMID: 38201272
- Han, K.Y.; Chang, J.H.; Dugas-Ford, J.; Alexander, J.S.; Azar, D.T. Involvement of lysosomal degradation in VEGF‐C‐induced down‐regulation of VEGFR‐3. FEBS Lett., 2014, 588(23), 4357-4363. doi: 10.1016/j.febslet.2014.09.034 PMID: 25281926
- Zhao, L.; Zhu, Z.; Yao, C.; Huang, Y.; Zhi, E.; Chen, H.; Tian, R.; Li, P.; Yuan, Q.; Xue, Y.; Wan, Z.; Yang, C.; Gong, Y.; He, Z.; Li, Z. VEGFC/VEGFR3 signaling regulates mouse spermatogonial cell proliferation via the activation of AKT/MAPK and cyclin D1 pathway and mediates the apoptosis by affecting caspase 3/9 and Bcl-2. Cell Cycle, 2018, 17(2), 225-239. doi: 10.1080/15384101.2017.1407891 PMID: 29169284
- Ma, L.; Li, W.; Zhang, Y.; Qi, L.; Zhao, Q.; Li, N.; Lu, Y.; Zhang, L.; Zhou, F.; Wu, Y.; He, Y.; Yu, H.; He, Y.; Wei, B.; Wang, H. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy, 2022, 18(6), 1385-1400. doi: 10.1080/15548627.2021.1985338 PMID: 34632918
- Huang, B.; Lu, Y.; Gui, M.; Guan, J.; Lin, M.; Zhao, J.; Mao, Q.; Lin, J. Qingjie Fuzheng Granule suppresses lymphangiogenesis in colorectal cancer via the VEGF-C/VEGFR-3 dependent PI3K/AKT pathway. Biomed. Pharmacother., 2021, 137, 111331. doi: 10.1016/j.biopha.2021.111331 PMID: 33578235
- Korhonen, E.A.; Murtomäki, A.; Jha, S.K.; Anisimov, A.; Pink, A.; Zhang, Y.; Stritt, S.; Liaqat, I.; Stanczuk, L.; Alderfer, L.; Sun, Z.; Kapiainen, E.; Singh, A.; Sultan, I.; Lantta, A.; Leppänen, V.M.; Eklund, L.; He, Y.; Augustin, H.G.; Vaahtomeri, K.; Saharinen, P.; Mäkinen, T.; Alitalo, K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. J. Clin. Invest., 2022, 132(15), e155478. doi: 10.1172/JCI155478 PMID: 35763346
- Yamashita, M.; Niisato, M.; Kawasaki, Y.; Karaman, S.; Robciuc, M.R.; Shibata, Y.; Ishida, Y.; Nishio, R.; Masuda, T.; Sugai, T.; Ono, M.; Tuder, R.M.; Alitalo, K.; Yamauchi, K. VEGF-C/VEGFR-3 signalling in macrophages ameliorates acute lung injury. Eur. Respir. J., 2022, 59(4), 2100880. doi: 10.1183/13993003.00880-2021 PMID: 34446463
- Chang, T.M.; Chu, P.Y.; Lin, H.Y.; Huang, K.W.; Hung, W.C.; Shan, Y.S.; Chen, L.T.; Tsai, H.J. PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation. J. Biomed. Sci., 2022, 29(1), 92. doi: 10.1186/s12929-022-00875-2 PMID: 36336681
- Torres-Ruiz, S.; Tormo, E.; Garrido-Cano, I.; Lameirinhas, A.; Rojo, F.; Madoz-Gúrpide, J.; Burgués, O.; Hernando, C.; Bermejo, B.; Martínez, M.T.; Lluch, A.; Cejalvo, J.M.; Eroles, P. High VEGFR3 expression reduces doxorubicin efficacy in triple-negative breast cancer. Int. J. Mol. Sci., 2023, 24(4), 3601. doi: 10.3390/ijms24043601 PMID: 36835014
- Yan, Z.; Hua, H.; Xu, Y.; Samaranayake, L.P. Potent antifungal activity of pure compounds from traditional chinese medicine extracts against six oral Candida species and the synergy with fluconazole against azole-resistant Candida albicans. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-6. doi: 10.1155/2012/106583 PMID: 22454653
- Yin, M.; Li, N.; Zhang, L.; Lin, J.; Wang, Q.; Gu, L.; Zheng, H.; Zhao, G.; Li, C. Pseudolaric acid B ameliorates fungal keratitis progression by suppressing inflammation and reducing fungal load. ACS Infect. Dis., 2023, 9(6), 1196-1205. doi: 10.1021/acsinfecdis.2c00536 PMID: 37141176
- Miao, Y.; Yin, Q.; Ping, L.; Sheng, H.; Chang, J.; Li, W.; Lv, S. Pseudolaric acid B triggers ferritinophagy and ferroptosis via upregulating NCOA4 in lung adenocarcinoma cells. J. Cancer Res. Ther., 2023, 19(6), 1646-1653. doi: 10.4103/jcrt.jcrt_806_23 PMID: 38156933
- Yao, G.; Yang, J.; Li, Q.; Zhang, Y.; Qi, M.; Fan, S.; Hayashi, T.; Tashiro, S.; Onodera, S.; Ikejima, T. Activation of p53 contributes to pseudolaric acid B-induced senescence in human lung cancer cells in vitro. Acta Pharmacol. Sin., 2016, 37(7), 919-929. doi: 10.1038/aps.2016.8 PMID: 27041461
- Yin, Z.; Cai, H.; Wang, Z.; Jiang, Y. Pseudolaric acid B inhibits proliferation, invasion, and angiogenesis in esophageal squamous cell carcinoma through regulating CD147. Drug Des. Devel. Ther., 2020, 14, 4561-4573. doi: 10.2147/DDDT.S269915 PMID: 33149553
- Wang, Z.; Ding, Y.; Wang, X.; Lu, S.; Wang, C.; He, C.; Wang, L.; Piao, M.; Chi, G.; Luo, Y.; Ge, P. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett., 2018, 428, 21-33. doi: 10.1016/j.canlet.2018.04.021 PMID: 29702192
- Wong, V.K.W.; Chiu, P.; Chung, S.S.M.; Chow, L.M.C.; Zhao, Y.Z.; Yang, B.B.; Ko, B.C.B. Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo. Clin. Cancer Res., 2005, 11(16), 6002-6011. doi: 10.1158/1078-0432.CCR-05-0209 PMID: 16115945
- Sun, Q.; Li, Y. The inhibitory effect of pseudolaric acid B on gastric cancer and multidrug resistance via Cox-2/PKC-α/P-gp pathway. PLoS One, 2014, 9(9), e107830. doi: 10.1371/journal.pone.0107830 PMID: 25250794
- Yu, H.J.; Kim, J.H.; Choi, S.J.; Cho, S.D. In vitro antimetastatic potential of pseudolaric acid B in HSC-3 human tongue squamous carcinoma cell line. Arch. Oral Biol., 2024, 162, 105940. doi: 10.1016/j.archoralbio.2024.105940 PMID: 38479277
- Wu, X.; Sheng, H.; Zhao, L.; Jiang, M.; Lou, H.; Miao, Y.; Cheng, N.; Zhang, W.; Ding, D.; Li, W. Co-loaded lapatinib/PAB by ferritin nanoparticles eliminated ECM-detached cluster cells via modulating EGFR in triple-negative breast cancer. Cell Death Dis., 2022, 13(6), 557. doi: 10.1038/s41419-022-05007-0 PMID: 35725558
- Ma, W.; Yang, L.; Lv, Y.; Fu, J.; Zhang, Y.; He, L. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method. J. Chromatogr. A, 2017, 1503, 12-20. doi: 10.1016/j.chroma.2017.04.053 PMID: 28495080
- Bei, Y.; Huang, Z.; Feng, X.; Li, L.; Wei, M.; Zhu, Y.; Liu, S.; Chen, C.; Yin, M.; Jiang, H.; Xiao, J. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. J. Sport Health Sci., 2022, 11(4), 466-478. doi: 10.1016/j.jshs.2022.02.005 PMID: 35218948
- Kamranvar, S.A.; Rani, B.; Johansson, S. Cell Cycle Regulation by Integrin-Mediated Adhesion. Cells, 2022, 11(16), 2521. doi: 10.3390/cells11162521 PMID: 36010598
- Pons-Tostivint, E.; Bennouna, J. Treatments for non-small-cell lung cancer: The multiple options for precision medicine. Curr. Oncol., 2022, 29(10), 7106-7108. doi: 10.3390/curroncol29100558 PMID: 36290835
- Gao, Y.; Liu, P.; Shi, R. Anlotinib as a molecular targeted therapy for tumors. (Review) Oncol. Lett., 2020, 20(2), 1001-1014. doi: 10.3892/ol.2020.11685 PMID: 32724339
- Chen, F.; Takenaka, K.; Ogawa, E.; Yanagihara, K.; Otake, Y.; Wada, H.; Tanaka, F. Flt-4-positive endothelial cell density and its clinical significance in non-small cell lung cancer. Clin. Cancer Res., 2004, 10(24), 8548-8553. doi: 10.1158/1078-0432.CCR-04-0950 PMID: 15623638
- Donnem, T.; Al-Saad, S.; Al-Shibli, K.; Busund, L.T.; Bremnes, R.M. Co-expression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer. Ann. Oncol., 2010, 21(2), 223-231. doi: 10.1093/annonc/mdp296 PMID: 19628565
- Ma, W.; Wang, C.; Liu, R.; Wang, N.; Lv, Y.; Dai, B.; He, L. Advances in cell membrane chromatography. J. Chromatogr. A, 2021, 1639, 461916. doi: 10.1016/j.chroma.2021.461916 PMID: 33548663
- Chai, X.; Gu, Y.; Lv, L.; Chen, C.; Feng, F.; Cao, Y.; Liu, Y.; Zhu, Z.; Hong, Z.; Chai, Y.; Chen, X. Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system. J. Pharm. Anal., 2022, 12(5), 725-732. doi: 10.1016/j.jpha.2022.05.006 PMID: 36320599
- Fu, J.; Jia, Q.; Liang, P.; Wang, S.; Zhou, H.; Zhang, L.; Wang, H.; Gao, C.; Lv, Y.; Han, S.; He, L. Enhanced stability designs of cell membrane chromatography for screening drug leads. J. Sep. Sci., 2022, 45(14), 2498-2507. doi: 10.1002/jssc.202200200 PMID: 35561141
- Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ., 2022, 29(5), 946-960. doi: 10.1038/s41418-022-00988-z PMID: 35361964
- Schafer, K.A. The cell cycle: A review. Vet. Pathol., 1998, 35(6), 461-478. doi: 10.1177/030098589803500601 PMID: 9823588
- Qu, L.; Liu, Y.; Deng, J.; Ma, X.; Fan, D. Ginsenoside Rk3 is a novel PI3K/AKT-targeting therapeutics agent that regulates autophagy and apoptosis in hepatocellular carcinoma. J. Pharm. Anal., 2023, 13(5), 463-482. doi: 10.1016/j.jpha.2023.03.006 PMID: 37305788
- Swanton, C. Cell-cycle targeted therapies. Lancet Oncol., 2004, 5(1), 27-36. doi: 10.1016/S1470-2045(03)01321-4 PMID: 14700606
- Barnaba, N.; LaRocque, J.R. Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma. Cell Cycle, 2021, 20(11), 1041-1051. doi: 10.1080/15384101.2021.1922806 PMID: 33966611
- Bao, Y.; Wu, X.; Jin, X.; Kanematsu, A.; Nojima, M.; Kakehi, Y.; Yamamoto, S. Apigenin inhibits renal cell carcinoma cell proliferation through G2/M phase cell cycle arrest. Oncol. Rep., 2022, 47(3), 60. doi: 10.3892/or.2022.8271 PMID: 35088891
- Yao, G.; Qi, M.; Ji, X.; Fan, S.; Xu, L.; Hayashi, T.; Tashiro, S.; Onodera, S.; Ikejima, T. ATMp53 pathway causes G2/M arrest, but represses apoptosis in pseudolaric acid B-treated HeLa cells. Arch. Biochem. Biophys., 2014, 558, 51-60. doi: 10.1016/j.abb.2014.05.029 PMID: 24929187
- Oh, E.T.; Kim, H.G.; Kim, C.H.; Lee, J.; Kim, C.; Lee, J.S.; Cho, Y.; Park, H.J. NQO1 regulates cell cycle progression at the G2/M phase. Theranostics, 2023, 13(3), 873-895. doi: 10.7150/thno.77444 PMID: 36793872
- Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411(6835), 342-348. doi: 10.1038/35077213 PMID: 11357141
- Polacheck, W.J.; Zervantonakis, I.K.; Kamm, R.D. Tumor cell migration in complex microenvironments. Cell. Mol. Life Sci., 2013, 70(8), 1335-1356. doi: 10.1007/s00018-012-1115-1 PMID: 22926411
- Karimi, E.; Yu, M.W.; Maritan, S.M.; Perus, L.J.M.; Rezanejad, M.; Sorin, M.; Dankner, M.; Fallah, P.; Doré, S.; Zuo, D.; Fiset, B.; Kloosterman, D.J.; Ramsay, L.; Wei, Y.; Lam, S.; Alsajjan, R.; Watson, I.R.; Roldan Urgoiti, G.; Park, M.; Brandsma, D.; Senger, D.L.; Chan, J.A.; Akkari, L.; Petrecca, K.; Guiot, M.C.; Siegel, P.M.; Quail, D.F.; Walsh, L.A. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature, 2023, 614(7948), 555-563. doi: 10.1038/s41586-022-05680-3 PMID: 36725935
- Yin, L.; Liu, X.; Shao, X.; Feng, T.; Xu, J.; Wang, Q.; Hua, S. The role of exosomes in lung cancer metastasis and clinical applications: an updated review. J. Transl. Med., 2021, 19(1), 312. doi: 10.1186/s12967-021-02985-1 PMID: 34281588
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; Veronesi, G.; Reck, M. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol., 2023, 34(4), 358-376. doi: 10.1016/j.annonc.2022.12.013 PMID: 36669645
- Li, H.J.; Ke, F.Y.; Lin, C.C.; Lu, M.Y.; Kuo, Y.H.; Wang, Y.P.; Liang, K.H.; Lin, S.C.; Chang, Y.H.; Chen, H.Y.; Yang, P.C.; Wu, H.C. ENO1 promotes lung cancer metastasis via HGFR and WNT signalingdriven epithelial-to-mesenchymal transition. Cancer Res., 2021, 81(15), 4094-4109. doi: 10.1158/0008-5472.CAN-20-3543 PMID: 34145039
- Li, Y.; Liu, C.; Zhang, X.; Huang, X.; Liang, S.; Xing, F.; Tian, H. CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β-catenin signalling pathway. Br. J. Cancer, 2022, 126(12), 1684-1694. doi: 10.1038/s41416-022-01747-0 PMID: 35194191
- Gore, A.V.; Swift, M.R.; Cha, Y.R.; Lo, B.; McKinney, M.C.; Li, W.; Castranova, D.; Davis, A.; Mukouyama, Y.; Weinstein, B.M. Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3. Development, 2011, 138(22), 4875-4886. doi: 10.1242/dev.068460 PMID: 22007135
- Li, Z.; Mao, L.; Yu, B.; Liu, H.; Zhang, Q.; Bian, Z.; Zhang, X.; Liao, W.; Sun, S. GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells. J. Pharm. Anal., 2022, 12(2), 339-349. doi: 10.1016/j.jpha.2021.06.007 PMID: 35582406
- Su, J.L.; Yang, P.C.; Shih, J.Y.; Yang, C.Y.; Wei, L.H.; Hsieh, C.Y.; Chou, C.H.; Jeng, Y.M.; Wang, M.Y.; Chang, K.J.; Hung, M.C.; Kuo, M.L. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell, 2006, 9(3), 209-223. doi: 10.1016/j.ccr.2006.02.018 PMID: 16530705
- Guan, L.; Fan, P.; Wang, Y.; Liu, X.; Liu, R.; Ma, W.; Bai, H. Lymphangiogenic responses of lymphatic endothelial cells to steady direct-current electric fields. Cell Adhes. Migr., 2023, 17(1), 1-14. doi: 10.1080/19336918.2023.2271260 PMID: 37889090
- Feng, Y.; Hu, J.; Ma, J.; Feng, K.; Zhang, X.; Yang, S.; Wang, W.; Zhang, J.; Zhang, Y. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur. J. Cancer, 2011, 47(15), 2353-2363. doi: 10.1016/j.ejca.2011.05.006 PMID: 21680174
- Wang, J.; Gong, M.; Fan, X.; Huang, D.; Zhang, J.; Huang, C. Autophagy-related signaling pathways in non-small cell lung cancer. Mol. Cell. Biochem., 2022, 477(2), 385-393. doi: 10.1007/s11010-021-04280-5 PMID: 34757567
- Yangming-Fan Jianjun-Ge, Pentoxifylline prevents restenosis by inhibiting cell proliferation via p38MAPK pathway in rat vein graft model. Cell Transplant., 2022, 31. doi: 10.1177/09636897221122999 PMID: 36066039
- Reddy, D.; Kumavath, R.; Ghosh, P.; Barh, D.; Lanatoside, C. Lanatoside C induces G2/M cell cycle arrest and suppresses cancer cell growth by attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR signaling pathways. Biomolecules, 2019, 9(12), 792. doi: 10.3390/biom9120792 PMID: 31783627
- Tong, J.; Yin, S.; Dong, Y.; Guo, X.; Fan, L.; Ye, M.; Hu, H. Pseudolaric acid B induces caspase-dependent apoptosis and autophagic cell death in prostate cancer cells. Phytother. Res., 2013, 27(6), 885-891. doi: 10.1002/ptr.4808 PMID: 22903438
- Luo, D.; He, F.; Liu, J.; Dong, X.; Fang, M.; Liang, Y.; Chen, M.; Gui, X.; Wang, W.; Zeng, L.; Fan, X.; Wu, Q. Pseudolaric acid B suppresses NSCLC progression through the ROS/AMPK/mTOR/autophagy signalling pathway. Biomed. Pharmacother., 2024, 175, 116614. doi: 10.1016/j.biopha.2024.116614 PMID: 38670047
Supplementary files
