Molecular Imaging of Melanoma VEGF-expressing Tumors through [99mTc]Tc-HYNIC-Fab(Bevacizumab)


Cite item

Full Text

Abstract

Background:Angiogenesis is a process that many tumors depend on for growth, development, and metastasis. Vascular endothelial growth factor (VEGF) is one of the major players in tumor angiogenesis in several tumor types, including melanoma. VEGF inhibition is achieved by bevacizumab, a humanized monoclonal antibody that binds with high affinity to VEGF and prevents its function. In order to successfully enable in vivo VEGF expression imaging in a murine melanoma model, we previously labeled bevacizumab with [99mTc]Tc. We observed that this was feasible, but it had prolonged blood circulation and delayed tumor uptake.

Objective:The aim of this study was to develop a radiolabeled Fab bevacizumab fragment, [99mTc]Tc-HYNICFab( bevacizumab), for non-invasive in vivo VEGF expression molecular imaging.

Methods:Flow cytometry was used to examine VEGF presence in the murine melanoma cell line (B16-F10). Bevacizumab was digested with papain for six hours at 37°C to produce Fab(bevacizumab), which was then conjugated to NHS-HYNIC-Tfa for radiolabeling with [99mTc]Tc. Stability and binding affinity assays were also evaluated. Biodistribution and single photon emission computed tomography/computed tomography (SPECT/CT) were performed at 1, 3, and 6 h (n = 4) after injection of [99mTc]Tc-HYNIC-Fab(Bevacizumab) in normal and B16-F10 tumor-bearing C57Bl/6J mice.

Results:Using flow cytometry, it was shown that the B16-F10 murine melanoma cell line has intracellular VEGF expression. Papain incubation resulted in the complete digestion of bevacizumab with good purity and homogeneity. The radiolabeling yield of [99mTc]Tc-HYNIC-Fab(bevacizumab) was 85.00 ± 6.06%, with a specific activity of 291.87 ± 18.84 MBq/mg (n=3), showing in vitro stability. Binding assays demonstrated significant intracellular in vitro VEGF expression. Fast blood clearance and high kidney and tumor uptake were observed in biodistribution and SPECT/CT studies.

Conclusions:We present the development and evaluation of [99mTc]Tc-HYNIC-Fab(bevacizumab), a novel molecular VEGF expression imaging agent that may be used for precision medicine in melanoma and potentially in other VEGF-expressing tumors.

About the authors

Marcelo Fernández

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Email: info@benthamscience.net

Ana Laura Reyes

Investigation and Development Department, Centro uruguayo de imagenología Molecular

Email: info@benthamscience.net

Andrea Paolino

Investigation and Development Department, Centro uruguayo de imagenología Molecular

Email: info@benthamscience.net

Eduardo Savio

Investigation and Development Department, Centro uruguayo de imagenología Molecular

Email: info@benthamscience.net

Hugo Cerecetto

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Email: info@benthamscience.net

Pablo Cabral

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Email: info@benthamscience.net

Juan Gambini

Investigation and Development Department, Centro uruguayo de imagenología Molecular

Author for correspondence.
Email: info@benthamscience.net

Ximena Camacho

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Author for correspondence.
Email: info@benthamscience.net

Carolina Perroni

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Email: info@benthamscience.net

Lucía Alfaya

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Email: info@benthamscience.net

Mirel Cabrera

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Email: info@benthamscience.net

Marcos Tassano

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Email: info@benthamscience.net

María García

Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República

Email: info@benthamscience.net

References

  1. Eddy, K.; Chen, S. Overcoming immune evasion in melanoma. Int. J. Mol. Sci., 2020, 21(23), 8984. doi: 10.3390/ijms21238984 PMID: 33256089
  2. Filippi, L.; Bruno, G.; Domazetovic, V.; Favre, C.; Calvani, M. Current therapies and new targets to fight melanoma: A promising role for the β3-Adrenoreceptor. Cancers (Basel), 2020, 12(6), 1415-1415. doi: 10.3390/cancers12061415 PMID: 32486190
  3. Li, Z.; Fang, Y.; Chen, H.; Zhang, T.; Yin, X.; Man, J.; Yang, X.; Lu, M. Spatiotemporal trends of the global burden of melanoma in 204 countries and territories from 1990 to 2019: Results from the 2019 global burden of disease study. Neoplasia, 2022, 24(1), 12-21. doi: 10.1016/j.neo.2021.11.013 PMID: 34872041
  4. Wouters, M.W.; Michielin, O.; Bastiaannet, E.; Beishon, M.; Catalano, O.; del Marmol, V.; Delgado-Bolton, R.; Dendale, R.; Trill, M.D.; Ferrari, A.; Forsea, A.M.; Kreckel, H.; Lövey, J.; Luyten, G.; Massi, D.; Mohr, P.; Oberst, S.; Pereira, P.; Prata, J.P.P.; Rutkowski, P.; Saarto, T.; Sheth, S.; Spurrier-Bernard, G.; Vuoristo, M.S.; Costa, A.; Naredi, P. ECCO essential requirements for quality cancer care: Melanoma. Crit. Rev. Oncol. Hematol., 2018, 122, 164-178. doi: 10.1016/j.critrevonc.2017.12.020 PMID: 29458785
  5. Mucientes, R.J.; Cardona, A.J.; Bolton, R.; Izarduy, P.L. SPECT-CT in sentinel node detection in patients with melanoma. Rev. Esp. Med. Nucl., 2009, 28(5), 229-234. doi: 10.1016/j.remn.2009.03.002 PMID: 19922839
  6. Mangas, L.M.; Romero, R.L.; Mendoza, M.A.; García, M.I.; Villanueva, T.A.; Garrastachu, Z.P.; Boulvard, C.X.; Lopci, E.; Ramírez, L.R.; Delgado, B.R.C. 18F FDG PET/CT in the Evaluation of melanoma patients treated with immunotherapy. Diagnostics (Basel), 2023, 13(5), 978. doi: 10.3390/diagnostics13050978 PMID: 36900122
  7. Ramelyte, E.; Schindler, S.A.; Dummer, R. The safety of anti PD-1 therapeutics for the treatment of melanoma. Expert Opin. Drug Saf., 2017, 16(1), 41-53. doi: 10.1080/14740338.2016.1248402 PMID: 27737598
  8. Xiao, R.; Mansour, A.G.; Huang, W.; Chrislip, L.A.; Wilkins, R.K.; Queen, N.J.; Youssef, Y.; Mao, H.C.; Caligiuri, M.A.; Cao, L. Adipocytes: A novel target for IL-15/IL-15Rα cancer gene therapy. Mol. Ther., 2019, 27(5), 922-932. doi: 10.1016/j.ymthe.2019.02.011 PMID: 30833178
  9. Goldinger, S.M.; Buder-Bakhaya, K.; Lo, S.N.; Forschner, A.; McKean, M.; Zimmer, L.; Khoo, C.; Dummer, R.; Eroglu, Z.; Buchbinder, E.I.; Ascierto, P.A.; Gutzmer, R.; Rozeman, E.A.; Hoeller, C.; Johnson, D.B.; Gesierich, A.; Kölblinger, P.; Bennannoune, N.; Cohen, J.V.; Kähler, K.C.; Wilson, M.A.; Cebon, J.; Atkinson, V.; Smith, J.L.; Michielin, O.; Long, G.V.; Hassel, J.C.; Weide, B.; Haydu, L.E.; Schadendorf, D.; McArthur, G.; Ott, P.A.; Blank, C.; Robert, C.; Sullivan, R.; Hauschild, A.; Carlino, M.S.; Garbe, C.; Davies, M.A.; Menzies, A.M. Chemotherapy after immune checkpoint inhibitor failure in metastatic melanoma: A retrospective multicentre analysis. Eur. J. Cancer, 2022, 162, 22-33. doi: 10.1016/j.ejca.2021.11.022 PMID: 34952480
  10. Koo, H.Y.; Kume, T. FoxC1-dependent regulation of vascular endothelial growth factor signaling in corneal avascularity. Trends Cardiovasc. Med., 2013, 23(1), 1-4. doi: 10.1016/j.tcm.2012.08.002 PMID: 22939989
  11. Straume, O.; Salvesen, H.B.; Akslen, L.A. Angiogenesis is prognostically important in vertical growth phase melanomas. Int. J. Oncol., 1999, 15(3), 595-599. doi: 10.3892/ijo.15.3.595 PMID: 10427146
  12. Sobierajska, K.; Ciszewski, W.M.; Sacewicz-Hofman, I.; Niewiarowska, J. Endothelial cells in the tumor microenvironment. Adv Exp. Med. Biol., 2020, 1234, 71-86. doi: 10.1007/978-3-030-37184-5_6
  13. Srivastava, A.; Laidler, P.; Davies, R.P.; Horgan, K.; Hughes, L.E. The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. A quantitative histologic study. Am. J. Pathol., 1988, 133(2), 419-423. PMID: 3189515
  14. Ribatti, D.; Annese, T.; Longo, V. Angiogenesis and melanoma. Cancers (Basel), 2010, 2(1), 114-132. doi: 10.3390/cancers2010114 PMID: 24281035
  15. Halder, S.K.; Kant, R.; Milner, R. Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an α5β1 integrin-mediated mechanism. Angiogenesis, 2018, 21(2), 251-266. doi: 10.1007/s10456-017-9593-2 PMID: 29299782
  16. Wang, J.C.; Li, X.X.; Sun, X.; Li, G.Y.; Sun, J.L.; Ye, Y.P.; Cong, L.L.; Li, W.M.; Lu, S.Y.; Feng, J.; Liu, P.J. Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF ‐1α‐induced pro‐angiogenic factor. Cancer Sci., 2018, 109(5), 1627-1637. doi: 10.1111/cas.13570 PMID: 29532562
  17. Lucianò, A.M.; Pérez-Oliva, A.B.; Mulero, V.; Del Bufalo, D. Bcl-xL: A focus on melanoma pathobiology. Int. J. Mol. Sci., 2021, 22(5), 2777. doi: 10.3390/ijms22052777 PMID: 33803452
  18. Parmar, D.; Apte, M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur. J. Pharmacol., 2021, 899, 174021. doi: 10.1016/j.ejphar.2021.174021 PMID: 33741382
  19. Wu, Z.; Bian, Y.; Chu, T.; Wang, Y.; Man, S.; Song, Y.; Wang, Z. The role of angiogenesis in melanoma: Clinical treatments and future expectations. Front. Pharmacol., 2022, 13, 1028647. doi: 10.3389/fphar.2022.1028647 PMID: 36588679
  20. Pandita, A.; Ekstrand, M.; Bjursten, S.; Zhao, Z.; Fogelstrand, P.; Le Gal, K.; Ny, L.; Bergo, M.O.; Karlsson, J.; Nilsson, J.A.; Akyürek, L.M.; Levin, M.C.; Borén, J.; Ewald, A.J.; Mostov, K.E.; Levin, M. Intussusceptive angiogenesis in human metastatic malignant melanoma. Am. J. Pathol., 2021, 191(11), 2023-2038. doi: 10.1016/j.ajpath.2021.07.009 PMID: 34400131
  21. Pérez-Gutiérrez, L.; Ferrara, N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat. Rev. Mol. Cell Biol., 2023, 24(11), 816-834. doi: 10.1038/s41580-023-00631-w PMID: 37491579
  22. Koizumi, K.; Shintani, T.; Hayashido, Y.; Hamada, A.; Higaki, M.; Yoshioka, Y.; Sakamoto, A.; Yanamoto, S.; Okamoto, T. VEGF-A promotes the motility of human melanoma cells through the VEGFR1–PI3K/Akt signaling pathway. In Vitro Cell. Dev. Biol. Anim., 2022, 58(8), 758-770. doi: 10.1007/s11626-022-00717-3 PMID: 35997849
  23. Desch, A.; Strozyk, E.A.; Bauer, A.T.; Huck, V.; Niemeyer, V.; Wieland, T.; Schneider, S.W. Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin αvβ5-induced secretion of VEGF-A. Am. J. Pathol., 2012, 181(2), 693-705. doi: 10.1016/j.ajpath.2012.04.012 PMID: 22659470
  24. Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer, 2011, 2(12), 1097-1105. doi: 10.1177/1947601911423031 PMID: 22866201
  25. Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov., 2016, 15(6), 385-403. doi: 10.1038/nrd.2015.17 PMID: 26775688
  26. Woolard, J.; Bevan, H.S.; Harper, S.J.; Bates, D.O. Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation, 2009, 16(7), 572-592. doi: 10.1080/10739680902997333 PMID: 19521900
  27. Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med., 2012, 2(7), a006502. doi: 10.1101/cshperspect.a006502 PMID: 22762016
  28. Warren, B.A.; Shubik, P. The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab. Invest., 1966, 15(2), 464-478. PMID: 5932611
  29. Liu, Y.X.; Xu, B.W.; Niu, X.D.; Chen, Y.J.; Fu, X.Q.; Wang, X.Q.; Yin, C.L.; Chou, J.Y.; Li, J.K.; Wu, J.Y.; Bai, J.X.; Wu, Y.; Li, S.M.; Yu, Z.L. Inhibition of Src/STAT3 signaling-mediated angiogenesis is involved in the anti-melanoma effects of dioscin. Pharmacol. Res., 2022, 175, 105983. doi: 10.1016/j.phrs.2021.105983 PMID: 34822972
  30. Hu, F.; Fong, K.O.; Cheung, M.P.L.; Liu, J.A.; Liang, R.; Li, T.W.; Sharma, R.; Ip, P.P.C.; Yang, X.; Cheung, M. DEPDC1B promotes melanoma angiogenesis and metastasis through sequestration of Ubiquitin ligase CDC16 to stabilize secreted SCUBE3. Adv. Sci. (Weinh.), 2022, 9(10), 2105226. doi: 10.1002/advs.202105226 PMID: 35088579
  31. Wohlfeil, S.A.; Häfele, V.; Dietsch, B.; Weller, C.; Sticht, C.; Jauch, A.S.; Winkler, M.; Schmid, C.D.; Irkens, A.L.; Olsavszky, A.; Schledzewski, K.; Reiners-Koch, P.S.; Goerdt, S.; Géraud, C. Angiogenic and molecular diversity determine hepatic melanoma metastasis and response to anti-angiogenic treatment. J. Transl. Med., 2022, 20(1), 62. doi: 10.1186/s12967-022-03255-4 PMID: 35109875
  32. Presta, L.G.; Chen, H.; O’Connor, S.J.; Chisholm, V.; Meng, Y.G.; Krummen, L.; Winkler, M.; Ferrara, N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res., 1997, 57(20), 4593-4599. PMID: 9377574
  33. Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342. doi: 10.1056/NEJMoa032691 PMID: 15175435
  34. Gerber, H.P.; Ferrara, N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res., 2005, 65(3), 671-680. doi: 10.1158/0008-5472.671.65.3 PMID: 15705858
  35. Kang, L.; Li, C.; Rosenkrans, Z.T.; Engle, J.W.; Wang, R.; Jiang, D.; Xu, X.; Cai, W. Noninvasive evaluation of CD20 expression using 64Cu-Labeled F(ab′)2 fragments of Obinutuzumab in lymphoma. J. Nucl. Med., 2021, 62(3), 372-378. doi: 10.2967/jnumed.120.246595 PMID: 32826320
  36. Gmeiner Stopar, T.; Fettich, J.; Zver, S.; Mlinaric-Rascan, I.; Hojker, S.; Socan, A.; Peitl, P.K.; Mather, S. 99mTc-labelled rituximab, a new non-Hodgkin’s lymphoma imaging agent: First clinical experience. Nucl. Med. Commun., 2008, 29(12), 1059-1065. doi: 10.1097/MNM.0b013e3283134d6e PMID: 18987526
  37. Camacho, X.; Machado, C.L.; García, M.F.; Gambini, J.P.; Banchero, A.; Fernández, M.; Oddone, N.; Bertolini, Z.D.; Rosal, C.; Buchpiguel, C.A.; Chammas, R.; Riva, E.; Cabral, P. Technetium-99m- or Cy7-Labeled rituximab as an imaging agent for non-hodgkin lymphoma. Oncology, 2017, 92(4), 229-242. doi: 10.1159/000452419 PMID: 28196364
  38. Camacho, X.; Perroni, C.; Machado, C.L.; de Godoi Carneiro, C.; de Souza Junqueira, M.; Faria, D.; García, M.F.; Fernández, M.; Oddone, N.; Benech, J.; Buchpiguel, C.A.; Cerecetto, H.; Chammas, R.; Riva, E.; Cabral, P.; Gambini, J.P. 99mTechnetium- or Cy7-labeled fab(Tocilizumab) as potential multiple myeloma imaging agents. Anticancer. Agents Med. Chem., 2021, 21(14), 1883-1893. doi: 10.2174/1871520621999210104181238 PMID: 33397271
  39. Camacho, X.; García, M.F.; Calzada, V.; Fernández, M.; Chabalgoity, J.A.; Moreno, M.; Barbosa de Aguiar, R.; Alonso, O.; Gambini, J.P.; Chammas, R.; Cabral, P. (99m)Tc(CO)(3)-radiolabeled bevacizumab: in vitro and in vivo evaluation in a melanoma model. Oncology, 2013, 84(4), 200-209. doi: 10.1159/000338961 PMID: 23328435
  40. Ximena, Camacho; Victoria, Calzada; Marcelo, Fernandez; Omar, Alonso; Roger, Chammas; Williams, Porcal; Pablo, Cabral; Machado, C.M.L.; Chammas, R.; Porcal, W.; Cabral, P. 99mTc-labeled bevacizumab via HYNIC for imaging of melanoma. J. Anal. Oncol., 2014, 3(1) doi: 10.6000/1927-7229.2014.03.01.9
  41. Camacho, X.; Machado, C.L.; García, M.F.; Fernádez, M.; Oddone, N.; Benech, J.; Gambini, J.P.; Cerecetto, H.; Chammas, R.; Cabral, P.; Riva, E. Tocilizumab labeling with 99mTechnetium via HYNIC as a molecular diagnostic agent for multiple myeloma. Anticancer. Agents Med. Chem., 2017, 17(9), 1267-1277. doi: 10.2174/1871520617666170213144917 PMID: 28270081
  42. Camacho, X.; Fernanda, G.M.; Calzada, V.; Fernández, M.; Porcal, W.; Alonso, O.; Pablo Gambini, J.; Cabral, P. Synthesis and evaluation of (99m)Tc chelate-conjugated bevacizumab. Curr. Radiopharm., 2013, 6(1), 12-19. doi: 10.2174/1874471011306010003 PMID: 23035645
  43. Camacho, X.; Perroni, C.; Carneiro, C.G.; Junqueira, M.S.; Machado, C.L.; Faria, D. Molecular imaging of VEGF expression in multiple myeloma and non-hodgkin lymphoma. J. Mol. Biol. Mol. Imaging, 2022, 7(1), 1033.
  44. García, M.F.; Calzada, V.; Camacho, X.; Goicochea, E.; Gambini, J.; Quinn, T.; Porcal, W.; Cabral, P. Microwave-assisted synthesis of HYNIC protected analogue for 99mTc labeled antibody. Curr. Radiopharm., 2014, 7(2), 84-90. doi: 10.2174/1874471007666141128160449 PMID: 25429778
  45. Garcia, M.F.; Camacho, X.; Calzada, V.; Fernandez, M.; Porcal, W.; Alonso, O.; Gambini, J.P.; Cabral, P. Synthesis of 99mTc-nimotuzumab with tricarbonyl ion: In vitro and in vivo studies. Curr. Radiopharm., 2012, 5(1), 59-64. doi: 10.2174/1874471011205010059
  46. Martiniova, L.; Zielinski, R.J.; Lin, M.; DePalatis, L.; Ravizzini, G.C. The role of radiolabeled monoclonal antibodies in cancer imaging and ADC treatment. Cancer J., 2022, 28(6), 446-453. doi: 10.1097/PPO.0000000000000625 PMID: 36383907
  47. Parakh, S.; Lee, S.T.; Gan, H.K.; Scott, A.M. Radiolabeled antibodies for cancer imaging and therapy. Cancers (Basel), 2022, 14(6), 1454. doi: 10.3390/cancers14061454 PMID: 35326605
  48. Schmidt, M.M.; Wittrup, K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther., 2009, 8(10), 2861-2871. doi: 10.1158/1535-7163.MCT-09-0195 PMID: 19825804
  49. Dewulf, J.; Hrynchak, I.; Geudens, S.; Pintelon, I.; Vangestel, C.; Sereno, J.; van Dam, P.A.; Abrunhosa, A.J.; Elvas, F.; Van den Wyngaert, T. Improved characteristics of RANKL Immuno-PET imaging using radiolabeled antibody fab fragments. Pharmaceutics, 2022, 14(5), 939-939. doi: 10.3390/pharmaceutics14050939 PMID: 35631525
  50. Suman, S.K.; Kameswaran, M.; Mallia, M.; Mittal, S.; Dash, A. Synthesis and preliminary evaluation of 99mTc-Hynic-fragments F(ab’)2 and F(ab’) of Rituximab as radioimmunoscintigraphic agents for patients with Non-Hodgkin’s lymphoma. Appl. Radiat. Isot., 2019, 153, 108808. doi: 10.1016/j.apradiso.2019.108808 PMID: 31325798
  51. Xenaki, K.T.; Oliveira, S. van Bergen en Henegouwen, P.M.P. Antibody or antibody fragments: Implications for molecular imaging and targeted therapy of solid tumors. Front. Immunol., 2017, 8, 1287. doi: 10.3389/fimmu.2017.01287 PMID: 29075266
  52. Chakravarty, R.; Rohra, N.; Jadhav, S.; Sarma, H.D.; Jain, R.; Chakraborty, S. Biochemical separation of Cetuximab-Fab from papain-digested antibody fragments and radiolabeling with 64Cu for potential use in radioimmunotheranostics. Appl. Radiat. Isot., 2023, 196, 110795-110795. doi: 10.1016/j.apradiso.2023.110795 PMID: 37004293
  53. Reilly, R.M.; Sandhu, J.; Alvarez-Diez, T.M.; Gallinger, S.; Kirsh, J.; Stern, H. Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin. Pharmacokinet., 1995, 28(2), 126-142. doi: 10.2165/00003088-199528020-00004 PMID: 7736688
  54. Kholodenko, R.V.; Kalinovsky, D.V.; Doronin, I.I.; Ponomarev, E.D.; Kholodenko, I.V. Antibody fragments as potential biopharmaceuticals for cancer therapy: Success and limitations. Curr. Med. Chem., 2019, 26(3), 396-426. doi: 10.2174/0929867324666170817152554 PMID: 28820071
  55. Bates, A.; Power, C.A. David vs. Goliath: The structure, function, and clinical prospects of antibody fragments. Antibodies (Basel), 2019, 8(2), 28. doi: 10.3390/antib8020028 PMID: 31544834
  56. Gill, S.C.; von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem., 1989, 182(2), 319-326. doi: 10.1016/0003-2697(89)90602-7 PMID: 2610349
  57. Tang, Y.; Scollard, D.; Chen, P.; Wang, J.; Holloway, C.; Reilly, R.M. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using 99mTc-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl. Med. Commun., 2005, 26(5), 427-432. doi: 10.1097/00006231-200505000-00006 PMID: 15838425
  58. Wisdom, G.B. Conjugation of antibodies to fluorescein or rhodamine. Methods Mol. Biol., 2005, 295, 131-134. doi: 10.1385/1-59259-873-0:131 PMID: 15596893
  59. Olbryt, M.; Jarząb, M.; Jazowiecka-Rakus, J.; Simek, K.; Szala, S.; Sochanik, A. Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro. Gene Expr., 2006, 13(3), 191-203. doi: 10.3727/000000006783991818 PMID: 17193925
  60. Tassano, M.; Camacho, X.; Freire, T.; Perroni, C.; da Costa, V.; Cabrera, M.; García, M.F.; Fernández, M.; Gambini, J.P.; Cabral, P.; Osinaga, E. Enhanced tumor targeting of radiolabeled mouse/human chimeric anti-tn antibody in losartan-treated mice bearing tn-expressing lung tumors. Cancer Biother. Radiopharm., 2024, 39(5), 337-348. doi: 10.1089/cbr.2023.0138 PMID: 38215243
  61. Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol., 2022, 158(5), 495-503. doi: 10.1001/jamadermatol.2022.0160 PMID: 35353115
  62. Rajabi, P.; Neshat, A.; Mokhtari, M.; Rajabi, M.; Eftekhari, M.; Tavakoli, P. The role of VEGF in melanoma progression. J. Res. Med. Sci., 2012, 17(6), 534-539. PMID: 23626629
  63. Bogusławska-Duch, J.; Ducher, M.; Małecki, M. Resistance of melanoma cells to anticancer treatment: A role of vascular endothelial growth factor. Postepy Dermatol. Alergol., 2020, 37(1), 11-18. doi: 10.5114/ada.2020.93378 PMID: 32467677
  64. Wei, W.; Ehlerding, E.B.; Lan, X.; Luo, Q.; Cai, W. PET and SPECT imaging of melanoma: The state of the art. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(1), 132-150. doi: 10.1007/s00259-017-3839-5 PMID: 29085965
  65. Chakravarty, R.; Goel, S.; Valdovinos, H.F.; Hernandez, R.; Hong, H.; Nickles, R.J.; Cai, W. Matching the decay half-life with the biological half-life: ImmunoPET imaging with (44)Sc-labeled cetuximab Fab fragment. Bioconjug. Chem., 2014, 25(12), 2197-2204. doi: 10.1021/bc500415x PMID: 25389697
  66. Abrams, M.J.; Juweid, M.E.; tenKate, C.I.; Schwartz, D.; Hauser, M.M.; Gaul, F.E.; Fuccello, A.; Rubin, R.H.; Strauss, H.W.; Fischman, A.J. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J. Nucl. Med., 1990, 31(12), 2022-2028. PMID: 2266401

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers