Cyclanoline Reverses Cisplatin Resistance in Bladder Cancer Cells by Inhibiting the JAK2/STAT3 Pathway
- Authors: Li L.1, Li C.1, Miao F.1, Chen W.1, Kong X.1, Ye R.1, Wang F.2
-
Affiliations:
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University
- Issue: Vol 24, No 18 (2024)
- Pages: 1360-1370
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643985
- DOI: https://doi.org/10.2174/0118715206304668240729093158
- ID: 643985
Cite item
Full Text
Abstract
Background:Cisplatin is a key therapeutic agent for bladder cancer, yet the emergence of cisplatin resistance presents a significant clinical challenge.
Objective:This study aims to investigate the potential and mechanisms of cyclanoline (Cyc) in overcoming cisplatin resistance.
Methods:Cisplatin-resistant T24 and BIU-87 cell models (T24/DR and BIU-87/DR) were established by increasing gradual concentration. Western Blot (WB) assessed the phosphorylation of STAT3, JAK2, and JAK3. T24/DR and BIU-87/DR cell lines were treated with selective STAT3 phosphorylation modulators, and cell viability was evaluated by CCK-8. Cells were subjected to cisplatin, Cyc, or their combination. Immunofluorescence (IHC) examined p-STAT3 expression. Protein and mRNA levels of apoptosis-related and cell cycle-related factors were measured. Changes in proliferation, invasion, migration, apoptosis, and cell cycle were monitored. In vivo, subcutaneous tumor transplantation models in nude mice were established, assessing tumor volume and weight. Changes in bladder cancer tissues were observed through HE staining, and the p-STAT3 was assessed via WB and IHC.
Results:Cisplatin-resistant cell lines were successfully established, demonstrating increased phosphorylation of STAT3, JAK2, and JAK3. Cisplatin or Cyc treatment decreased p-STAT3, inhibited invasion and migration, and induced apoptosis and cell cycle arrest in the G0/G1 phase in vitro. In vivo, tumor growth was significantly suppressed, with extensive tumor cell death. IHC and WB consistently showed a substantial downregulation of STAT3 phosphorylation. These changes were more pronounced when cisplatin and Cyc were administered in combination.
Conclusion:Cyc reverses cisplatin resistance via JAK/STAT3 inhibition in bladder cancer, offering a potential clinical strategy to enhance cisplatin efficacy in treating bladder cancer.
About the authors
Linjin Li
Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Chengpeng Li
Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Feilong Miao
Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Wu Chen
Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Xianghui Kong
Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Ruxian Ye
Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University
Email: info@benthamscience.net
Feng Wang
Department of Urology, The First Affiliated Hospital of Wenzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Dobruch, J.; Oszczudłowski, M. Bladder cancer: Current challenges and future directions. Medicina (Kaunas), 2021, 57(8), 749. doi: 10.3390/medicina57080749
- Facchini, G.; Cavaliere, C.; Romis, L.; Mordente, S.; Facchini, S.; Iovane, G.; Capasso, M.; DErrico, D.; Liguori, C.; Formato, R.; Cicala, S.; Andreozzi, F.; Di Lauro, G.; Imbimbo, C.; Vanni, M.; DAniello, C. Advanced/metastatic bladder cancer: Current status and future directions. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(22), 11536-11552. doi: 10.26355/eurrev_202011_23795
- Seidl, C. Targets for therapy of bladder cancer. Semin Nucl Med, 2020, 50(2), 162-170. doi: 10.1053/j.semnuclmed.2020.02.006
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther., 2021, 6(1), 402. doi: 10.1038/s41392-021-00791-1
- Owen, K.L.; Brockwell, N.K.; Parker, B.S. AK-STAT signaling: A double-edged sword of immune regulation and cancer progression. Cancers (Basel), 2019, 11(12), 2002. doi: 10.3390/cancers11122002
- Stevens, L.E.; Peluffo, G.; Qiu, X.; Temko, D.; Fassl, A.; Li, Z.; Trinh, A.; Seehawer, M.; Jovanović, B.; Alečković, M.; Wilde, C.M.; Geck, R.C.; Shu, S.; Kingston, N.L.; Harper, N.W.; Almendro, V.; Pyke, A.L.; Egri, S.B.; Papanastasiou, M.; Clement, K.; Zhou, N.; Walker, S.; Salas, J.; Park, S.Y.; Frank, D.A.; Meissner, A.; Jaffe, J.D.; Sicinski, P.; Toker, A.; Michor, F.; Long, H.W.; Overmoyer, B.A.; Polyak, K. JAKSTAT signaling in inflammatory breast cancer enables Chemotherapy-Resistant cell states. Cancer Res., 2023, 83(2), 264-284. doi: 10.1158/0008-5472.CAN-22-0423
- Limberg, J.; Egan, C.E.; Gray, K.D.; Singh, M.; Loewenstein, Z.; Yang, Y.; Riascos, M.C.; Al Asadi, H.; Safe, P.; El Eshaky, S.; Liang, H.; Ullmann, T.M.; Wang, W.; Li, W.; Zhang, T.; Xiang, J.; Stefanova, D.; Jin, M.M.; Zarnegar, R.; Fahey, T.J.; Min, I.M. Activation of the JAK/STAT pathway leads to braf inhibitor resistance in BRAFV600E positive thyroid carcinoma. Mol. Cancer Res., 2023, 21(5), 397-410. doi: 10.1158/1541-7786.MCR-21-0832
- Bei, Y.; Chen, X.; Xu, Q.; Lv, J.; Hu, J.; Yang, S. Apatinib weakens resistance of gastric cancer cells to paclitaxel by suppressing JAK/STAT3 signaling pathway. Drug Dev. Res., 2022, 83(2), 379-388. doi: 10.1002/ddr.21867
- Patel, M.R.; Dash, A.; Jacobson, B.A.; Ji, Y.; Baumann, D.; Ismail, K.; Kratzke, R.A. AK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther., 2019, 26(11-12), 411-418. doi: 10.1038/s41417-018-0074-6
- Li, Y.; Shan, Z.; Liu, C.; Yang, D.; Wu, J.; Men, C.; Xu, Y. MicroRNA-294 promotes cellular proliferation and motility through the PI3K/AKT and JAK/STAT pathways by upregulation of NRAS in bladder cancer. Biochemistry (Mosc.), 2017, 82(4), 474-482. doi: 10.1134/S0006297917040095
- Huang, W.; Li, Y.; Zhang, C.; Zha, H.; Zhou, X.; Fu, B.; Guo, J.; Wang, G. IGF2BP3 facilitates cell proliferation and tumorigenesis via modulation of JAK/STAT signalling pathway in human bladder cancer. J. Cell. Mol. Med., 2020, 24(23), 13949-13960. doi: 10.1111/jcmm.16003
- Zhang, Y.; Qi, D.; Gao, Y.; Liang, C.; Zhang, Y.; Ma, Z.; Liu, Y.; Peng, H.; Zhang, Y.; Qin, H.; Song, X.; Sun, X.; Li, Y.; Liu, Z. History of uses, phytochemistry, pharmacological activities, quality control and toxicity of the root of Stephania tetrandra S. Moore: A review. J. Ethnopharmacol., 2020, 260, 112995. doi: 10.1016/j.jep.2020.112995
- Jiang, Y.; Liu, M.; Liu, H.; Liu, S. A critical review: Traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). Phytochem. Rev., 2020, 19(2), 449-489. doi: 10.1007/s11101-020-09673-w
- Zhang, Y.; Liu, W.; He, W.; Zhang, Y.; Deng, X.; Ma, Y.; Zeng, J.; Kou, B. Tetrandrine reverses epithelial-mesenchymal transition in bladder cancer by downregulating Gli-1. Int. J. Oncol., 2016, 48(5), 2035-2042. doi: 10.3892/ijo.2016.3415
- Fan, B.; Zhang, X.; Ma, Y.; Zhang, A. Fangchinoline induces apoptosis, autophagy and energetic impairment in bladder cancer. Cell. Physiol. Biochem., 2017, 43(3), 1003-1011. doi: 10.1159/000481698
- Li, J.; Li, L.; Zhu, J.; Chen, H. Effect and mechanism of cyclanoline on nitrosamine-induced bladder cancer in rats. Chin. Tradit. Herb. Drugs., 2020, 5201-5206.
- Kong, X.P.; Ren, H.Q.; Liu, E.Y.L.; Leung, K.W.; Guo, S.C.; Duan, R.; Dong, T.T.X.; Tsim, K.W.K. The cholinesterase inhibitory properties of Stephaniae tetrandrae radix. Molecules, 2020, 25(24), 5914. doi: 10.3390/molecules25245914
- Li, F.; Zheng, Z.; Chen, W.; Li, D.; Zhang, H.; Zhu, Y.; Mo, Q.; Zhao, X.; Fan, Q.; Deng, F.; Han, C.; Tan, W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist. Updat., 2023, 68, 100938. doi: 10.1016/j.drup.2023.100938
- Huang, B.; Lang, X.; Li, X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front. Oncol., 2022, 12, 1023177. doi: 10.3389/fonc.2022.1023177
- Xu, B.; Chen, X.; Tan, J.; Xu, X. Effect of AG490 on JAK2/STAT3 signaling pathway in human retinoblastoma HXO-RB44 cell lines. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2018, 43(10), 1061-1067. doi: 10.11817/j.issn.1672-7347.2018.10.004
- Chen, Z.; Du, Y.; Liu, X.; Chen, H.; Weng, X.; Guo, J.; Wang, M.; Wang, X.; Wang, L. EZH2 inhibition suppresses bladder cancer cell growth and metastasis via the JAK2/STAT3 signaling pathway. Oncol. Lett., 2019, 18(1), 907-915. doi: 10.3892/ol.2019.10359
- Wang, H.; Ma, Y. β-Elemene alleviates cisplatin resistance in oral squamous cell carcinoma cell via inhibiting JAK2/STAT3 pathway in vitro and in vivo. Cancer Cell Int., 2022, 22(1), 244. doi: 10.1186/s12935-022-02650-7
- Hu, X.; Ma, J.; Vikash, V.; Li, J.; Wu, D.; Liu, Y.; Zhang, J.; Dong, W. Thymoquinone augments cisplatin-induced apoptosis on esophageal carcinoma through mitigating the activation of JAK2/STAT3 pathway. Dig. Dis. Sci., 2018, 63(1), 126-134. doi: 10.1007/s10620-017-4856-8
- Zhong, Y.; Le, F.; Cheng, J.; Luo, C.; Zhang, X.; Wu, X.; Xu, F.; Zuo, Q.; Tan, B. Triptolide inhibits JAK2/STAT3 signaling and induces lethal autophagy through ROS generation in cisplatin resistant SKOV3/DDP ovarian cancer cells. Oncol. Rep., 2021, 45(5), 69. doi: 10.3892/or.2021.8020
- Noori, S.; Nourbakhsh, M.; Farzaneh, S.; Zarghi, A. A ferrocene derivative reduces cisplatin resistance in breast cancer cells through suppression of MDR-1 expression and modulation of JAK2/STAT3 signaling pathway. Anticancer. Agents Med. Chem., 2020, 20(18), 2285-2292. doi: 10.2174/1871520620666200807103903
- Shi, L.; Shu, Y.; Hu, X.; Akram, W.; Wang, J.; Dong, S.; Luo, B.; Zhang, J.; Hu, S.; Li, X.; Hu, X. An optimized two-herb chinese food as medicine formula reduces cisplatin-induced nephrotoxicity in the treatment of lung cancer in mice. Front. Pharmacol., 2022, 13, 827901. doi: 10.3389/fphar.2022.827901
- Dasari, S.; Njiki, S.; Mbemi, A.; Yedjou, C.G.; Tchounwou, P.B. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int. J. Mol. Sci., 2022, 23(3), 1532. doi: 10.3390/ijms23031532
- Chen, Y.; Hong, C.; Chen, X.; Qin, Z. Demethoxycurcumin increases the sensitivity of cisplatin-resistant non-small lung cancer cells to cisplatin and induces apoptosis by activating the caspase signaling pathway. Oncol. Lett., 2020, 20(5), 209. doi: 10.3892/ol.2020.12072
- Lei, T.; Zhou, S.; Meng, Q.; Zhang, M. STAT3 signaling pathway in drug-resistant bladder cancer cell line. J. Biol. Regul. Homeost. Agents, 2019, 33(5), 1347-1357. doi: 10.23812/19-68-A
- Huang, H.; Fan, X.; Zhang, X.; Xie, Y.; Ji, Z. LncRNA CARLo-7 facilitates proliferation, migration, invasion, and EMT of bladder cancer cells by regulating Wnt/β-catenin and JAK2/STAT3 signaling pathways. Transl. Androl. Urol., 2020, 9(54), 2251-2261. doi: 10.21037/tau-20-1293
Supplementary files
