Silibinin Induces Both Apoptosis and Necroptosis with Potential Anti-tumor Efficacy in Lung Cancer


Cite item

Full Text

Abstract

Background:The incidence of lung cancer is steadily on the rise, posing a growing threat to human health. The search for therapeutic drugs from natural active substances and elucidating their mechanism have been the focus of anti-tumor research.

Objective:Silibinin (SiL) has been shown to be a natural product with a wide range of pharmacological activities, including anti-tumour activity. In our work, SiL was chosen as a possible substance that could inhibit lung cancer. Moreover, its effects on inducing tumor cell death were also studied.

Methods:CCK-8 analysis and morphological observation were used to assess the cytotoxic impacts of SiL on lung cancer cells in vitro. The alterations in mitochondrial membrane potential (MMP) and apoptosis rate of cells were detected by flow cytometry. The level of lactate dehydrogenase (LDH) release out of cells was measured. The expression changes of apoptosis or necroptosis-related proteins were detected using western blotting. Protein interactions among RIPK1, RIPK3, and MLKL were analyzed using the co-immunoprecipitation (co-IP) technique. Necrosulfonamide (Nec, an MLKL inhibitor) was used to carry out experiments to assess the changes in apoptosis following the blockade of cell necroptosis. In vivo, SiL was evaluated for its antitumor effects using LLC tumor-bearing mice with mouse lung cancer.

Results:With an increased dose of SiL, the proliferation ability of A549 cells was considerably inhibited, and the accompanying cell morphology changed. The results of flow cytometry showed that after SiL treatment, MMP levels decreased, and the proportion of cells undergoing apoptosis increased. There was an increase in cleaved caspase-9, caspase-3, and PARP, with a down-regulation of Bcl-2 and an up-regulation of Bax. In addition, the amount of LDH released from the cells increased following SiL treatment, accompanied by augmented expression and phosphorylation levels of necroptosis-related proteins (MLKL, RIPK1, and RIPK3), and the co-IP assay further confirmed the interactions among these three proteins, indicating the necrosome formation induced by SiL. Furthermore, Nec increased the apoptotic rate of SiL-treated cells and aggravated the cytotoxic effect of SiL, indicating that necroptosis blockade could switch cell death to apoptosis and increase the inhibitory effect of SiL on A549 cells. In LLC-bearing mice, gastric administration of SiL significantly inhibited tumor growth, and H&E staining showed significant damage to the tumour tissue. The results of the IHC showed that the expression of RIPK1, RIPK3, and MLKL was more pronounced in the tumor tissue.

Conclusion:This study confirmed the dual effect of SiL, as it can induce both biological processes, apoptosis and necroptosis, in lung cancer. SiL-induced apoptosis involved the mitochondrial pathway, as indicated by changes in caspase-9, Bcl-2, and Bax. Necroptosis may be activated due to the changes in the expression of associated proteins in tumour cells and tissues. It has been observed that blocking necroptosis by SiL increased cell death efficiency. This study helps clarify the anti-tumor mechanism of SiL against lung cancer, elucidating its role in the dual induction of apoptosis and necroptosis. Our work provides an experimental basis for the research on cell death induced by SiL and reveals its possible applications for improving the management of lung cancer.

About the authors

Guoqing Zhang

Medical College of Guangxi University,, Guangxi University

Email: info@benthamscience.net

Li Wang

Medical College of Guangxi University, Guangxi University,

Email: info@benthamscience.net

Limei Zhao

Medical College of Guangxi University,, Guangxi University,

Email: info@benthamscience.net

Fang Yang

Medical College of Guangxi University, Guangxi University

Email: info@benthamscience.net

Chunhua Lu

Medical Experimental Center, The First People’s Hospital of Nanning

Email: info@benthamscience.net

Jianhua Yan

Medical College of Guangxi University,, Guangxi University

Email: info@benthamscience.net

Song Zhang

Department of Gastroenterology, General Hospital of Central Theater Command

Email: info@benthamscience.net

Haiping Wang

Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University

Author for correspondence.
Email: info@benthamscience.net

Yixiang Li

Medical College of Guangxi University, Guangxi University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
  2. Sahu, P.; Donovan, C.; Paudel, K.R.; Pickles, S.; Chimankar, V.; Kim, R.Y.; Horvart, J.C.; Dua, K.; Ieni, A.; Nucera, F.; Bielefeldt-Ohmann, H.; Mazilli, S.; Caramori, G.; Lyons, J.G.; Hansbro, P.M. Pre-clinical lung squamous cell carcinoma mouse models to identify novel biomarkers and therapeutic interventions. Front. Oncol., 2023, 13, 1260411. doi: 10.3389/fonc.2023.1260411 PMID: 37817767
  3. Ando, K.; Kishino, Y.; Homma, T.; Kusumoto, S.; Yamaoka, T.; Tanaka, A.; Ohmori, T.; Ohnishi, T.; Sagara, H. Nivolumab plus Ipilimumab versus existing immunotherapies in patients with PD-L1-positive advanced non-small cell lung cancer: A systematic review and network meta-analysis. Cancers (Basel), 2020, 12(7), 1905. doi: 10.3390/cancers12071905 PMID: 32679702
  4. Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y.W.; Buchanan, P. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta, 2015, 1856(2), 189-210. PMID: 26297204
  5. Mott, T.F. Lung Cancer: Management. FP Essent., 2018, 464, 27-30. PMID: 29313655
  6. Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311. doi: 10.1016/S0140-6736(16)30958-8 PMID: 27574741
  7. Shi, K.; Wang, G.; Pei, J.; Zhang, J.; Wang, J.; Ouyang, L.; Wang, Y.; Li, W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J. Hematol. Oncol., 2022, 15(1), 94. doi: 10.1186/s13045-022-01311-6 PMID: 35840984
  8. Singh, S.; Sadhukhan, S.; Sonawane, A. 20 years since the approval of first EGFR-TKI, gefitinib: Insight and foresight. Biochim. Biophys. Acta Rev. Cancer, 2023, 1878(6), 188967. doi: 10.1016/j.bbcan.2023.188967 PMID: 37657684
  9. Zhang, J.; Liu, S.; Chen, X.; Xu, X.; Xu, F. Non-immune cell components in tumor microenvironment influencing lung cancer Immunotherapy. Biomed. Pharmacother., 2023, 166, 115336. doi: 10.1016/j.biopha.2023.115336 PMID: 37591126
  10. Zhang, M.; Chen, X.; Radacsi, N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J. Control. Release, 2021, 329, 96-120. doi: 10.1016/j.jconrel.2020.11.047 PMID: 33259852
  11. Al-Yozbaki, M.; Wilkin, P.J.; Gupta, G.K.; Wilson, C.M. Therapeutic potential of natural compounds in lung cancer. Curr. Med. Chem., 2021, 28(39), 7988-8002. doi: 10.2174/0929867328666210322103906 PMID: 33749551
  12. Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural products as anticancer agents: Current status and future perspectives. Molecules, 2022, 27(23), 8367. doi: 10.3390/molecules27238367 PMID: 36500466
  13. Talib, W.H.; Awajan, D.; Hamed, R.A.; Azzam, A.O.; Mahmod, A.I. AL-Yasari, I.H. Combination anticancer therapies using selected phytochemicals. Molecules, 2022, 27(17), 5452. doi: 10.3390/molecules27175452 PMID: 36080219
  14. Bosch-Barrera, J.; Queralt, B.; Menendez, J.A. Targeting STAT3 with silibinin to improve cancer therapeutics. Cancer Treat. Rev., 2017, 58, 61-69. doi: 10.1016/j.ctrv.2017.06.003 PMID: 28686955
  15. Fanoudi, S.; Alavi, M.S.; Karimi, G.; Hosseinzadeh, H. Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug Chem. Toxicol., 2020, 43(3), 240-254. doi: 10.1080/01480545.2018.1485687 PMID: 30033764
  16. Křen, V.; Valentová, K. Silybin and its congeners: from traditional medicine to molecular effects. Nat. Prod. Rep., 2022, 39(6), 1264-1281. doi: 10.1039/D2NP00013J PMID: 35510639
  17. Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res., 2018, 32(11), 2202-2213. doi: 10.1002/ptr.6171 PMID: 30080294
  18. Wadhwa, K.; Pahwa, R.; Kumar, M.; Kumar, S.; Sharma, P.C.; Singh, G.; Verma, R.; Mittal, V.; Singh, I.; Kaushik, D.; Jeandet, P. Mechanistic insights into the pharmacological significance of Silymarin. Molecules, 2022, 27(16), 5327. doi: 10.3390/molecules27165327 PMID: 36014565
  19. Zi, X.; Grasso, A.W.; Kung, H.J.; Agarwal, R. A flavonoid antioxidant, silymarin, inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and anticarcinogenic effects in human prostate carcinoma DU145 cells. Cancer Res., 1998, 58(9), 1920-1929. PMID: 9581834
  20. Zi, X.; Agarwal, R. Silibinin decreases prostate-specific antigen with cell growth inhibition via G 1 arrest, leading to differentiation of prostate carcinoma cells: Implications for prostate cancer intervention. Proc. Natl. Acad. Sci. USA, 1999, 96(13), 7490-7495. doi: 10.1073/pnas.96.13.7490 PMID: 10377442
  21. Fallah, M.; Davoodvandi, A.; Nikmanzar, S.; Aghili, S.; Mirazimi, S.M.A.; Aschner, M.; Rashidian, A.; Hamblin, M.R.; Chamanara, M.; Naghsh, N.; Mirzaei, H. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed. Pharmacother., 2021, 142, 112024. doi: 10.1016/j.biopha.2021.112024 PMID: 34399200
  22. Iqbal, M.A.; Chattopadhyay, S.; Siddiqui, F.A.; Ur Rehman, A.; Siddiqui, S.; Prakasam, G.; Khan, A.; Sultana, S.; Bamezai, R.N.K. Silibinin induces metabolic crisis in triple‐negative breast cancer cells by modulating EGFR‐MYC‐TXNIP axis: Potential therapeutic implications. FEBS J., 2021, 288(2), 471-485. doi: 10.1111/febs.15353 PMID: 32356386
  23. Jafari, S.; Heydarian, S.; Lai, R.; Mehdizadeh, A.E.; Molavi, O. Silibinin induces immunogenic cell death in cancer cells and enhances the induced immunogenicity by chemotherapy. Bioimpacts, 2023, 13(1), 51-61. doi: 10.34172/bi.2022.23698 PMID: 36816998
  24. Tuli, H.S.; Mittal, S.; Aggarwal, D.; Parashar, G.; Parashar, N.C.; Upadhyay, S.K.; Barwal, T.S.; Jain, A.; Kaur, G.; Savla, R.; Sak, K.; Kumar, M.; Varol, M.; Iqubal, A.; Sharma, A.K. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin. Cancer Biol., 2021, 73, 196-218. doi: 10.1016/j.semcancer.2020.09.014 PMID: 33130037
  25. Verdura, S.; Cuyàs, E.; Ruiz-Torres, V.; Micol, V.; Joven, J.; Bosch-Barrera, J.; Menendez, J.A. Lung cancer management with silibinin: A historical and translational perspective. Pharmaceuticals (Basel), 2021, 14(6), 559. doi: 10.3390/ph14060559 PMID: 34208282
  26. Si, L.; Fu, J.; Liu, W.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Onodera, S.; Ikejima, T. Silibinin-induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells. Arch. Biochem. Biophys., 2020, 685108284. doi: 10.1016/j.abb.2020.108284 PMID: 32014401
  27. Mao, Y.X.; Cai, W.J.; Sun, X.Y.; Dai, P.P.; Li, X.M.; Wang, Q.; Huang, X.L.; He, B.; Wang, P.P.; Wu, G.; Ma, J.F.; Huang, S.B. RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products. Cell Death Dis., 2018, 9(6), 674. doi: 10.1038/s41419-018-0718-3 PMID: 29867140
  28. Ham, J.; Lim, W.; Bazer, F.W.; Song, G. Silibinin stimluates apoptosis by inducing generation of ROS and ER stress in human choriocarcinoma cells. J. Cell. Physiol., 2018, 233(2), 1638-1649. doi: 10.1002/jcp.26069 PMID: 28657208
  29. Zeng, J.; Sun, Y.; Wu, K.; Li, L.; Zhang, G.; Yang, Z.; Wang, Z.; Zhang, D.; Xue, Y.; Chen, Y.; Zhu, G.; Wang, X.; He, D. Chemopreventive and chemotherapeutic effects of intravesical silibinin against bladder cancer by acting on mitochondria. Mol. Cancer Ther., 2011, 10(1), 104-116. doi: 10.1158/1535-7163.MCT-10-0577 PMID: 21220495
  30. Sameri, S.; Mohammadi, C.; Mehrabani, M.; Najafi, R. Targeting the hallmarks of cancer: the effects of silibinin on proliferation, cell death, angiogenesis, and migration in colorectal cancer. BMC Complementary Med. Ther., 2021, 21(1), 160. doi: 10.1186/s12906-021-03330-1 PMID: 34059044
  31. Jahanafrooz, Z.; Motamed, N.; Rinner, B.; Mokhtarzadeh, A.; Baradaran, B. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNAs regulator. Life Sci., 2018, 213, 236-247. doi: 10.1016/j.lfs.2018.10.009 PMID: 30308184
  32. Mateen, S.; Raina, K.; Agarwal, R. Chemopreventive and anti-cancer efficacy of silibinin against growth and progression of lung cancer. Nutr. Cancer, 2013, 65(Suppl. 1), 3-11. doi: 10.1080/01635581.2013.785004
  33. Lins, F.V.; Bispo, E.C.I.; Rodrigues, N.S.; Silva, M.V.S.; Carvalho, J.L.; Gelfuso, G.M.; Saldanha-Araujo, F. Ibrutinib modulates proliferation, migration, mitochondrial homeostasis, and apoptosis in melanoma Cells. Biomedicines, 2024, 12(5), 1012. doi: 10.3390/biomedicines12051012 PMID: 38790974
  34. Rostampour, S.; Eslami, F.; Babaei, E.; Mostafavi, H.; Mahdavi, M. An active compound from the pyrazine family induces apoptosis by targeting the Bax/Bcl2 and Survivin expression in chronic myeloid leukemia K562 cells. Anticancer. Agents Med. Chem., 2024, 24(3), 203-212. doi: 10.2174/0118715206272359231121105713 PMID: 38038011
  35. Özerkan, D. The Determination of cisplatin and luteolin synergistic effect on colorectal cancer cell apoptosis and mitochondrial dysfunction by fluorescence labelling. J. Fluoresc., 2023, 33(3), 1217-1225. doi: 10.1007/s10895-023-03145-y PMID: 36652047
  36. Zhang, L.N.; Xia, Y.Z.; Zhang, C.; Zhang, H.; Luo, J.G.; Yang, L.; Kong, L.Y. Vielanin K enhances doxorubicin-induced apoptosis via activation of IRE1α- TRAF2 - JNK pathway and increases mitochondrial Ca2 + influx in MCF-7 and MCF-7/MDR cells. Phytomedicine, 2020, 78, 153329. doi: 10.1016/j.phymed.2020.153329 PMID: 32896708
  37. Zang, W.; Cao, H.; Ge, J.; Zhao, D. Structures, physical properties and antibacterial activity of silver nanoparticles of Lactiplantibacillus plantarum exopolysaccharide. Int. J. Biol. Macromol., 2024, 263(Pt 2), 130083. doi: 10.1016/j.ijbiomac.2024.130083 PMID: 38423905
  38. Delmas, D.; Xiao, J.; Vejux, A.; Aires, V. Silymarin and cancer: A dual strategy in both in chemoprevention and chemosensitivity. Molecules, 2020, 25(9), 2009. doi: 10.3390/molecules25092009 PMID: 32344919
  39. Degterev, A.; Huang, Z.; Boyce, M.; Li, Y.; Jagtap, P.; Mizushima, N.; Cuny, G.D.; Mitchison, T.J.; Moskowitz, M.A.; Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol., 2005, 1(2), 112-119. doi: 10.1038/nchembio711 PMID: 16408008
  40. Ai, Y.; Meng, Y.; Yan, B.; Zhou, Q.; Wang, X. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. Mol. Cell, 2024, 84(1), 170-179. doi: 10.1016/j.molcel.2023.11.040 PMID: 38181758
  41. Wendlocha, D.; Kubina, R.; Krzykawski, K.; Mielczarek-Palacz, A. Selected flavonols targeting cell death pathways in cancer therapy: The latest achievements in research on apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Nutrients, 2024, 16(8), 1201. doi: 10.3390/nu16081201 PMID: 38674891
  42. Shi, Y.; Wu, C.; Shi, J.; Gao, T.; Ma, H.; Li, L.; Zhao, Y. Protein phosphorylation and kinases: Potential therapeutic targets in necroptosis. Eur. J. Pharmacol., 2024, 970, 176508. doi: 10.1016/j.ejphar.2024.176508 PMID: 38493913
  43. Green, D.R. The coming decade of cell death research: Five riddles. Cell, 2019, 177(5), 1094-1107. doi: 10.1016/j.cell.2019.04.024 PMID: 31100266
  44. Sun, L.; Wang, H.; Wang, Z.; He, S.; Chen, S.; Liao, D.; Wang, L.; Yan, J.; Liu, W.; Lei, X.; Wang, X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 2012, 148(1-2), 213-227. doi: 10.1016/j.cell.2011.11.031 PMID: 22265413
  45. McNamara, D.E.; Quarato, G.; Guy, C.S.; Green, D.R.; Moldoveanu, T. Characterization of MLKL-mediated plasma membrane rupture in necroptosis. J. Vis. Exp., 2018, (138), 58088. PMID: 30148498
  46. Yang, Y.; Xie, E.; Du, L.; Yang, Y.; Wu, B.; Sun, L.; Wang, S.; OuYang, B. Positive Charges in the Brace Region Facilitate the Membrane Disruption of MLKL-NTR in Necroptosis. Molecules, 2021, 26(17), 5194. doi: 10.3390/molecules26175194 PMID: 34500630
  47. Weinelt, N.; Wächtershäuser, K.N.; Celik, G.; Jeiler, B.; Gollin, I.; Zein, L.; Smith, S.; Andrieux, G.; Das, T.; Roedig, J.; Feist, L.; Rotter, B.; Boerries, M.; Pampaloni, F.; van Wijk, S.J.L. LUBAC-mediated M1 Ub regulates necroptosis by segregating the cellular distribution of active MLKL. Cell Death Dis., 2024, 15(1), 77. doi: 10.1038/s41419-024-06447-6 PMID: 38245534
  48. Ramirez, R.X.; Campbell, O.; Pradhan, A.J.; Atilla-Gokcumen, G.E.; Monje-Galvan, V. Modeling the molecular fingerprint of protein-lipid interactions of MLKL on complex bilayers. Front Chem., 2023, 10, 1088058. doi: 10.3389/fchem.2022.1088058 PMID: 36712977
  49. Zhao, J.; Jitkaew, S.; Cai, Z.; Choksi, S.; Li, Q.; Luo, J.; Liu, Z.G. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5322-5327. doi: 10.1073/pnas.1200012109 PMID: 22421439
  50. Wang, N.; Li, C.Y.; Yao, T.F.; Kang, X.D.; Guo, H.S. OSW-1 triggers necroptosis in colorectal cancer cells through the RIPK1/RIPK3/MLKL signaling pathway facilitated by the RIPK1-p62/SQSTM1 complex. World J. Gastroenterol., 2024, 30(15), 2155-2174. doi: 10.3748/wjg.v30.i15.2155 PMID: 38681991
  51. Guan, S.; Qu, X.; Wang, J.; Zhang, D.; Lu, J. 3-Monochloropropane-1,2-diol esters induce HepG2 cells necroptosis via CTSB/TFAM/ROS pathway. Food Chem. Toxicol., 2024, 186114525. doi: 10.1016/j.fct.2024.114525 PMID: 38408632
  52. Zhang, Y.; Zhou, X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed. Pharmacother., 2024, 175, 116667. doi: 10.1016/j.biopha.2024.116667 PMID: 38703504
  53. Liu, R.J.; Yu, X.D.; Yan, S.S.; Guo, Z.W.; Zao, X.B.; Zhang, Y.S. Ferroptosis, pyroptosis and necroptosis in hepatocellular carcinoma immunotherapy: Mechanisms and immunologic landscape (Review). Int. J. Oncol., 2024, 64(6), 63. doi: 10.3892/ijo.2024.5651 PMID: 38757345
  54. Najafov, A.; Chen, H.; Yuan, J. Necroptosis and cancer. Trends Cancer, 2017, 3(4), 294-301. doi: 10.1016/j.trecan.2017.03.002 PMID: 28451648
  55. Yan, J.; Wan, P.; Choksi, S.; Liu, Z.G. Necroptosis and tumor progression. Trends Cancer, 2022, 8(1), 21-27. doi: 10.1016/j.trecan.2021.09.003 PMID: 34627742
  56. Zang, X.; Song, J.; Li, Y.; Han, Y. Targeting necroptosis as an alternative strategy in tumor treatment: From drugs to nanoparticles. J. Control. Release, 2022, 349, 213-226. doi: 10.1016/j.jconrel.2022.06.060 PMID: 35793737
  57. Liu, Z.; Jiao, D. Necroptosis, tumor necrosis and tumorigenesis. Cell Stress, 2020, 4(1), 1-8. doi: 10.15698/cst2020.01.208 PMID: 31922095
  58. Qin, Y.; Sheng, Y.; Ren, M.; Hou, Z.; Xiao, L.; Chen, R. Identification of necroptosis-related gene signatures for predicting the prognosis of ovarian cancer. Sci. Rep., 2024, 14(1), 11133. doi: 10.1038/s41598-024-61849-y PMID: 38750159
  59. Chong, L.H.; Yip, A.K.; Farm, H.J.; Mahmoud, L.N.; Zeng, Y.; Chiam, K.H. The role of cell-matrix adhesion and cell migration in breast tumor growth and progression. Front. Cell Dev. Biol., 2024, 121339251. doi: 10.3389/fcell.2024.1339251 PMID: 38374894
  60. Höckendorf, U.; Yabal, M.; Herold, T.; Munkhbaatar, E.; Rott, S.; Jilg, S.; Kauschinger, J.; Magnani, G.; Reisinger, F.; Heuser, M.; Kreipe, H.; Sotlar, K.; Engleitner, T.; Rad, R.; Weichert, W.; Peschel, C.; Ruland, J.; Heikenwalder, M.; Spiekermann, K.; Slotta-Huspenina, J.; Groß, O.; Jost, P.J. RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell, 2016, 30(1), 75-91. doi: 10.1016/j.ccell.2016.06.002 PMID: 27411587
  61. Seifert, L.; Werba, G.; Tiwari, S.; Giao Ly, N.N.; Alothman, S.; Alqunaibit, D.; Avanzi, A.; Barilla, R.; Daley, D.; Greco, S.H.; Torres-Hernandez, A.; Pergamo, M.; Ochi, A.; Zambirinis, C.P.; Pansari, M.; Rendon, M.; Tippens, D.; Hundeyin, M.; Mani, V.R.; Hajdu, C.; Engle, D.; Miller, G. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature, 2016, 532(7598), 245-249. doi: 10.1038/nature17403 PMID: 27049944
  62. Seehawer, M.; Heinzmann, F.; D’Artista, L.; Harbig, J.; Roux, P.F.; Hoenicke, L.; Dang, H.; Klotz, S.; Robinson, L.; Doré, G.; Rozenblum, N.; Kang, T.W.; Chawla, R.; Buch, T.; Vucur, M.; Roth, M.; Zuber, J.; Luedde, T.; Sipos, B.; Longerich, T.; Heikenwälder, M.; Wang, X.W.; Bischof, O.; Zender, L. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature, 2018, 562(7725), 69-75. doi: 10.1038/s41586-018-0519-y PMID: 30209397
  63. Qin, X.; Ma, D.; Tan, Y.; Wang, H.; Cai, Z. The role of necroptosis in cancer: A double-edged sword? Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 259-266. doi: 10.1016/j.bbcan.2019.01.006 PMID: 30716362
  64. Xue, Y.; Jiang, X.; Wang, J.; Zong, Y.; Yuan, Z.; Miao, S.; Mao, X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark. Res., 2023, 11(1), 2. doi: 10.1186/s40364-022-00433-w PMID: 36600313
  65. Scimeca, M.; Rovella, V.; Palumbo, V.; Scioli, M.P.; Bonfiglio, R.; Melino, G.; Piacentini, M.; Frati, L.; Agostini, M.; Candi, E.; Mauriello, A. Tor, Centre.; Melino, G.; Piacentini, M.; Frati, L.; Agostini, M.; Candi, E.; Mauriello, A. Programmed cell death pathways in cholangiocarcinoma: Opportunities for targeted therapy. Cancers (Basel), 2023, 15(14), 3638. doi: 10.3390/cancers15143638 PMID: 37509299
  66. Thijssen, R.; Alvarez-Diaz, S.; Grace, C.; Gao, M.; Segal, D.H.; Xu, Z.; Strasser, A.; Huang, D.C.S. Loss of RIPK3 does not impact MYC-driven lymphomagenesis or chemotherapeutic drug-induced killing of malignant lymphoma cells. Cell Death Differ., 2020, 27(8), 2531-2533. doi: 10.1038/s41418-020-0576-2 PMID: 32555451
  67. Renaud, C.C.N.; Nicolau, C.A.; Maghe, C.; Trillet, K.; Jardine, J.; Escot, S.; David, N.; Gavard, J.; Bidère, N. Necrosulfonamide causes oxidation of PCM1 and impairs ciliogenesis and autophagy. iScience, 2024, 27(4), 109580. doi: 10.1016/j.isci.2024.109580 PMID: 38600973
  68. Tang, Y.; Zhuang, C. Design, synthesis and anti-necroptosis activity of fused heterocyclic MLKL inhibitors. Bioorg. Med. Chem., 2024, 102, 117659. doi: 10.1016/j.bmc.2024.117659 PMID: 38442525
  69. Oh, J.H.; Park, S.; Hong, E.; Choi, M.A.; Kwon, Y.M.; Park, J.; Lee, A.H.; Park, G.R.; Kim, H.Y.; Lee, S.M.; Lee, J.Y.; Bae, S.H.; Lee, J.H.; Lee, J.Y.; Jun, D.W. Novel inhibitor of mixed-lineage kinase domain-like protein: The antifibrotic effects of a necroptosis antagonist. ACS Pharmacol. Transl. Sci., 2023, 6(10), 1471-1479. doi: 10.1021/acsptsci.3c00131 PMID: 37854622
  70. Tong, K.; Li, S.; Chen, G.; Ma, C.; Liu, X.; Liu, S.; Chen, N. Inhibition of neural stem cell necroptosis mediated by RIPK1/MLKL promotes functional recovery after SCI. Mol. Neurobiol., 2023, 60(4), 2135-2149. doi: 10.1007/s12035-022-03156-z PMID: 36602703
  71. Jiao, D.; Cai, Z.; Choksi, S.; Ma, D.; Choe, M.; Kwon, H.J.; Baik, J.Y.; Rowan, B.G.; Liu, C.; Liu, Z. Necroptosis of tumor cells leads to tumor necrosis and promotes tumor metastasis. Cell Res., 2018, 28(8), 868-870. doi: 10.1038/s41422-018-0058-y PMID: 29941926
  72. Liu, Z.; Choksi, S.; Kwon, H.J.; Jiao, D.; Liu, C.; Liu, Z. Tumor necroptosis-mediated shedding of cell surface proteins promotes metastasis of breast cancer by suppressing anti-tumor immunity. Breast Cancer Res., 2023, 25(1), 10. doi: 10.1186/s13058-023-01604-9 PMID: 36703228
  73. Li, F.; Sun, H.; Yu, Y.; Che, N.; Han, J.; Cheng, R.; Zhao, N.; Guo, Y.; Huang, C.; Zhang, D. RIPK1-dependent necroptosis promotes vasculogenic mimicry formation via eIF4E in triple-negative breast cancer. Cell Death Dis., 2023, 14(5), 335. doi: 10.1038/s41419-023-05841-w PMID: 37217473

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers