Molecular Imaging of Melanoma VEGF-expressing Tumors through [99mTc]Tc-HYNIC-Fab(Bevacizumab)
- Authors: Fernández M.1, Reyes A.L.2, Paolino A.2, Savio E.2, Cerecetto H.1, Cabral P.1, Gambini J.2, Camacho X.1, Perroni C.1, Alfaya L.1, Cabrera M.1, Tassano M.1, García M.1
-
Affiliations:
- Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
- Investigation and Development Department, Centro uruguayo de imagenología Molecular
- Issue: Vol 24, No 18 (2024)
- Pages: 1347-1359
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643980
- DOI: https://doi.org/10.2174/0118715206294297240805073550
- ID: 643980
Cite item
Full Text
Abstract
Background:Angiogenesis is a process that many tumors depend on for growth, development, and metastasis. Vascular endothelial growth factor (VEGF) is one of the major players in tumor angiogenesis in several tumor types, including melanoma. VEGF inhibition is achieved by bevacizumab, a humanized monoclonal antibody that binds with high affinity to VEGF and prevents its function. In order to successfully enable in vivo VEGF expression imaging in a murine melanoma model, we previously labeled bevacizumab with [99mTc]Tc. We observed that this was feasible, but it had prolonged blood circulation and delayed tumor uptake.
Objective:The aim of this study was to develop a radiolabeled Fab bevacizumab fragment, [99mTc]Tc-HYNICFab( bevacizumab), for non-invasive in vivo VEGF expression molecular imaging.
Methods:Flow cytometry was used to examine VEGF presence in the murine melanoma cell line (B16-F10). Bevacizumab was digested with papain for six hours at 37°C to produce Fab(bevacizumab), which was then conjugated to NHS-HYNIC-Tfa for radiolabeling with [99mTc]Tc. Stability and binding affinity assays were also evaluated. Biodistribution and single photon emission computed tomography/computed tomography (SPECT/CT) were performed at 1, 3, and 6 h (n = 4) after injection of [99mTc]Tc-HYNIC-Fab(Bevacizumab) in normal and B16-F10 tumor-bearing C57Bl/6J mice.
Results:Using flow cytometry, it was shown that the B16-F10 murine melanoma cell line has intracellular VEGF expression. Papain incubation resulted in the complete digestion of bevacizumab with good purity and homogeneity. The radiolabeling yield of [99mTc]Tc-HYNIC-Fab(bevacizumab) was 85.00 ± 6.06%, with a specific activity of 291.87 ± 18.84 MBq/mg (n=3), showing in vitro stability. Binding assays demonstrated significant intracellular in vitro VEGF expression. Fast blood clearance and high kidney and tumor uptake were observed in biodistribution and SPECT/CT studies.
Conclusions:We present the development and evaluation of [99mTc]Tc-HYNIC-Fab(bevacizumab), a novel molecular VEGF expression imaging agent that may be used for precision medicine in melanoma and potentially in other VEGF-expressing tumors.
Keywords
About the authors
Marcelo Fernández
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Email: info@benthamscience.net
Ana Laura Reyes
Investigation and Development Department, Centro uruguayo de imagenología Molecular
Email: info@benthamscience.net
Andrea Paolino
Investigation and Development Department, Centro uruguayo de imagenología Molecular
Email: info@benthamscience.net
Eduardo Savio
Investigation and Development Department, Centro uruguayo de imagenología Molecular
Email: info@benthamscience.net
Hugo Cerecetto
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Email: info@benthamscience.net
Pablo Cabral
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Email: info@benthamscience.net
Juan Gambini
Investigation and Development Department, Centro uruguayo de imagenología Molecular
Author for correspondence.
Email: info@benthamscience.net
Ximena Camacho
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Author for correspondence.
Email: info@benthamscience.net
Carolina Perroni
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Email: info@benthamscience.net
Lucía Alfaya
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Email: info@benthamscience.net
Mirel Cabrera
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Email: info@benthamscience.net
Marcos Tassano
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Email: info@benthamscience.net
María García
Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República
Email: info@benthamscience.net
References
- Eddy, K.; Chen, S. Overcoming immune evasion in melanoma. Int. J. Mol. Sci., 2020, 21(23), 8984. doi: 10.3390/ijms21238984 PMID: 33256089
- Filippi, L.; Bruno, G.; Domazetovic, V.; Favre, C.; Calvani, M. Current therapies and new targets to fight melanoma: A promising role for the β3-Adrenoreceptor. Cancers (Basel), 2020, 12(6), 1415-1415. doi: 10.3390/cancers12061415 PMID: 32486190
- Li, Z.; Fang, Y.; Chen, H.; Zhang, T.; Yin, X.; Man, J.; Yang, X.; Lu, M. Spatiotemporal trends of the global burden of melanoma in 204 countries and territories from 1990 to 2019: Results from the 2019 global burden of disease study. Neoplasia, 2022, 24(1), 12-21. doi: 10.1016/j.neo.2021.11.013 PMID: 34872041
- Wouters, M.W.; Michielin, O.; Bastiaannet, E.; Beishon, M.; Catalano, O.; del Marmol, V.; Delgado-Bolton, R.; Dendale, R.; Trill, M.D.; Ferrari, A.; Forsea, A.M.; Kreckel, H.; Lövey, J.; Luyten, G.; Massi, D.; Mohr, P.; Oberst, S.; Pereira, P.; Prata, J.P.P.; Rutkowski, P.; Saarto, T.; Sheth, S.; Spurrier-Bernard, G.; Vuoristo, M.S.; Costa, A.; Naredi, P. ECCO essential requirements for quality cancer care: Melanoma. Crit. Rev. Oncol. Hematol., 2018, 122, 164-178. doi: 10.1016/j.critrevonc.2017.12.020 PMID: 29458785
- Mucientes, R.J.; Cardona, A.J.; Bolton, R.; Izarduy, P.L. SPECT-CT in sentinel node detection in patients with melanoma. Rev. Esp. Med. Nucl., 2009, 28(5), 229-234. doi: 10.1016/j.remn.2009.03.002 PMID: 19922839
- Mangas, L.M.; Romero, R.L.; Mendoza, M.A.; García, M.I.; Villanueva, T.A.; Garrastachu, Z.P.; Boulvard, C.X.; Lopci, E.; Ramírez, L.R.; Delgado, B.R.C. 18F FDG PET/CT in the Evaluation of melanoma patients treated with immunotherapy. Diagnostics (Basel), 2023, 13(5), 978. doi: 10.3390/diagnostics13050978 PMID: 36900122
- Ramelyte, E.; Schindler, S.A.; Dummer, R. The safety of anti PD-1 therapeutics for the treatment of melanoma. Expert Opin. Drug Saf., 2017, 16(1), 41-53. doi: 10.1080/14740338.2016.1248402 PMID: 27737598
- Xiao, R.; Mansour, A.G.; Huang, W.; Chrislip, L.A.; Wilkins, R.K.; Queen, N.J.; Youssef, Y.; Mao, H.C.; Caligiuri, M.A.; Cao, L. Adipocytes: A novel target for IL-15/IL-15Rα cancer gene therapy. Mol. Ther., 2019, 27(5), 922-932. doi: 10.1016/j.ymthe.2019.02.011 PMID: 30833178
- Goldinger, S.M.; Buder-Bakhaya, K.; Lo, S.N.; Forschner, A.; McKean, M.; Zimmer, L.; Khoo, C.; Dummer, R.; Eroglu, Z.; Buchbinder, E.I.; Ascierto, P.A.; Gutzmer, R.; Rozeman, E.A.; Hoeller, C.; Johnson, D.B.; Gesierich, A.; Kölblinger, P.; Bennannoune, N.; Cohen, J.V.; Kähler, K.C.; Wilson, M.A.; Cebon, J.; Atkinson, V.; Smith, J.L.; Michielin, O.; Long, G.V.; Hassel, J.C.; Weide, B.; Haydu, L.E.; Schadendorf, D.; McArthur, G.; Ott, P.A.; Blank, C.; Robert, C.; Sullivan, R.; Hauschild, A.; Carlino, M.S.; Garbe, C.; Davies, M.A.; Menzies, A.M. Chemotherapy after immune checkpoint inhibitor failure in metastatic melanoma: A retrospective multicentre analysis. Eur. J. Cancer, 2022, 162, 22-33. doi: 10.1016/j.ejca.2021.11.022 PMID: 34952480
- Koo, H.Y.; Kume, T. FoxC1-dependent regulation of vascular endothelial growth factor signaling in corneal avascularity. Trends Cardiovasc. Med., 2013, 23(1), 1-4. doi: 10.1016/j.tcm.2012.08.002 PMID: 22939989
- Straume, O.; Salvesen, H.B.; Akslen, L.A. Angiogenesis is prognostically important in vertical growth phase melanomas. Int. J. Oncol., 1999, 15(3), 595-599. doi: 10.3892/ijo.15.3.595 PMID: 10427146
- Sobierajska, K.; Ciszewski, W.M.; Sacewicz-Hofman, I.; Niewiarowska, J. Endothelial cells in the tumor microenvironment. Adv Exp. Med. Biol., 2020, 1234, 71-86. doi: 10.1007/978-3-030-37184-5_6
- Srivastava, A.; Laidler, P.; Davies, R.P.; Horgan, K.; Hughes, L.E. The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. A quantitative histologic study. Am. J. Pathol., 1988, 133(2), 419-423. PMID: 3189515
- Ribatti, D.; Annese, T.; Longo, V. Angiogenesis and melanoma. Cancers (Basel), 2010, 2(1), 114-132. doi: 10.3390/cancers2010114 PMID: 24281035
- Halder, S.K.; Kant, R.; Milner, R. Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an α5β1 integrin-mediated mechanism. Angiogenesis, 2018, 21(2), 251-266. doi: 10.1007/s10456-017-9593-2 PMID: 29299782
- Wang, J.C.; Li, X.X.; Sun, X.; Li, G.Y.; Sun, J.L.; Ye, Y.P.; Cong, L.L.; Li, W.M.; Lu, S.Y.; Feng, J.; Liu, P.J. Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF ‐1α‐induced pro‐angiogenic factor. Cancer Sci., 2018, 109(5), 1627-1637. doi: 10.1111/cas.13570 PMID: 29532562
- Lucianò, A.M.; Pérez-Oliva, A.B.; Mulero, V.; Del Bufalo, D. Bcl-xL: A focus on melanoma pathobiology. Int. J. Mol. Sci., 2021, 22(5), 2777. doi: 10.3390/ijms22052777 PMID: 33803452
- Parmar, D.; Apte, M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur. J. Pharmacol., 2021, 899, 174021. doi: 10.1016/j.ejphar.2021.174021 PMID: 33741382
- Wu, Z.; Bian, Y.; Chu, T.; Wang, Y.; Man, S.; Song, Y.; Wang, Z. The role of angiogenesis in melanoma: Clinical treatments and future expectations. Front. Pharmacol., 2022, 13, 1028647. doi: 10.3389/fphar.2022.1028647 PMID: 36588679
- Pandita, A.; Ekstrand, M.; Bjursten, S.; Zhao, Z.; Fogelstrand, P.; Le Gal, K.; Ny, L.; Bergo, M.O.; Karlsson, J.; Nilsson, J.A.; Akyürek, L.M.; Levin, M.C.; Borén, J.; Ewald, A.J.; Mostov, K.E.; Levin, M. Intussusceptive angiogenesis in human metastatic malignant melanoma. Am. J. Pathol., 2021, 191(11), 2023-2038. doi: 10.1016/j.ajpath.2021.07.009 PMID: 34400131
- Pérez-Gutiérrez, L.; Ferrara, N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat. Rev. Mol. Cell Biol., 2023, 24(11), 816-834. doi: 10.1038/s41580-023-00631-w PMID: 37491579
- Koizumi, K.; Shintani, T.; Hayashido, Y.; Hamada, A.; Higaki, M.; Yoshioka, Y.; Sakamoto, A.; Yanamoto, S.; Okamoto, T. VEGF-A promotes the motility of human melanoma cells through the VEGFR1PI3K/Akt signaling pathway. In Vitro Cell. Dev. Biol. Anim., 2022, 58(8), 758-770. doi: 10.1007/s11626-022-00717-3 PMID: 35997849
- Desch, A.; Strozyk, E.A.; Bauer, A.T.; Huck, V.; Niemeyer, V.; Wieland, T.; Schneider, S.W. Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin αvβ5-induced secretion of VEGF-A. Am. J. Pathol., 2012, 181(2), 693-705. doi: 10.1016/j.ajpath.2012.04.012 PMID: 22659470
- Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer, 2011, 2(12), 1097-1105. doi: 10.1177/1947601911423031 PMID: 22866201
- Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov., 2016, 15(6), 385-403. doi: 10.1038/nrd.2015.17 PMID: 26775688
- Woolard, J.; Bevan, H.S.; Harper, S.J.; Bates, D.O. Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation, 2009, 16(7), 572-592. doi: 10.1080/10739680902997333 PMID: 19521900
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med., 2012, 2(7), a006502. doi: 10.1101/cshperspect.a006502 PMID: 22762016
- Warren, B.A.; Shubik, P. The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab. Invest., 1966, 15(2), 464-478. PMID: 5932611
- Liu, Y.X.; Xu, B.W.; Niu, X.D.; Chen, Y.J.; Fu, X.Q.; Wang, X.Q.; Yin, C.L.; Chou, J.Y.; Li, J.K.; Wu, J.Y.; Bai, J.X.; Wu, Y.; Li, S.M.; Yu, Z.L. Inhibition of Src/STAT3 signaling-mediated angiogenesis is involved in the anti-melanoma effects of dioscin. Pharmacol. Res., 2022, 175, 105983. doi: 10.1016/j.phrs.2021.105983 PMID: 34822972
- Hu, F.; Fong, K.O.; Cheung, M.P.L.; Liu, J.A.; Liang, R.; Li, T.W.; Sharma, R.; Ip, P.P.C.; Yang, X.; Cheung, M. DEPDC1B promotes melanoma angiogenesis and metastasis through sequestration of Ubiquitin ligase CDC16 to stabilize secreted SCUBE3. Adv. Sci. (Weinh.), 2022, 9(10), 2105226. doi: 10.1002/advs.202105226 PMID: 35088579
- Wohlfeil, S.A.; Häfele, V.; Dietsch, B.; Weller, C.; Sticht, C.; Jauch, A.S.; Winkler, M.; Schmid, C.D.; Irkens, A.L.; Olsavszky, A.; Schledzewski, K.; Reiners-Koch, P.S.; Goerdt, S.; Géraud, C. Angiogenic and molecular diversity determine hepatic melanoma metastasis and response to anti-angiogenic treatment. J. Transl. Med., 2022, 20(1), 62. doi: 10.1186/s12967-022-03255-4 PMID: 35109875
- Presta, L.G.; Chen, H.; OConnor, S.J.; Chisholm, V.; Meng, Y.G.; Krummen, L.; Winkler, M.; Ferrara, N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res., 1997, 57(20), 4593-4599. PMID: 9377574
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342. doi: 10.1056/NEJMoa032691 PMID: 15175435
- Gerber, H.P.; Ferrara, N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res., 2005, 65(3), 671-680. doi: 10.1158/0008-5472.671.65.3 PMID: 15705858
- Kang, L.; Li, C.; Rosenkrans, Z.T.; Engle, J.W.; Wang, R.; Jiang, D.; Xu, X.; Cai, W. Noninvasive evaluation of CD20 expression using 64Cu-Labeled F(ab′)2 fragments of Obinutuzumab in lymphoma. J. Nucl. Med., 2021, 62(3), 372-378. doi: 10.2967/jnumed.120.246595 PMID: 32826320
- Gmeiner Stopar, T.; Fettich, J.; Zver, S.; Mlinaric-Rascan, I.; Hojker, S.; Socan, A.; Peitl, P.K.; Mather, S. 99mTc-labelled rituximab, a new non-Hodgkins lymphoma imaging agent: First clinical experience. Nucl. Med. Commun., 2008, 29(12), 1059-1065. doi: 10.1097/MNM.0b013e3283134d6e PMID: 18987526
- Camacho, X.; Machado, C.L.; García, M.F.; Gambini, J.P.; Banchero, A.; Fernández, M.; Oddone, N.; Bertolini, Z.D.; Rosal, C.; Buchpiguel, C.A.; Chammas, R.; Riva, E.; Cabral, P. Technetium-99m- or Cy7-Labeled rituximab as an imaging agent for non-hodgkin lymphoma. Oncology, 2017, 92(4), 229-242. doi: 10.1159/000452419 PMID: 28196364
- Camacho, X.; Perroni, C.; Machado, C.L.; de Godoi Carneiro, C.; de Souza Junqueira, M.; Faria, D.; García, M.F.; Fernández, M.; Oddone, N.; Benech, J.; Buchpiguel, C.A.; Cerecetto, H.; Chammas, R.; Riva, E.; Cabral, P.; Gambini, J.P. 99mTechnetium- or Cy7-labeled fab(Tocilizumab) as potential multiple myeloma imaging agents. Anticancer. Agents Med. Chem., 2021, 21(14), 1883-1893. doi: 10.2174/1871520621999210104181238 PMID: 33397271
- Camacho, X.; García, M.F.; Calzada, V.; Fernández, M.; Chabalgoity, J.A.; Moreno, M.; Barbosa de Aguiar, R.; Alonso, O.; Gambini, J.P.; Chammas, R.; Cabral, P. (99m)Tc(CO)(3)-radiolabeled bevacizumab: in vitro and in vivo evaluation in a melanoma model. Oncology, 2013, 84(4), 200-209. doi: 10.1159/000338961 PMID: 23328435
- Ximena, Camacho; Victoria, Calzada; Marcelo, Fernandez; Omar, Alonso; Roger, Chammas; Williams, Porcal; Pablo, Cabral; Machado, C.M.L.; Chammas, R.; Porcal, W.; Cabral, P. 99mTc-labeled bevacizumab via HYNIC for imaging of melanoma. J. Anal. Oncol., 2014, 3(1) doi: 10.6000/1927-7229.2014.03.01.9
- Camacho, X.; Machado, C.L.; García, M.F.; Fernádez, M.; Oddone, N.; Benech, J.; Gambini, J.P.; Cerecetto, H.; Chammas, R.; Cabral, P.; Riva, E. Tocilizumab labeling with 99mTechnetium via HYNIC as a molecular diagnostic agent for multiple myeloma. Anticancer. Agents Med. Chem., 2017, 17(9), 1267-1277. doi: 10.2174/1871520617666170213144917 PMID: 28270081
- Camacho, X.; Fernanda, G.M.; Calzada, V.; Fernández, M.; Porcal, W.; Alonso, O.; Pablo Gambini, J.; Cabral, P. Synthesis and evaluation of (99m)Tc chelate-conjugated bevacizumab. Curr. Radiopharm., 2013, 6(1), 12-19. doi: 10.2174/1874471011306010003 PMID: 23035645
- Camacho, X.; Perroni, C.; Carneiro, C.G.; Junqueira, M.S.; Machado, C.L.; Faria, D. Molecular imaging of VEGF expression in multiple myeloma and non-hodgkin lymphoma. J. Mol. Biol. Mol. Imaging, 2022, 7(1), 1033.
- García, M.F.; Calzada, V.; Camacho, X.; Goicochea, E.; Gambini, J.; Quinn, T.; Porcal, W.; Cabral, P. Microwave-assisted synthesis of HYNIC protected analogue for 99mTc labeled antibody. Curr. Radiopharm., 2014, 7(2), 84-90. doi: 10.2174/1874471007666141128160449 PMID: 25429778
- Garcia, M.F.; Camacho, X.; Calzada, V.; Fernandez, M.; Porcal, W.; Alonso, O.; Gambini, J.P.; Cabral, P. Synthesis of 99mTc-nimotuzumab with tricarbonyl ion: In vitro and in vivo studies. Curr. Radiopharm., 2012, 5(1), 59-64. doi: 10.2174/1874471011205010059
- Martiniova, L.; Zielinski, R.J.; Lin, M.; DePalatis, L.; Ravizzini, G.C. The role of radiolabeled monoclonal antibodies in cancer imaging and ADC treatment. Cancer J., 2022, 28(6), 446-453. doi: 10.1097/PPO.0000000000000625 PMID: 36383907
- Parakh, S.; Lee, S.T.; Gan, H.K.; Scott, A.M. Radiolabeled antibodies for cancer imaging and therapy. Cancers (Basel), 2022, 14(6), 1454. doi: 10.3390/cancers14061454 PMID: 35326605
- Schmidt, M.M.; Wittrup, K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther., 2009, 8(10), 2861-2871. doi: 10.1158/1535-7163.MCT-09-0195 PMID: 19825804
- Dewulf, J.; Hrynchak, I.; Geudens, S.; Pintelon, I.; Vangestel, C.; Sereno, J.; van Dam, P.A.; Abrunhosa, A.J.; Elvas, F.; Van den Wyngaert, T. Improved characteristics of RANKL Immuno-PET imaging using radiolabeled antibody fab fragments. Pharmaceutics, 2022, 14(5), 939-939. doi: 10.3390/pharmaceutics14050939 PMID: 35631525
- Suman, S.K.; Kameswaran, M.; Mallia, M.; Mittal, S.; Dash, A. Synthesis and preliminary evaluation of 99mTc-Hynic-fragments F(ab)2 and F(ab) of Rituximab as radioimmunoscintigraphic agents for patients with Non-Hodgkins lymphoma. Appl. Radiat. Isot., 2019, 153, 108808. doi: 10.1016/j.apradiso.2019.108808 PMID: 31325798
- Xenaki, K.T.; Oliveira, S. van Bergen en Henegouwen, P.M.P. Antibody or antibody fragments: Implications for molecular imaging and targeted therapy of solid tumors. Front. Immunol., 2017, 8, 1287. doi: 10.3389/fimmu.2017.01287 PMID: 29075266
- Chakravarty, R.; Rohra, N.; Jadhav, S.; Sarma, H.D.; Jain, R.; Chakraborty, S. Biochemical separation of Cetuximab-Fab from papain-digested antibody fragments and radiolabeling with 64Cu for potential use in radioimmunotheranostics. Appl. Radiat. Isot., 2023, 196, 110795-110795. doi: 10.1016/j.apradiso.2023.110795 PMID: 37004293
- Reilly, R.M.; Sandhu, J.; Alvarez-Diez, T.M.; Gallinger, S.; Kirsh, J.; Stern, H. Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin. Pharmacokinet., 1995, 28(2), 126-142. doi: 10.2165/00003088-199528020-00004 PMID: 7736688
- Kholodenko, R.V.; Kalinovsky, D.V.; Doronin, I.I.; Ponomarev, E.D.; Kholodenko, I.V. Antibody fragments as potential biopharmaceuticals for cancer therapy: Success and limitations. Curr. Med. Chem., 2019, 26(3), 396-426. doi: 10.2174/0929867324666170817152554 PMID: 28820071
- Bates, A.; Power, C.A. David vs. Goliath: The structure, function, and clinical prospects of antibody fragments. Antibodies (Basel), 2019, 8(2), 28. doi: 10.3390/antib8020028 PMID: 31544834
- Gill, S.C.; von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem., 1989, 182(2), 319-326. doi: 10.1016/0003-2697(89)90602-7 PMID: 2610349
- Tang, Y.; Scollard, D.; Chen, P.; Wang, J.; Holloway, C.; Reilly, R.M. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using 99mTc-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl. Med. Commun., 2005, 26(5), 427-432. doi: 10.1097/00006231-200505000-00006 PMID: 15838425
- Wisdom, G.B. Conjugation of antibodies to fluorescein or rhodamine. Methods Mol. Biol., 2005, 295, 131-134. doi: 10.1385/1-59259-873-0:131 PMID: 15596893
- Olbryt, M.; Jarząb, M.; Jazowiecka-Rakus, J.; Simek, K.; Szala, S.; Sochanik, A. Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro. Gene Expr., 2006, 13(3), 191-203. doi: 10.3727/000000006783991818 PMID: 17193925
- Tassano, M.; Camacho, X.; Freire, T.; Perroni, C.; da Costa, V.; Cabrera, M.; García, M.F.; Fernández, M.; Gambini, J.P.; Cabral, P.; Osinaga, E. Enhanced tumor targeting of radiolabeled mouse/human chimeric anti-tn antibody in losartan-treated mice bearing tn-expressing lung tumors. Cancer Biother. Radiopharm., 2024, 39(5), 337-348. doi: 10.1089/cbr.2023.0138 PMID: 38215243
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol., 2022, 158(5), 495-503. doi: 10.1001/jamadermatol.2022.0160 PMID: 35353115
- Rajabi, P.; Neshat, A.; Mokhtari, M.; Rajabi, M.; Eftekhari, M.; Tavakoli, P. The role of VEGF in melanoma progression. J. Res. Med. Sci., 2012, 17(6), 534-539. PMID: 23626629
- Bogusławska-Duch, J.; Ducher, M.; Małecki, M. Resistance of melanoma cells to anticancer treatment: A role of vascular endothelial growth factor. Postepy Dermatol. Alergol., 2020, 37(1), 11-18. doi: 10.5114/ada.2020.93378 PMID: 32467677
- Wei, W.; Ehlerding, E.B.; Lan, X.; Luo, Q.; Cai, W. PET and SPECT imaging of melanoma: The state of the art. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(1), 132-150. doi: 10.1007/s00259-017-3839-5 PMID: 29085965
- Chakravarty, R.; Goel, S.; Valdovinos, H.F.; Hernandez, R.; Hong, H.; Nickles, R.J.; Cai, W. Matching the decay half-life with the biological half-life: ImmunoPET imaging with (44)Sc-labeled cetuximab Fab fragment. Bioconjug. Chem., 2014, 25(12), 2197-2204. doi: 10.1021/bc500415x PMID: 25389697
- Abrams, M.J.; Juweid, M.E.; tenKate, C.I.; Schwartz, D.; Hauser, M.M.; Gaul, F.E.; Fuccello, A.; Rubin, R.H.; Strauss, H.W.; Fischman, A.J. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J. Nucl. Med., 1990, 31(12), 2022-2028. PMID: 2266401
Supplementary files
