Germacrone: A Multi-targeting Sesquiterpene with Promising Anti-cancer and Chronic Disease Applications


Cite item

Full Text

Abstract

Background:Germacrone, a naturally occurring active compound found in essential oils extracted from medicinal plants within the Zingiberaceae family, has garnered attention for its potential therapeutic applications. Extensive research has highlighted its multi-targeting capabilities, positioning it as a promising treatment for various chronic diseases, including cancer, cardiovascular conditions, and neurodegenerative disorders like Alzheimer's disease.

Objective:This review aims to provide a comprehensive overview of germacrone as a scaffold for developing multi-targeting drugs with therapeutic potential against a range of chronic disorders. The study delves into the molecular mechanisms that underlie the therapeutic effects of germacrone and explores its potential targets, including NF-κB, PI3K/AKT/mTOR, p53, JAK/STAT, caspase, apoptosis, and autophagy induction.

Methods:A systematic review of literature databases was conducted to gather relevant studies on germacrone and its therapeutic applications. The molecular mechanisms and potential targets of germacrone were examined to elucidate its multi-targeting capabilities.

Results:Germacrone exhibits significant potential in the management of chronic diseases, with demonstrated effects on various cellular pathways. The review highlights its impact on NF-κB, PI3K/AKT/mTOR, p53, JAK/STAT, caspase, apoptosis, and autophagy induction, showcasing its versatility in targeting multiple pathways associated with chronic conditions. Germacrone has emerged as a promising candidate for the treatment of diverse chronic diseases. The understanding of its multi-targeting capabilities, coupled with its natural origin, positions it as a valuable scaffold for developing therapeutics.

Conclusion::The exploration of germacrone as a structural framework for multi-targeting drugs offers a potential avenue to enhance efficacy while minimizing potential side effects. Further research and clinical trials are warranted to validate the therapeutic potential of germacrone in diverse medical contexts.

About the authors

Navin Tailor

University Institute of Pharma Sciences, Chandigarh University

Email: info@benthamscience.net

Ajmer Grewal

Department of Pharmaceutical Chemistry,, Guru Gobind Singh College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Geeta Deswal

Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy

Email: info@benthamscience.net

Ashwani Dhingra

Department of Pharmaceutical Sciences,, Global Research Institute of Pharmacy

Email: info@benthamscience.net

References

  1. Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 283-299. doi: 10.1111/j.1440-1681.2011.05648.x PMID: 22118895
  2. Bordoloi, D.; Roy, N.K.; Monisha, J.; Padmavathi, G.; Kunnumakkara, A.B. Multi-targeted agents in cancer cell chemosensitization: what we learnt from curcumin thus far. Recent Patents Anticancer Drug Discov., 2016, 11(1), 67-97. doi: 10.2174/1574892810666151020101706 PMID: 26537958
  3. Gupta, S.C.; Prasad, S.; Kim, J.H.; Patchva, S.; Webb, L.J.; Priyadarsini, I.K.; Aggarwal, B.B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep., 2011, 28(12), 1937-1955. doi: 10.1039/c1np00051a PMID: 21979811
  4. Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 2008, 269(2), 199-225. doi: 10.1016/j.canlet.2008.03.009 PMID: 18479807
  5. Makhoba, X.H.; Viegas, C., Jr; Mosa, R.A.; Viegas, F.P.D.; Pooe, O.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des. Devel. Ther., 2020, 14, 3235-3249. doi: 10.2147/DDDT.S257494 PMID: 32884235
  6. Stoletov, K.; Beatty, P.H.; Lewis, J.D. Novel therapeutic targets for cancer metastasis. Expert Rev. Anticancer Ther., 2020, 20(2), 97-109. doi: 10.1080/14737140.2020.1718496 PMID: 31997674
  7. Šorm, F. Advances in terpene chemistry. Pure Appl. Chem., 1970, 21(2), 263-284. doi: 10.1351/pac197021020263
  8. Takeda, K.; Horibe, I.; Minato, H. Cope rearrangement of some germacrane-type furan sesquiterpenes. Part IV. Preparation of some cyclodeca-cis,trans-diene derivatives and their Cope rearrangements. J. Chem. Soc., Perkin Trans. 1, 1973, I, 2212-2220. doi: 10.1039/p19730002212
  9. Endo, J.; Nagasawa, M. Studies on the essential oil of Asarum caulescens. Yakugaku Zasshi, 1974, 94(12), 1574-1579. doi: 10.1248/yakushi1947.94.12_1574 PMID: 4477187
  10. Hikino, H.; Konno, C.; Nagashima, T.; Kohama, T.; Takemoto, T. Stereoselective epoxidation of germacrone by Cunninghamella blakesleeana. Tetrahedron Lett., 1971, 12(4), 337-340. doi: 10.1016/S0040-4039(01)96435-4
  11. Takeda, K.; Horibe, I.; Minato, H. Preparation of some cis-1,trans-5-germacratriene derivatives. J. Chem. Soc. D, 1971, 2(2), 87-88. doi: 10.1039/c29710000087
  12. Scheffer, J.R.; Boire, B.A. Solution photochemistry. II. The photolysis of isogermacrone. Tetrahedron Lett., 1969, 10(45), 4005-4008. doi: 10.1016/S0040-4039(01)88599-3
  13. Takahashi, T.; Kitamura, K.; Nemoto, H.; Tsuji, J.; Miura, I. A first total synthesis of Germacrone by intramolecular alkylation of protected cyanohydrin. Tetrahedron Lett., 1983, 24(33), 3489-3492. doi: 10.1016/S0040-4039(00)86020-7
  14. Sakui, N.; Kuroyanagi, M.; Ishitobi, Y.; Sato, M.; Ueno, A. Biotransformation of sesquiterpenes by cultured cells of Curcuma zedoaria. Phytochemistry, 1992, 31(1), 143-147. doi: 10.1016/0031-9422(91)83023-E
  15. Asakawa, Y.; Takahashi, H.; Toyota, M. Biotransformation of germacrane-type sesquiterpenoids by Aspergillus niger. Phytochemistry, 1991, 30(12), 3993-3997. doi: 10.1016/0031-9422(91)83451-P
  16. Sakamoto, S.; Tsuchiya, N.; Kuroyanagi, M.; Ueno, A. Biotransformation of germacrone by suspension cultured cells. Phytochemistry, 1994, 35(5), 1215-1219. doi: 10.1016/S0031-9422(00)94823-4
  17. Lou, G.; Huang, Y.; Wang, Y.; Chen, S.; Liu, C.; Li, Y.; Feng, J. Germacrone, a novel and safe anticancer agent from genus Curcuma: A review of its mechanism. Anticancer. Agents Med. Chem., 2023, 23(13), 1490-1498. doi: 10.2174/1871520623666230420094628 PMID: 37139672
  18. Hashem, S.; Nisar, S.; Sageena, G.; Macha, M.A.; Yadav, S.K.; Krishnankutty, R.; Uddin, S.; Haris, M.; Bhat, A.A. Therapeutic effects of curcumol in several diseases; an overview. Nutr. Cancer, 2021, 73(2), 181-195. doi: 10.1080/01635581.2020.1749676 PMID: 32285707
  19. Oh, S.; Han, A.R.; Park, H.R.; Jang, E.J.; Kim, H.K.; Jeong, M.G.; Song, H.; Park, G.H.; Seo, E.K.; Hwang, E.S. Suppression of Inflammatory cytokine production by ar-Turmerone isolated from Curcuma phaeocaulis. Chem. Biodivers., 2014, 11(7), 1034-1041. doi: 10.1002/cbdv.201300397 PMID: 25044589
  20. Feng, J.; Bai, X.; Cui, T.; Zhou, H.; Chen, Y.; Xie, J.; Shi, Q.; Wang, H.; Zhang, G. in vitro antiviral activity of germacrone against porcine reproductive and respiratory syndrome virus. Curr. Microbiol., 2016, 73(3), 317-323. doi: 10.1007/s00284-016-1042-8 PMID: 27178541
  21. He, W.; Zhai, X.; Su, J.; Ye, R.; Zheng, Y.; Su, S. Antiviral activity of germacrone against pseudorabies virus in vitro. Pathogens, 2019, 8(4), 258. doi: 10.3390/pathogens8040258 PMID: 31766701
  22. Burapan, S.; Kim, M.; Paisooksantivatana, Y.; Eser, B.E.; Han, J. Thai Curcuma species: Antioxidant and bioactive compounds. Foods, 2020, 9(9), 1219. doi: 10.3390/foods9091219 PMID: 32887356
  23. Suphrom, N.; Pumthong, G.; Khorana, N.; Waranuch, N.; Limpeanchob, N.; Ingkaninan, K. Anti-androgenic effect of sesquiterpenes isolated from the rhizomes of Curcuma aeruginosa Roxb. Fitoterapia, 2012, 83(5), 864-871. doi: 10.1016/j.fitote.2012.03.017 PMID: 22465508
  24. Chen, Y.; Dong, Y.; Jiao, Y.; Hou, L.; Shi, Y.; Gu, T.; Zhou, P.; Shi, Z.; Xu, L.; Wang, C. In vitro antiviral activity of germacrone against porcine parvovirus. Arch. Virol., 2015, 160(6), 1415-1420. doi: 10.1007/s00705-015-2393-3 PMID: 25813663
  25. Wu, T.; Yin, F.; Kong, H.; Peng, J. Germacrone attenuates cerebral ischemia/reperfusion injury in rats via antioxidative and antiapoptotic mechanisms. J. Cell. Biochem., 2019, 120(11), 18901-18909. doi: 10.1002/jcb.29210 PMID: 31318092
  26. Zhang, R.; Tian, A.; Shi, X.; Yu, H.; Chen, L. Downregulation of IL-17 and IFN-γ in the optic nerve by β-elemene in experimental autoimmune encephalomyelitis. Int. Immunopharmacol., 2010, 10(7), 738-743. doi: 10.1016/j.intimp.2010.04.003 PMID: 20399285
  27. Kubrak, M.N.; Nguyen, T.N.T.; Nguyen, M.P. Study of the composition of essential oil of two species of Dracocephalum, Labiatae. Biologicheskie i Khimicheskie Nauki, 1978 1978, 24-28.; b) Zhang, G.; Ling, J.; Cui, Z. Supercritical CO2 extraction of essential oil from Dracocephalum tanguticum Maxim and analysis by GC-MS. J. Liq. Chromatogr. Relat. Technol., 2007, 30(2), 287-292. doi: 10.1080/10826070601064607; c) Ahmadi, L.; Mirza, M. . Volatile constituents of Dracocephalum aucheri Boiss. J. Essent. Oil Res., , 2001, 13(4), 202-203.; d) Barrero,, A.F.; Herrador, M.M.; Arteaga, P. Germacrone: Occurrence, synthesis, chemical transformations and biological properties. Nat. Prod. Commun., , 2007, 30(2), 287-292. doi: 10.1080/10826070601064607
  28. a) Kuroyanagi, M.; Ueno, A.; Ujiie, K.; Sato, S. Structures of sesquiterpenes from Curcuma aromatica Salisb. Chem. Pharm. Bull. , 1987, 35(1), 53-59. doi: 10.1248/cpb.35.53; b) Choudhury, S.N.; Ghosh, A.C.; Saikia, M.; Choudhury, M.; Leclercq, P.A. Volatile constituents of the aerial and underground parts of Curcuma aromatica Salisb. from India. J. Essent. Oil Res., 1996, 8(6), 633-638. doi: 10.1080/10412905.1996.9701031
  29. a) Doss, R.P.; Hatheway, W.H.; Hrutfiord, B.F. Composition of essential oils of some lipidote Rhododendrons. Phytochemistry, 1986, 25(7), 1637-1640. doi: 10.1016/S0031-9422(00)81225-X; b) Doss, R.P.; Luthi, R.; Hrutfiord, B.F. Germacrone, a sesquiterpene repellent to obscure root weevil from Rhododendron edgeworthii. Phytochemistry, 1980, 19(11), 2379-2380. doi: 10.1016/S0031-9422(00)91031-8; c) Lu, Y.; Wang, Y.; Bai, Y. Study on the chemical composition of the essential oil of Rhododendron anthopogonoides Maxim. Huaxue Xuebao, 1980, 38, 140-148.
  30. a) Bordoloi, A.K.; Sperkova, J.; Leclercq, P.A. Essential oils of Zingiber cassumunar Roxb. from northeast India. J. Essent. Oil Res., 1999, 11, 441-445.; b) Srivastava, A.K.; Srivastava, S.K.; Shah, N.C. Essential oil of Zingiber zarumbet (L.) Sm. from India. J. Essent. Oil Res., 2000, 12, 595-597. doi: 10.1016/S0031-9422(00)91031-8
  31. Hossain, C.F.; Al-Amin, M.; Sayem, A.S.M.; Siragee, I.H.; Tunan, A.M.; Hassan, F.; Kabir, M.M.; Sultana, G.N.N. Antinociceptive principle from Curcuma aeruginosa. BMC Complement. Altern. Med., 2015, 15(1), 191. doi: 10.1186/s12906-015-0720-6 PMID: 26092132
  32. Cardoso, F.; Harbeck, N.; Fallowfield, L.; Kyriakides, S.; Senkus, E. Locally recurrent or metastatic breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2012, 23(Suppl. 7), vii11-vii19. doi: 10.1093/annonc/mds232 PMID: 22997442
  33. Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol., 2022, 95(1130), 20211033. doi: 10.1259/bjr.20211033 PMID: 34905391
  34. Song, A.; Yin, Y. A brief summary of recent research and application of Ezhu essential oil in tumor therapy. J. Shandong University TCM., 2008, 32, 172-174.
  35. Xie, X.H.; Zhao, H.; Hu, Y.Y.; Gu, X.D. Germacrone reverses Adriamycin resistance through cell apoptosis in multidrug-resistant breast cancer cells. Exp. Ther. Med., 2014, 8(5), 1611-1615. doi: 10.3892/etm.2014.1932 PMID: 25289068
  36. Zhong, Z.; Chen, X.; Tan, W.; Xu, Z.; Zhou, K.; Wu, T.; Cui, L.; Wang, Y. Germacrone inhibits the proliferation of breast cancer cell lines by inducing cell cycle arrest and promoting apoptosis. Eur. J. Pharmacol., 2011, 667(1-3), 50-55. doi: 10.1016/j.ejphar.2011.03.041 PMID: 21497161
  37. Khan, M.Z.I.; Uzair, M.; Nazli, A.; Chen, J.Z. An overview on Estrogen receptors signaling and its ligands in breast cancer. Eur. J. Med. Chem., 2022, 241, 114658. doi: 10.1016/j.ejmech.2022.114658 PMID: 35964426
  38. Shastry, M.; Hamilton, E. Novel estrogen receptor-targeted agents for breast cancer. Curr. Treat. Options Oncol., 2023, 24(7), 821-844. doi: 10.1007/s11864-023-01079-y PMID: 37129836
  39. Das, A.; Lavanya, K.J. Nandini; Kaur, K.; Jaitak, V. Effectiveness of selective estrogen receptor modulators in breast cancer therapy: An update. Curr. Med. Chem., 2023, 30(29), 3287-3314. doi: 10.2174/0929867329666221006110528 PMID: 36201273
  40. Lim, M.S.; Choung, S.Y.; Jeong, K.W. Germacrone inhibits estrogen receptor α‐mediated transcription in MCF‐7 breast cancer cells. Phytother. Res., 2016, 30(12), 2036-2043. doi: 10.1002/ptr.5711 PMID: 27573551
  41. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  42. Abu Rous, F.; Singhi, E.K.; Sridhar, A.; Faisal, M.S.; Desai, A. Lung cancer treatment advances in 2022. Cancer Invest., 2023, 41(1), 12-24. doi: 10.1080/07357907.2022.2119479 PMID: 36036470
  43. Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo e Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P.; Bouzbid, S.; Hamdi-Chérif, M.; Zaidi, Z.; Meguenni, K.; Regagba, D.; Bayo, S.; Cheick Bougadari, T.; Manraj, S.S.; Bendahhou, K.; Fabowale, A.; Bradshaw, D.; Somdyala, N.I.M.; Kumcher, I.; Moreno, F.; Calabrano, G.H.; Espinola, S.B.; Carballo Quintero, B.; Fita, R.; Diumenjo, M.C.; Laspada, W.D.; Ibañez, S.G.; Lima, C.A.; De Souza, P.C.F.; Del Pino, K.; Laporte, C.; Curado, M.P.; de Oliveira, J.C.; Veneziano, C.L.A.; Veneziano, D.B.; Latorre, M.R.D.O.; Tanaka, L.F.; Rebelo, M.S.; Santos, M.O.; Galaz, J.C.; Aparicio Aravena, M.; Sanhueza Monsalve, J.; Herrmann, D.A.; Vargas, S.; Herrera, V.M.; Uribe, C.J.; Bravo, L.E.; Garcia, L.S.; Arias-Ortiz, N.E.; Morantes, D.; Jurado, D.M.; Yépez Chamorro, M.C.; Delgado, S.; Ramirez, M.; Galán Alvarez, Y.H.; Torres, P.; Martínez-Reyes, F.; Jaramillo, L.; Quinto, R.; Castillo, J.; Mendoza, M.; Cueva, P.; Yépez, J.G.; Bhakkan, B.; Deloumeaux, J.; Joachim, C.; Macni, J.; Carrillo, R.; Shalkow Klincovstein, J.; Rivera Gomez, R.; Poquioma, E.; Tortolero-Luna, G.; Zavala, D.; Alonso, R.; Barrios, E.; Eckstrand, A.; Nikiforuk, C.; Noonan, G.; Turner, D.; Kumar, E.; Zhang, B.; McCrate, F.R.; Ryan, S.; MacIntyre, M.; Saint-Jacques, N.; Nishri, D.E.; McClure, C.A.; Vriends, K.A.; Kozie, S.; Stuart-Panko, H.; Freeman, T.; George, J.T.; Brockhouse, J.T.; O’Brien, D.K.; Holt, A.; Almon, L.; Kwong, S.; Morris, C.; Rycroft, R.; Mueller, L.; Phillips, C.E.; Brown, H.; Cromartie, B.; Schwartz, A.G.; Vigneau, F.; Levin, G.M.; Wohler, B.; Bayakly, R.; Ward, K.C.; Gomez, S.L.; McKinley, M.; Cress, R.; Green, M.D.; Miyagi, K.; Ruppert, L.P.; Lynch, C.F.; Huang, B.; Tucker, T.C.; Deapen, D.; Liu, L.; Hsieh, M.C.; Wu, X.C.; Schwenn, M.; Gershman, S.T.; Knowlton, R.C.; Alverson, G.; Copeland, G.E.; Bushhouse, S.; Rogers, D.B.; Jackson-Thompson, J.; Lemons, D.; Zimmerman, H.J.; Hood, M.; Roberts-Johnson, J.; Rees, J.R.; Riddle, B.; Pawlish, K.S.; Stroup, A.; Key, C.; Wiggins, C.; Kahn, A.R.; Schymura, M.J.; Radhakrishnan, S.; Rao, C.; Giljahn, L.K.; Slocumb, R.M.; Espinoza, R.E.; Khan, F.; Aird, K.G.; Beran, T.; Rubertone, J.J.; Slack, S.J.; Garcia, L.; Rousseau, D.L.; Janes, T.A.; Schwartz, S.M.; Bolick, S.W.; Hurley, D.M.; Whiteside, M.A.; Miller-Gianturco, P.; Williams, M.A.; Herget, K.; Sweeney, C.; Johnson, A.T.; Keitheri Cheteri, M.B.; Migliore Santiago, P.; Blankenship, S.E.; Farley, S.; Borchers, R.; Malicki, R.; Espinoza, J.R.; Grandpre, J.; Wilson, R.; Edwards, B.K.; Mariotto, A.; Lei, Y.; Wang, N.; Chen, J.S.; Zhou, Y.; He, Y.T.; Song, G.H.; Gu, X.P.; Mei, D.; Mu, H.J.; Ge, H.M.; Wu, T.H.; Li, Y.Y.; Zhao, D.L.; Jin, F.; Zhang, J.H.; Zhu, F.D.; Junhua, Q.; Yang, Y.L.; Jiang, C.X.; Biao, W.; Wang, J.; Li, Q.L.; Yi, H.; Zhou, X.; Dong, J.; Li, W.; Fu, F.X.; Liu, S.Z.; Chen, J.G.; Zhu, J.; Li, Y.H.; Lu, Y.Q.; Fan, M.; Huang, S.Q.; Guo, G.P.; Zhaolai, H.; Wei, K.; Zeng, H.; Demetriou, A.V.; Mang, W.K.; Ngan, K.C.; Kataki, A.C.; Krishnatreya, M.; Jayalekshmi, P.A.; Sebastian, P.; Nandakumar, A.; Malekzadeh, R.; Roshandel, G.; Keinan-Boker, L.; Silverman, B.G.; Ito, H.; Nakagawa, H.; Sato, M.; Tobori, F.; Nakata, I.; Teramoto, N.; Hattori, M.; Kaizaki, Y.; Moki, F.; Sugiyama, H.; Utada, M.; Nishimura, M.; Yoshida, K.; Kurosawa, K.; Nemoto, Y.; Narimatsu, H.; Sakaguchi, M.; Kanemura, S.; Naito, M.; Narisawa, R.; Miyashiro, I.; Nakata, K.; Sato, S.; Yoshii, M.; Oki, I.; Fukushima, N.; Shibata, A.; Iwasa, K.; Ono, C.; Nimri, O.; Jung, K.W.; Won, Y.J.; Alawadhi, E.; Elbasmi, A.; Ab Manan, A.; Adam, F.; Sanjaajmats, E.; Tudev, U.; Ochir, C.; Al Khater, A.M.; El Mistiri, M.M.; Teo, Y.Y.; Chiang, C.J.; Lee, W.C.; Buasom, R.; Sangrajrang, S.; Kamsa-ard, S.; Wiangnon, S.; Daoprasert, K.; Pongnikorn, D.; Leklob, A.; Sangkitipaiboon, S.; Geater, S.L.; Sriplung, H.; Ceylan, O.; Kög, I.; Dirican, O.; Köse, T.; Gurbuz, T.; Karaşahin, F.E.; Turhan, D.; Aktaş, U.; Halat, Y.; Yakut, C.I.; Altinisik, M.; Cavusoglu, Y.; Türkköylü, A.; Üçüncü, N.; Hackl, M.; Zborovskaya, A.A.; Aleinikova, O.V.; Henau, K.; Van Eycken, L.; Valerianova, Z.; Yordanova, M.R.; Šekerija, M.; Dušek, L.; Zvolský, M.; Storm, H.; Innos, K.; Mägi, M.; Malila, N.; Seppä, K.; Jégu, J.; Velten, M.; Cornet, E.; Troussard, X.; Bouvier, A.M.; Guizard, A.V.; Bouvier, V.; Launoy, G.; Arveux, P.; Maynadié, M.; Mounier, M.; Woronoff, A.S.; Daoulas, M.; Robaszkiewicz, M.; Clavel, J.; Goujon, S.; Lacour, B.; Baldi, I.; Pouchieu, C.; Amadeo, B.; Coureau, G.; Orazio, S.; Preux, P.M.; Rharbaoui, F.; Marrer, E.; Trétarre, B.; Colonna, M.; Delafosse, P.; Ligier, K.; Plouvier, S.; Cowppli-Bony, A.; Molinié, F.; Bara, S.; Ganry, O.; Lapôtre-Ledoux, B.; Grosclaude, P.; Bossard, N.; Uhry, Z.; Bray, F.; Piñeros, M.; Stabenow, R.; Wilsdorf-Köhler, H.; Eberle, A.; Luttmann, S.; Löhden, I.; Nennecke, A.L.; Kieschke, J.; Sirri, E.; Emrich, K.; Zeissig, S.R.; Holleczek, B.; Eisemann, N.; Katalinic, A.; Asquez, R.A.; Kumar, V.; Petridou, E.; Ólafsdóttir, E.J.; Tryggvadóttir, L.; Clough-Gorr, K.; Walsh, P.M.; Sundseth, H.; Mazzoleni, G.; Vittadello, F.; Coviello, E.; Cuccaro, F.; Galasso, R.; Sampietro, G.; Giacomin, A.; Magoni, M.; Ardizzone, A.; D’Argenzio, A.; Castaing, M.; Grosso, G.; Lavecchia, A.M.; Sutera Sardo, A.; Gola, G.; Gatti, L.; Ricci, P.; Ferretti, S.; Serraino, D.; Zucchetto, A.; Celesia, M.V.; Filiberti, R.A.; Pannozzo, F.; Melcarne, A.; Quarta, F.; Russo, A.G.; Carrozzi, G.; Cirilli, C.; Cavalieri d’Oro, L.; Rognoni, M.; Fusco, M.; Vitale, M.F.; Usala, M.; Cusimano, R.; Mazzucco, W.; Michiara, M.; Sgargi, P.; Boschetti, L.; Borciani, E.; Seghini, P.; Maule, M.M.; Merletti, F.; Tumino, R.; Mancuso, P.; Vicentini, M.; Cassetti, T.; Sassatelli, R.; Falcini, F.; Giorgetti, S.; Caiazzo, A.L.; Cavallo, R.; Cesaraccio, R.; Pirino, D.R.; Contrino, M.L.; Tisano, F.; Fanetti, A.C.; Maspero, S.; Carone, S.; Mincuzzi, A.; Candela, G.; Scuderi, T.; Gentilini, M.A.; Piffer, S.; Rosso, S.; Barchielli, A.; Caldarella, A.; Bianconi, F.; Stracci, F.; Contiero, P.; Tagliabue, G.; Rugge, M.; Zorzi, M.; Beggiato, S.; Brustolin, A.; Berrino, F.; Gatta, G.; Sant, M.; Buzzoni, C.; Mangone, L.; Capocaccia, R.; De Angelis, R.; Zanetti, R.; Maurina, A.; Pildava, S.; Lipunova, N.; Vincerževskiené, I.; Agius, D.; Calleja, N.; Siesling, S.; Larønningen, S.; Møller, B.; Dyzmann-Sroka, A.; Trojanowski, M.; Góźdź, S.; Mężyk, R.; Mierzwa, T.; Molong, L.; Rachtan, J.; Szewczyk, S.; Błaszczyk, J.; Kępska, K.; Kościańska, B.; Tarocińska, K.; Zwierko, M.; Drosik, K.; Maksimowicz, K.M.; Purwin-Porowska, E.; Reca, E.; Wójcik-Tomaszewska, J.; Tukiendorf, A.; Grądalska-Lampart, M.; Radziszewska, A.U.; Gos, A.; Talerczyk, M.; Wyborska, M.; Didkowska, J.A.; Wojciechowska, U.; Bielska-Lasota, M.; Forjaz de Lacerda, G.; Rego, R.A.; Bastos, J.; Silva, M.A.; Antunes, L.; Laranja Pontes, J.; Mayer-da-Silva, A.; Miranda, A.; Blaga, L.M.; Coza, D.; Gusenkova, L.; Lazarevich, O.; Prudnikova, O.; Vjushkov, D.M.; Egorova, A.G.; Orlov, A.E.; Kudyakov, L.A.; Pikalova, L.V.; Adamcik, J.; Safaei Diba, C.; Primic-Žakelj, M.; Zadnik, V.; Larrañaga, N.; Lopez de Munain, A.; Herrera, A.A.; Redondas, R.; Marcos-Gragera, R.; Vilardell Gil, M.L.; Molina, E.; Sánchez Perez, M.J.; Franch Sureda, P.; Ramos Montserrat, M.; Chirlaque, M.D.; Navarro, C.; Ardanaz, E.E.; Guevara, M.M.; Fernández-Delgado, R.; Peris-Bonet, R.; Carulla, M.; Galceran, J.; Alberich, C.; Vicente-Raneda, M.; Khan, S.; Pettersson, D.; Dickman, P.; Avelina, I.; Staehelin, K.; Camey, B.; Bouchardy, C.; Schaffar, R.; Frick, H.; Herrmann, C.; Bulliard, J.L.; Maspoli-Conconi, M.; Kuehni, C.E.; Redmond, S.M.; Bordoni, A.; Ortelli, L.; Chiolero, A.; Konzelmann, I.; Matthes, K.L.; Rohrmann, S.; Broggio, J.; Rashbass, J.; Fitzpatrick, D.; Gavin, A.; Clark, D.I.; Deas, A.J.; Huws, D.W.; White, C.; Montel, L.; Rachet, B.; Turculet, A.D.; Stephens, R.; Chalker, E.; Phung, H.; Walton, R.; You, H.; Guthridge, S.; Johnson, F.; Gordon, P.; D’Onise, K.; Priest, K.; Stokes, B.C.; Venn, A.; Farrugia, H.; Thursfield, V.; Dowling, J.; Currow, D.; Hendrix, J.; Lewis, C. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075. doi: 10.1016/S0140-6736(17)33326-3 PMID: 29395269
  44. Nan, Y.; Su, H.; Zhou, B.; Liu, S. The function of natural compounds in important anticancer mechanisms. Front. Oncol., , 2023, 12, 1049888, 12, 1049888.. doi: 10.3389/fonc.2022.1049888 PMID: 36686745
  45. Collins, L.G.; Haines, C.; Perkel, R.; Enck, R.E. Lung cancer: diagnosis and management. Am. Fam. Physician, 2007, 75(1), 56-63.
  46. Zhao, Y.; Cai, J.; Shi, K.; Li, H.; Du, J.; Hu, D.; Liu, Z.; Wang, W. Germacrone induces lung cancer cell apoptosis and cell cycle arrest via the Akt/MDM2/p53 signaling pathway. Mol. Med. Rep., 2021, 23(6), 452. doi: 10.3892/mmr.2021.12091 PMID: 33880579
  47. Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188314. doi: 10.1016/j.bbcan.2019.188314 PMID: 31682895
  48. Rumgay, H.; Ferlay, J.; de Martel, C.; Georges, D.; Ibrahim, A.S.; Zheng, R.; Wei, W.; Lemmens, V.E.P.P.; Soerjomataram, I. Global, regional and national burden of primary liver cancer by subtype. Eur. J. Cancer, 2022, 161, 108-118. doi: 10.1016/j.ejca.2021.11.023 PMID: 34942552
  49. Liu, Y.; Wang, W.; Fang, B.; Ma, F.; Zheng, Q.; Deng, P.; Zhao, S.; Chen, M.; Yang, G.; He, G. Anti-tumor effect of germacrone on human hepatoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Eur. J. Pharmacol., 2013, 698(1-3), 95-102. doi: 10.1016/j.ejphar.2012.10.013 PMID: 23117090
  50. Li, Z.; Wang, Z.; Dong, F.; Shi, W.; Dai, W.; Zhao, J.; Li, Q.; Fang, Z.; Ren, L.; Liu, T.; Wei, Z.; Mou, W.; Lin, L.; Yang, Y.; Xiao, X.; Ma, L.; Bai, Z. Germacrone attenuates hepatic stellate cells activation and liver fibrosis via regulating multiple signaling pathways. Front. Pharmacol., 2021, 12, 745561. doi: 10.3389/fphar.2021.745561 PMID: 34675811
  51. Sun, X.; Zhong, X.; Ma, W.; Feng, W.; Huang, Q.; Ma, M.; Lv, M.; Hu, R.; Han, Z.; Li, J.; Zhou, X. Germacrone induces caspase 3/GSDME activation and enhances ROS production, causing HepG2 pyroptosis. Exp. Ther. Med., 2022, 24(1), 456. doi: 10.3892/etm.2022.11383 PMID: 35747157
  52. Tuli, H.S.; Kaur, J.; Vashishth, K.; Sak, K.; Sharma, U.; Choudhary, R.; Behl, T.; Singh, T.; Sharma, S.; Saini, A.K.; Dhama, K.; Varol, M.; Sethi, G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch. Toxicol., 2023, 97(1), 103-120. doi: 10.1007/s00204-022-03421-z PMID: 36443493
  53. Wu, J.; Feng, Y.; Han, C.; Huang, W.; Shen, Z.; Yang, M.; Chen, W.; Ye, L. Germacrone derivatives: synthesis, biological activity, molecular docking studies and molecular dynamics simulations. Oncotarget, 2017, 8(9), 15149-15158. doi: 10.18632/oncotarget.14832 PMID: 28148897
  54. Ye, L.; Wu, J.; Chen, W.; Feng, Y.; Shen, Z. Novel anti-cancer agents based on germacrone: Design, synthesis, biological activity, docking studies and MD simulations. RSC Advances, 2017, 7(7), 3760-3767. doi: 10.1039/C6RA26944C
  55. Chen, C.; Xie, L.; Ren, T.; Huang, Y.; Xu, J.; Guo, W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett., 2021, 500, 1-10. doi: 10.1016/j.canlet.2020.12.024 PMID: 33359211
  56. Cersosimo, F.; Lonardi, S.; Bernardini, G.; Telfer, B.; Mandelli, G.E.; Santucci, A.; Vermi, W.; Giurisato, E. Tumor-associated macrophages in osteosarcoma: From mechanisms to therapy. Int. J. Mol. Sci., 2020, 21(15), 5207. doi: 10.3390/ijms21155207 PMID: 32717819
  57. Li, E.; Gao, Y.; Mou, L.; Zhang, Z. Anticancer activity of Germacrone terpenoid in human osteosarcoma cells is mediated via autophagy induction, cell cycle disruption, downregulating the cell cycle regulatory protein expressions and cell migration inhibition. Acta Biochim. Pol., 2022, 69(2), 305-308. doi: 10.18388/abp.2020_5712 PMID: 35468267
  58. Harada, K.; Rogers, J.E.; Iwatsuki, M.; Yamashita, K.; Baba, H.; Ajani, J.A. Recent advances in treating oesophageal cancer. F1000 Res., 2020, 1, 9.
  59. Bolger, J.C.; Donohoe, C.L.; Lowery, M.; Reynolds, J.V. Advances in the curative management of oesophageal cancer. Br. J. Cancer, 2022, 126(5), 706-717. doi: 10.1038/s41416-021-01485-9 PMID: 34675397
  60. Huang, H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors (Basel), 2018, 18(10), 3249. doi: 10.3390/s18103249 PMID: 30262739
  61. Zhang, R.; Hao, J.; Guo, K.; Liu, W.; Yao, F.; Wu, Q.; Liu, C.; Wang, Q.; Yang, X. Germacrone inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cells. BioMed Res. Int., 2020, 2020, 1-13. doi: 10.1155/2020/7643248 PMID: 32071920
  62. Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis., 2017, 9(3), 448-451. doi: 10.21037/jtd.2017.02.75 PMID: 28449441
  63. Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Gastric cancer. Lancet, 2020, 396(10251), 635-648. doi: 10.1016/S0140-6736(20)31288-5 PMID: 32861308
  64. McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013, 5(4), a008656. doi: 10.1101/cshperspect.a008656 PMID: 23545416
  65. Wu, L.; Wang, L.; Tian, X.; Zhang, J.; Feng, H. Germacrone exerts anti-cancer effects on gastric cancer through induction of cell cycle arrest and promotion of apoptosis. BMC Complementary Medicine and Therapies, 2020, 20(1), 21. doi: 10.1186/s12906-019-2810-3 PMID: 32020876
  66. Fang, X.; Tan, T.; Gao, B.; Zhao, Y.; Liu, T.; Xia, Q. Germacrone regulates hbxip-mediated cell cycle, apoptosis and promotes the formation of autophagosomes to inhibit the proliferation of gastric cancer cells. Front. Oncol., 2020, 10, 537322.
  67. Schatten, H. Brief overview of prostate cancer statistics, grading, Diagnosis and treatment strategies. Adv. Exp. Med. Biol., 2018, 1095, 1-14. doi: 10.1007/978-3-319-95693-0_1 PMID: 30229546
  68. Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol., 2014, 4, 64. doi: 10.3389/fonc.2014.00064 PMID: 24782981
  69. LoRusso, P.M. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J. Clin. Oncol., 2016, 34(31), 3803-3815. doi: 10.1200/JCO.2014.59.0018 PMID: 27621407
  70. Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26. doi: 10.1186/s12943-019-0954-x PMID: 30782187
  71. Wadosky, K.M.; Koochekpour, S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget, 2016, 7(39), 64447-64470. doi: 10.18632/oncotarget.10901 PMID: 27487144
  72. Yu, Z.; Xu, J.; Shao, M.; Zou, J. Germacrone induces apoptosis as well as protective autophagy in human prostate cancer cells. Cancer Manag. Res., 2020, 12, 4009-4016. doi: 10.2147/CMAR.S250522 PMID: 32547235
  73. Borrescio-Higa, F.; Valdés, N. The psychosocial burden of families with childhood blood cancer. Int. J. Environ. Res. Public Health, 2022, 19(1), 599. doi: 10.3390/ijerph19010599 PMID: 35010854
  74. Li, W.; Wang, F.; Guo, R.; Bian, Z.; Song, Y. Targeting macrophages in hematological malignancies: Recent advances and future directions. J. Hematol. Oncol., 2022, 15(1), 110. doi: 10.1186/s13045-022-01328-x PMID: 35978372
  75. Braconi, L.; Teodori, E.; Riganti, C.; Coronnello, M.; Nocentini, A.; Bartolucci, G.; Pallecchi, M.; Contino, M.; Manetti, D.; Romanelli, M.N.; Supuran, C.T.; Dei, S. New dual P-glycoprotein (P-gp) and human carbonic anhydrase XII (hCA XII) inhibitors as multidrug resistance (MDR) reversers in cancer cells. J. Med. Chem., 2022, 65(21), 14655-14672. doi: 10.1021/acs.jmedchem.2c01175 PMID: 36269278
  76. Azzariti, A.; Porcelli, L.; Elisa Quatrale, A.; Silvestris, N.; Paradiso, A. The coordinated role of CYP450 enzymes and P-gp in determining cancer resistance to chemotherapy. Curr. Drug Metab., 2011, 12(8), 713-721. doi: 10.2174/138920011798357042 PMID: 21434858
  77. Pan, J.; Miao, D.; Chen, L. Germacrone reverses adriamycin resistance in human chronic myelogenous leukemia K562/ADM cells by suppressing MDR1 gene/P-glycoprotein expression. Chem. Biol. Interact., 2018, 288, 32-37. doi: 10.1016/j.cbi.2018.04.012 PMID: 29655913
  78. Gisina, A.; Kholodenko, I.; Kim, Y.; Abakumov, M.; Lupatov, A.; Yarygin, K. Glioma stem cells: Novel data obtained by single-cell sequencing. Int. J. Mol. Sci., 2022, 23(22), 14224. doi: 10.3390/ijms232214224 PMID: 36430704
  79. Liu, B.O.; Gao, Y.U.E.Q.I.U.; Wang, X.M.; Wang, Y.C.; Fu, L.I.Q.I. Germacrone inhibits the proliferation of glioma cells by promoting apoptosis and inducing cell cycle arrest. Mol. Med. Rep., 2014, 10(2), 1046-1050. doi: 10.3892/mmr.2014.2290 PMID: 24889088
  80. Kamat, P.K.; Rai, S.; Nath, C. Okadaic acid induced neurotoxicity: An emerging tool to study Alzheimer’s disease pathology. Neurotoxicology, 2013, 37, 163-172. doi: 10.1016/j.neuro.2013.05.002 PMID: 23688530
  81. Çakır, M.; Yüksel, F.; Mustafa Özkut, M.; Durhan, M.; Kaymak, E.; Tekin, S.; Çiğremiş, Y. Neuroprotective effect of transient receptor potential Vanilloid 1 agonist capsaicin in Alzheimer’s disease model induced with okadaic acid. Int. Immunopharmacol., 2023, 118, 109925. doi: 10.1016/j.intimp.2023.109925 PMID: 37011502
  82. Lin, M.; Li, P.; Liu, W.; Niu, T.; Huang, L. Germacrone alleviates okadaic acid-induced neurotoxicity in PC12 cells via M1 muscarinic receptor-mediated Galphaq (Gq)/phospholipase C beta (PLCβ)/protein kinase C (PKC) signaling. Bioengineered, 2022, 13(3), 4898-4910. doi: 10.1080/21655979.2022.2036918 PMID: 35156515
  83. Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 2020, 25(22), 5474. doi: 10.3390/molecules25225474 PMID: 33238435
  84. El-Shitany, N.A.; Eid, B.G. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways. Biomed. Pharmacother., 2019, 120, 109567. doi: 10.1016/j.biopha.2019.109567 PMID: 31670031
  85. Zhuang, S.; Liu, B.; Guo, S.; Xue, Y.; Wu, L.; Liu, S.; Zhang, C.; Ni, X. Germacrone alleviates neurological deficits following traumatic brain injury by modulating neuroinflammation and oxidative stress. BMC Comple. Med. Therap., 2021, 21(1), 6. doi: 10.1186/s12906-020-03175-0 PMID: 33402180
  86. Malik Peiris, J.S.; Poon, L.L.M.; Guan, Y. Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. J. Clin. Virol., 2009, 45(3), 169-173. doi: 10.1016/j.jcv.2009.06.006 PMID: 19540800
  87. Molinari, N.A.M.; Ortega-Sanchez, I.R.; Messonnier, M.L.; Thompson, W.W.; Wortley, P.M.; Weintraub, E.; Bridges, C.B. The annual impact of seasonal influenza in the US: Measuring disease burden and costs. Vaccine, 2007, 25(27), 5086-5096. doi: 10.1016/j.vaccine.2007.03.046 PMID: 17544181
  88. Rothberg, M.B.; Haessler, S.D.; Brown, R.B. Complications of viral influenza. Am. J. Med., 2008, 121(4), 258-264. doi: 10.1016/j.amjmed.2007.10.040 PMID: 18374680
  89. Liao, Q.; Qian, Z.; Liu, R.; An, L.; Chen, X. Germacrone inhibits early stages of influenza virus infection. Antiviral Res., 2013, 100(3), 578-588. doi: 10.1016/j.antiviral.2013.09.021 PMID: 24095670
  90. Berger, A. Science commentary: Th1 and Th2 responses: What are they? BMJ, 2000, 321(7258), 424. doi: 10.1136/bmj.321.7258.424 PMID: 10938051
  91. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023. doi: 10.1038/sigtrans.2017.23 PMID: 29158945
  92. Shi, S.; Chen, Y.; Luo, Z.; Nie, G.; Dai, Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun. Signal., 2023, 21(1), 61. doi: 10.1186/s12964-023-01077-5 PMID: 36918950
  93. Chen, Y.; Fang, Z.M.; Yi, X.; Wei, X.; Jiang, D.S. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis., 2023, 14(3), 205. doi: 10.1038/s41419-023-05716-0 PMID: 36944609
  94. Wang, Z.; Zhuo, F.; Chu, P.; Yang, X.; Zhao, G. Germacrone alleviates collagen-induced arthritis via regulating Th1/Th2 balance and NF-κB activation. Biochem. Biophys. Res. Commun., 2019, 518(3), 560-564. doi: 10.1016/j.bbrc.2019.08.084 PMID: 31451221
  95. Chellappan, D.K.; Yap, W.S.; Bt Ahmad Suhaimi, N.A.; Gupta, G.; Dua, K. Current therapies and targets for type 2 diabetes mellitus. Panminerva Med., 2018, 60(3), 117-131. doi: 10.23736/S0031-0808.18.03455-9 PMID: 29696964
  96. Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol., 2017, 45, 31-37. doi: 10.1016/j.ceb.2017.01.005 PMID: 28232179
  97. Sun, Y.; Li, L.; Wu, J.; Gong, B.; Liu, H. Germacrone cooperates with dexmedetomidine to alleviate high fat diet induced type 2 diabetes mellitus via upregulating AMPKα1 expression. Exp. Ther. Med., 2019, 18(5), 3514-3524. doi: 10.3892/etm.2019.7990 PMID: 31602228
  98. Guo, Y.R.; Choung, S.Y. Germacrone attenuates hyperlipidemia and improves lipid metabolism in high-fat diet-induced obese C57BL/6J Mice. J. Med. Food, 2017, 20(1), 46-55. doi: 10.1089/jmf.2016.3811 PMID: 28098516
  99. Ji, D.; Wang, Q.; Zhao, Q.; Tong, H.; Yu, M.; Wang, M.; Lu, T.; Jiang, C. Co-delivery of miR-29b and germacrone based on cyclic RGD-modified nanoparticles for liver fibrosis therapy. J. Nanobiotechnology, 2020, 18(1), 86. doi: 10.1186/s12951-020-00645-y PMID: 32513194
  100. Fang, Z.; Yushanjiang, F.; Wang, G.; Zheng, X.; Jiang, X. Germacrone mitigates cardiac remodeling by regulating PI3K/AKTmediated oxidative stress, inflammation, and apoptosis. 2023, 124-110876.
  101. Zhang, Y.; Alexander, P.B.; Wang, X.F. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a022145. doi: 10.1101/cshperspect.a022145 PMID: 27920038
  102. Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact., 2018, 292, 76-83. doi: 10.1016/j.cbi.2018.07.008 PMID: 30017632
  103. Vander Ark, A.; Cao, J.; Li, X. TGF-β receptors: In and beyond TGF-β signaling. Cell. Signal., 2018, 52, 112-120. doi: 10.1016/j.cellsig.2018.09.002 PMID: 30184463
  104. Clark, D.A.; Coker, R. Molecules in focus transforming growth factor-beta (TGF-β). Int. J. Biochem. Cell Biol., 1998, 30(3), 293-298. doi: 10.1016/S1357-2725(97)00128-3 PMID: 9611771
  105. Galisteo Pretel, A.; Pérez Del Pulgar, H.; Guerrero de León, E.; López-Pérez, J.L.; Olmeda, A.S.; Gonzalez-Coloma, A.; F Barrero, A.; Quílez Del Moral, J.F. Germacrone derivatives as new insecticidal and acaricidal compounds: A structure-activity relationship. Molecules, 2019, 24(16), 2898. doi: 10.3390/molecules24162898 PMID: 31404973
  106. Li, X.; Chen, L.; Wang, H.; Li, Y.; Wu, H.; Guo, F. Germacrone, isolated from Curcuma wenyujin, inhibits melanin synthesis through the regulation of the MAPK signaling pathway. J. Nat. Med., 2024, 2024 Advance online publication doi: 10.1007/s11418-024-01818-x PMID: 38809333
  107. Yuan, Y.; Shao, L. Germacrone protects against NF-κB-mediated inflammatory signaling, apoptosis, and retinal ganglion cell survival in a rat glaucoma model. TJEM, 2024. Epub ahead of Print; doi: 10.1620/tjem.2024.J028
  108. Lin, Z.; Yang, Y.; Liu, T.; Wu, Z.; Zhang, X.; Yang, J. Germacrone alleviates breast cancer‐associated osteolysis by inhibiting osteoclastogenesis via inhibition of MAPK/NF‐κB signaling pathways. Phytother. Res., 2024, 38(6), 2860-2874. doi: 10.1002/ptr.8195 PMID: 38558446
  109. Wang, Y.; He, X.; Xue, M.; Yu, H.; He, Q.; Jin, J. Integrated 16S rRNA sequencing and metabolomic analysis reveals the potential protective mechanism of Germacrone on diabetic nephropathy in mice. Acta Biochim. Biophys. Sin. , 2024, 56(3), 414-426. doi: 10.3724/abbs.2024021 PMID: 38429975
  110. Wang, Y.; He, X.; Xue, M.; Sun, W.; He, Q.; Jin, J. Germacrone protects renal tubular cells against ferroptotic death and ROS release by re-activating mitophagy in diabetic nephropathy. Free radic. res., 2023, 57, 413-429. doi: 10.1080/10715762.2023.2277143

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers