Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer

  • Авторы: Song Q.1, Zheng Y.1, Zhong G.2, Wang S.2, He C.1, Li M.2
  • Учреждения:
    1. Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University,
    2. Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology,, The Third Affiliated Hospital of Guangzhou Medical University
  • Выпуск: Том 24, № 18 (2024)
  • Страницы: 1305-1326
  • Раздел: Oncology
  • URL: https://snv63.ru/1871-5206/article/view/643963
  • DOI: https://doi.org/10.2174/0118715206323900240807110122
  • ID: 643963

Цитировать

Полный текст

Аннотация

:Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.

Об авторах

Qiuyu Song

Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University,

Email: info@benthamscience.net

Yifeng Zheng

Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University,

Email: info@benthamscience.net

Guoqiang Zhong

Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology,, The Third Affiliated Hospital of Guangzhou Medical University

Email: info@benthamscience.net

Shanping Wang

Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology,, The Third Affiliated Hospital of Guangzhou Medical University

Email: info@benthamscience.net

Chengcheng He

Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University,

Автор, ответственный за переписку.
Email: info@benthamscience.net

Mingsong Li

Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology,, The Third Affiliated Hospital of Guangzhou Medical University

Email: info@benthamscience.net

Список литературы

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  2. Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732. doi: 10.1038/s41575-019-0189-8 PMID: 31455888
  3. Carethers, J.M.; Doubeni, C.A. Causes of socioeconomic disparities in colorectal cancer and intervention framework and strategies. Gastroenterology, 2020, 158(2), 354-367. doi: 10.1053/j.gastro.2019.10.029 PMID: 31682851
  4. Veettil, S.K.; Wong, T.Y.; Loo, Y.S.; Playdon, M.C.; Lai, N.M.; Giovannucci, E.L.; Chaiyakunapruk, N. Role of diet in colorectal cancer incidence: Umbrella review of meta-analyses of prospective observational studies. JAMA Netw. Open, 2021, 4(2), e2037341. doi: 10.1001/jamanetworkopen.2020.37341 PMID: 33591366
  5. Hu, Y.; Liang, Z.; Song, B.; Han, H.; Pickhardt, P.J.; Zhu, W.; Duan, C.; Zhang, H.; Barish, M.A.; Lascarides, C.E. Texture feature extraction and analysis for polyp differentiation via computed tomography colonography. IEEE Trans. Med. Imaging, 2016, 35(6), 1522-1531. doi: 10.1109/TMI.2016.2518958 PMID: 26800530
  6. Haggag, E.; Elshamy, A.; Rabeh, M.; Gabr, N.; Salem, M.; Youssif, K.; Samir, A.; Bin Muhsinah, A.; Alsayari, A.; Abdelmohsen, U.R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomedicine, 2019, 14, 6217-6229. doi: 10.2147/IJN.S214171 PMID: 31496682
  7. Pitek, A.S.; Hu, H.; Shukla, S.; Steinmetz, N.F. Cancer theranostic applications of albumin-coated tobacco mosaic virus nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(46), 39468-39477. doi: 10.1021/acsami.8b12499 PMID: 30403330
  8. Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol., 2022, 20(1), 262. doi: 10.1186/s12951-022-01477-8 PMID: 35672712
  9. Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.B.; Cai, L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther., 2023, 8(1), 418. doi: 10.1038/s41392-023-01642-x PMID: 37919282
  10. Bi, J.; Mo, C.; Li, S.; Huang, M.; Lin, Y.; Yuan, P.; Liu, Z.; Jia, B.; Xu, S. Immunotoxicity of metal and metal oxide nanoparticles: From toxic mechanisms to metabolism and outcomes. Biomater. Sci., 2023, 11(12), 4151-4183. doi: 10.1039/D3BM00271C PMID: 37161951
  11. Zhang, Y.; Petibone, D.; Xu, Y.; Mahmood, M.; Karmakar, A.; Casciano, D.; Ali, S.; Biris, A.S. Toxicity and efficacy of carbon nanotubes and graphene: The utility of carbon-based nanoparticles in nanomedicine. Drug Metab. Rev., 2014, 46(2), 232-246. doi: 10.3109/03602532.2014.883406 PMID: 24506522
  12. Hamidu, A.; Pitt, W.G.; Husseini, G.A. Recent breakthroughs in using quantum dots for cancer imaging and drug delivery purposes. Nanomaterials (Basel), 2023, 13(18), 2566. doi: 10.3390/nano13182566 PMID: 37764594
  13. Hamelmann, N.M.; Paulusse, J.M.J. Single-chain polymer nanoparticles in biomedical applications. J. Control. Release, 2023, 356, 26-42. doi: 10.1016/j.jconrel.2023.02.019 PMID: 36804328
  14. Deirram, N.; Zhang, C.; Kermaniyan, S.S.; Johnston, A.P.R.; Such, G.K. Ph-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun., 2019, 40(10), 1800917. doi: 10.1002/marc.201800917 PMID: 30835923
  15. De Leo, V.; Maurelli, A.M.; Giotta, L.; Catucci, L. Liposomes containing nanoparticles: Preparation and applications. Colloids Surf. B Biointerfaces, 2022, 218, 112737. doi: 10.1016/j.colsurfb.2022.112737 PMID: 35933888
  16. Yang, R.; Chen, L.; Wang, Y.; Zhang, L.; Zheng, X.; Yang, Y.; Zhu, Y. Tumor microenvironment responsive metal nanoparticles in cancer immunotherapy. Front. Immunol., 2023, 14, 1237361. doi: 10.3389/fimmu.2023.1237361 PMID: 37575228
  17. Huang, S.J.; Wang, T.H.; Chou, Y.H.; Wang, H.M.D.; Hsu, T.C.; Yow, J.L.; Tzang, B.S.; Chiang, W.H. Hybrid PEGylated chitosan/PLGA nanoparticles designed as pH-responsive vehicles to promote intracellular drug delivery and cancer chemotherapy. Int. J. Biol. Macromol., 2022, 210, 565-578. doi: 10.1016/j.ijbiomac.2022.04.209 PMID: 35513093
  18. Díez-Pascual, A.M. Carbon-based nanomaterials. Int. J. Mol. Sci., 2021, 22(14), 7726. doi: 10.3390/ijms22147726 PMID: 34299346
  19. Pleskova, S.; Mikheeva, E.; Gornostaeva, E. Using of quantum dots in biology and medicine. Adv. Exp. Med. Biol., 2018, 1048, 323-334. doi: 10.1007/978-3-319-72041-8_19 PMID: 29453547
  20. Soldado, A.; Barrio, L.C.; Díaz-Gonzalez, M.; de la Escosura-Muñiz, A.; Costa-Fernandez, J.M. Advances in quantum dots as diagnostic tools. Adv. Clin. Chem., 2022, 107, 1-40. doi: 10.1016/bs.acc.2021.07.001 PMID: 35337601
  21. Xu, Q.; Gao, J.; Wang, S.; Wang, Y.; Liu, D.; Wang, J. Quantum dots in cell imaging and their safety issues. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(29), 5765-5779. doi: 10.1039/D1TB00729G PMID: 34212167
  22. Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571. doi: 10.1016/j.ijpharm.2021.120571 PMID: 33812967
  23. Akkewar, A.; Mahajan, N.; Kharwade, R.; Gangane, P. Liposomes in the targeted gene therapy of cancer: A critical review. Curr. Drug Deliv., 2023, 20(4), 350-370. doi: 10.2174/1567201819666220421113127 PMID: 35593362
  24. Silveira, M.J.; Martins, C.; Cruz, T.; Castro, F.; Amorim-Costa, .; Chester, K.; Oliveira, M.J.; Sarmento, B. scFv biofunctionalized nanoparticles to effective and safe targeting of CEA-expressing colorectal cancer cells. J. Nanobiotechnol., 2023, 21(1), 357. doi: 10.1186/s12951-023-02126-4 PMID: 37784150
  25. Qin, W.; Chandra, J.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.S.; Kesharwani, P.; Cao, H.L. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol. Cancer, 2023, 22(1), 87. doi: 10.1186/s12943-023-01784-0 PMID: 37226188
  26. Wang, J.; Zhang, L.; Xin, H.; Guo, Y.; Zhu, B.; Su, L.; Wang, S.; Zeng, J.; Chen, Q.; Deng, R.; Wang, Z.; Wang, J.; Jin, X.; Gui, S.; Xu, Y.; Lu, X. Mitochondria-targeting folic acid-modified nanoplatform based on mesoporous carbon and a bioactive peptide for improved colorectal cancer treatment. Acta Biomater., 2022, 152, 453-472. doi: 10.1016/j.actbio.2022.08.071 PMID: 36084923
  27. Abbasi, M.; Sohail, M.; Minhas, M.U.; Mahmood, A.; Shah, S.A.; Munir, A.; Kashif, M.U.R. Folic acid-decorated alginate nanoparticles loaded hydrogel for the oral delivery of diferourylmethane in colorectal cancer. Int. J. Biol. Macromol., 2023, 233, 123585. doi: 10.1016/j.ijbiomac.2023.123585 PMID: 36758757
  28. Wei, Y.; Gu, X.; Sun, Y.; Meng, F.; Storm, G.; Zhong, Z. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J. Control. Release, 2020, 319, 407-415. doi: 10.1016/j.jconrel.2020.01.012 PMID: 31923538
  29. Liu, D.; Liang, S.; Ma, K.; Meng, Q.F.; Li, X.; Wei, J.; Zhou, M.; Yun, K.; Pan, Y.; Rao, L.; Chen, X.; Wang, Z. Tumor microenvironment-responsive nanoparticles amplifying sting signaling pathway for cancer immunotherapy. Adv. Mater., 2024, 36(6), 2304845. doi: 10.1002/adma.202304845 PMID: 37723642
  30. Abed, Z.; Shakeri-Zadeh, A.; Eyvazzadeh, N. Magnetic targeting of magneto-plasmonic nanoparticles and their effects on temperature profile of nir laser irradiated to ct26 tumor in balb/c mice. J. Biomed. Phys. Eng., 2021, 11(3), 281-288. doi: 10.31661/jbpe.v0i0.1032 PMID: 34189116
  31. Thébault, C.J.; Ramniceanu, G.; Michel, A.; Beauvineau, C.; Girard, C.; Seguin, J.; Mignet, N.; Ménager, C.; Doan, B.T. In vivo evaluation of magnetic targeting in mice colon tumors with ultra-magnetic liposomes monitored by mri. Mol. Imaging Biol., 2019, 21(2), 269-278. doi: 10.1007/s11307-018-1238-3 PMID: 29942990
  32. Yusefi, M.; Lee-Kiun, M.S.; Shameli, K.; Teow, S.Y.; Ali, R.R.; Siew, K.K.; Chan, H.Y.; Wong, M.M.T.; Lim, W.L.; Kuča, K. 5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment. Carbohydr. Polym., 2021, 273, 118523. doi: 10.1016/j.carbpol.2021.118523 PMID: 34560940
  33. Zheng, J.; Lu, C.; Ding, Y.; Zhang, J.; Tan, F.; Liu, J.; Yang, G.; Wang, Y.; Li, Z.; Yang, M.; Yang, Y.; Gong, W.; Gao, C. Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties. Int. J. Pharm., 2022, 619, 121719. doi: 10.1016/j.ijpharm.2022.121719 PMID: 35390488
  34. Tam, J.M.; Tam, J.O.; Murthy, A.; Ingram, D.R.; Ma, L.L.; Travis, K.; Johnston, K.P.; Sokolov, K.V. Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications. ACS Nano, 2010, 4(4), 2178-2184. doi: 10.1021/nn9015746 PMID: 20373747
  35. Sanli, S.; Ghorbani-Zamani, F.; Moulahoum, H.; Gumus, Z.P.; Coskunol, H.; Odaci, D.D.; Timur, S. Application of biofunctionalized magnetic nanoparticles based-sensing in abused drugs diagnostics. Anal. Chem., 2020, 92(1), 1033-1040. doi: 10.1021/acs.analchem.9b04025 PMID: 31800231
  36. Wang, B.Y.; Gu, B.C.; Wang, G.J.; Yang, Y.H.; Wu, C.C. Detection of amyloid-β(1-42) aggregation with a nanostructured electrochemical sandwich immunoassay biosensor. Front. Bioeng. Biotechnol., 2022, 10, 853947. doi: 10.3389/fbioe.2022.853947 PMID: 35372290
  37. Lai, M.H.; Lee, S.; Smith, C.E.; Kim, K.; Kong, H. Tailoring polymersome bilayer permeability improves enhanced permeability and retention effect for bioimaging. ACS Appl. Mater. Interfaces, 2014, 6(13), 10821-10829. doi: 10.1021/am502822n PMID: 24915107
  38. Chen, W.; Zhang, Y.; Di, K.; Liu, C.; Xia, Y.; Ding, S.; Shen, H.; Li, Z. A washing-free and easy-to-operate fluorescent biosensor for highly efficient detection of breast cancer-derived exosomes. Front. Bioeng. Biotechnol., 2022, 10, 945858. doi: 10.3389/fbioe.2022.945858 PMID: 35837545
  39. Ren, R.; Sun, H.; Ma, C.; Liu, J.; Wang, H. Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment. Cell Biosci., 2019, 9(1), 62. doi: 10.1186/s13578-019-0325-8 PMID: 31402975
  40. Wang, M.; Pan, Y.; Wu, S.; Sun, Z.; Wang, L.; Yang, J.; Yin, Y.; Li, G. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks. Biosens. Bioelectron., 2020, 169, 112638. doi: 10.1016/j.bios.2020.112638 PMID: 32987328
  41. Sun, Z.; Li, J.; Yang, Y.; Tong, Y.; Li, H.; Wang, C.; Du, L.; Jiang, Y. Ratiometric fluorescent biosensor based on self-assembled fluorescent gold nanoparticles and duplex-specific nuclease-assisted signal amplification for sensitive detection of exosomal mirna. Bioconjug. Chem., 2022, 33(9), 1698-1706. doi: 10.1021/acs.bioconjchem.2c00309 PMID: 35960898
  42. Dar, N.; Chen, K.Y.; Nien, Y.T.; Perkas, N.; Gedanken, A.; Chen, I.G. Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant. Appl. Surf. Sci., 2015, 331, 219-224. doi: 10.1016/j.apsusc.2015.01.045
  43. Liang, H.; Li, Z.; Wang, W.; Wu, Y.; Xu, H. Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering. Adv. Mater., 2009, 21(45), 4614-4618. doi: 10.1002/adma.200901139
  44. Aldosari, F.M.M. Characterization of labeled gold nanoparticles for surface-enhanced raman scattering. Molecules, 2022, 27(3), 892. doi: 10.3390/molecules27030892 PMID: 35164155
  45. Toiyama, Y.; Takahashi, M.; Hur, K.; Nagasaka, T.; Tanaka, K.; Inoue, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J. Natl. Cancer Inst., 2013, 105(12), 849-859. doi: 10.1093/jnci/djt101 PMID: 23704278
  46. Cottonham, C.L.; Kaneko, S.; Xu, L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J. Biol. Chem., 2010, 285(46), 35293-35302. doi: 10.1074/jbc.M110.160069 PMID: 20826792
  47. Zhou, J.; Zhang, M.; Huang, Y.; Feng, L.; Chen, H.; Hu, Y.; Chen, H.; Zhang, K.; Zheng, L.; Zheng, S. MicroRNA-320b promotes colorectal cancer proliferation and invasion by competing with its homologous microRNA-320a. Cancer Lett., 2015, 356(2), 669-675. doi: 10.1016/j.canlet.2014.10.014 PMID: 25458952
  48. Wu, J.; Li, S.; Ma, Y.; Zhi, W.; Chen, T.; Huang, X.; Huang, C.; Zhou, X.; Zhang, P.; Zhang, Y.; Zheng, G.; Wang, Z.; Zhong, X.; Cai, H.; Wang, W.; Sun, P.; Zhou, H. 3D hierarchic interfacial assembly of Au nanocage@Au along with IS-AgMNPs for simultaneous, ultrasensitive, reliable, and quantitative SERS detection of colorectal cancer related miRNAs. Biosens. Bioelectron., 2024, 248, 115993. doi: 10.1016/j.bios.2023.115993 PMID: 38183788
  49. Álvarez-Chaver, P.; Otero-Estévez, O.; Páez de la Cadena, M.; Rodríguez-Berrocal, F.J.; Martínez-Zorzano, V.S. Proteomics for discovery of candidate colorectal cancer biomarkers. World J. Gastroenterol., 2014, 20(14), 3804-3824. doi: 10.3748/wjg.v20.i14.3804 PMID: 24744574
  50. Zhang, X.; Gan, T.; Xu, Z.; Zhang, H.; Wang, D.; Zhao, X.; Huang, Y.; Liu, Q.; Fu, B.; Dai, Z.; Li, P.; Xu, W. Immune-like sandwich multiple hotspots SERS biosensor for ultrasensitive detection of NDKA biomarker in serum. Talanta, 2024, 271, 125630. doi: 10.1016/j.talanta.2024.125630 PMID: 38237280
  51. Gogoi, P.; Kaur, G.; Singh, N.K. Nanotechnology for colorectal cancer detection and treatment. World J. Gastroenterol., 2022, 28(46), 6497-6511. doi: 10.3748/wjg.v28.i46.6497 PMID: 36569271
  52. Shi, X.; Gao, K.; Xiong, S.; Gao, R. Multifunctional transferrin encapsulated gdf(3) nanoparticles for sentinel lymph node and tumor imaging. Bioconjug. Chem., 2020, 31(11), 2576-2584. doi: 10.1021/acs.bioconjchem.0c00514 PMID: 33155818
  53. Zhang, Y.; Shi, F.; Cheng, J.; Wang, L.; Yap, P.T.; Shen, D. Longitudinally guided super-resolution of neonatal brain magnetic resonance images. IEEE Trans. Cybern., 2019, 49(2), 662-674. doi: 10.1109/TCYB.2017.2786161 PMID: 29994176
  54. Ichikawa, T.; Erturk, S.M.; Motosugi, U.; Sou, H.; Iino, H.; Araki, T.; Fujii, H. High-B-value diffusion-weighted MRI in colorectal cancer. AJR Am. J. Roentgenol., 2006, 187(1), 181-184. doi: 10.2214/AJR.05.1005 PMID: 16794174
  55. Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev., 2020, 86, 102017. doi: 10.1016/j.ctrv.2020.102017 PMID: 32335505
  56. Bhattacharya, R.; Fan, F.; Wang, R.; Ye, X.; Xia, L.; Boulbes, D.; Ellis, L.M. Intracrine VEGF signalling mediates colorectal cancer cell migration and invasion. Br. J. Cancer, 2017, 117(6), 848-855. doi: 10.1038/bjc.2017.238 PMID: 28742793
  57. Hsieh, W.J.; Liang, C.J.; Chieh, J.J.; Wang, S.H.; Lai, I.R.; Chen, J.H.; Chang, F.H.; Tseng, W.K.; Yang, S.Y.; Wu, C.C.; Chen, Y.L. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles. Int. J. Nanomedicine, 2012, 7, 2833-2842. PMID: 22745546
  58. He, X.; Liu, F.; Liu, L.; Duan, T.; Zhang, H.; Wang, Z. Lectin-conjugated Fe2O3@Au core@Shell nanoparticles as dual mode contrast agents for in vivo detection of tumor. Mol. Pharm., 2014, 11(3), 738-745. doi: 10.1021/mp400456j PMID: 24472046
  59. Li, D.; Yang, J.; Xu, Z.; Li, Y.; Sun, Y.; Wang, Y.; Zou, H.; Wang, K.; Yang, L.; Wu, L.; Sun, X. C-met-targeting (19)f mri nanoparticles with ultralong tumor retention for precisely detecting small or ill-defined colorectal liver metastases. Int. J. Nanomed., 2023, 18, 2181-2196. doi: 10.2147/IJN.S403190 PMID: 37131548
  60. Choi, S.H.; Tamura, K.; Khajuria, R.K.; Bhere, D.; Nesterenko, I.; Lawler, J.; Shah, K. Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas. Mol. Ther., 2015, 23(2), 235-243. doi: 10.1038/mt.2014.214 PMID: 25358253
  61. Chen, L.; Xie, J.; Wu, H.; Zang, F.; Ma, M.; Hua, Z.; Gu, N.; Zhang, Y. Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe. Colloids Surf. B Biointerfaces, 2018, 161, 339-346. doi: 10.1016/j.colsurfb.2017.10.059 PMID: 29100127
  62. Gade, M.; Kubik, M.; Fisker, R.V.; Thorlacius-Ussing, O.; Petersen, L.J. Diagnostic value of 18F-FDG PET/CT as first choice in the detection of recurrent colorectal cancer due to rising CEA. Cancer Imaging, 2015, 15(1), 11. doi: 10.1186/s40644-015-0048-y PMID: 26263901
  63. Zhou, J.; Zou, S.; Kuang, D.; Yan, J.; Zhao, J.; Zhu, X. A novel approach using fdg-pet/ct-based radiomics to assess tumor immune phenotypes in patients with non-small cell lung cancer. Front. Oncol., 2021, 11, 769272. doi: 10.3389/fonc.2021.769272 PMID: 34868999
  64. Kong, F.M.S.; Li, L.; Wang, W.; Campbell, J.; Waller, J.L.; Piert, M.; Gross, M.; Cheng, M.; Owen, D.; Stenmark, M.; Huang, K.C.; Frey, K.A.; Ten Haken, R.K.; Lawrence, T.S. Greater reduction in mid-treatment FDG-PET volume may be associated with worse survival in non-small cell lung cancer. Radiother. Oncol., 2019, 132, 241-249. doi: 10.1016/j.radonc.2018.10.006 PMID: 30389239
  65. Bicik, I.; Bauerfeind, P.; Breitbach, T.; von Schulthess, G.K.; Fried, M. Inflammatory bowel disease activity measured by positronemission tomography. Lancet, 1997, 350(9073), 262. doi: 10.1016/S0140-6736(05)62225-8 PMID: 9242806
  66. Gonzalez-Menendez, P.; Hevia, D.; Alonso-Arias, R.; Alvarez-Artime, A.; Rodriguez-Garcia, A.; Kinet, S.; Gonzalez-Pola, I.; Taylor, N.; Mayo, J.C.; Sainz, R.M. GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol., 2018, 17, 112-127. doi: 10.1016/j.redox.2018.03.017 PMID: 29684818
  67. Garrigue, P.; Tang, J.; Ding, L.; Bouhlel, A.; Tintaru, A.; Laurini, E.; Huang, Y.; Lyu, Z.; Zhang, M.; Fernandez, S.; Balasse, L.; Lan, W.; Mas, E.; Marson, D.; Weng, Y.; Liu, X.; Giorgio, S.; Iovanna, J.; Pricl, S.; Guillet, B.; Peng, L. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc. Natl. Acad. Sci. USA, 2018, 115(45), 11454-11459. doi: 10.1073/pnas.1812938115 PMID: 30348798
  68. Jing, B.; Qian, R.; Jiang, D.; Gai, Y.; Liu, Z.; Guo, F.; Ren, S.; Gao, Y.; Lan, X.; An, R. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery. J. Nanobiotechnology, 2021, 19(1), 151. doi: 10.1186/s12951-021-00888-3 PMID: 34022897
  69. Wan, H.; Du, H.; Wang, F.; Dai, H. Molecular imaging in the second near-infrared window. Adv. Funct. Mater., 2019, 29(25), 1900566. doi: 10.1002/adfm.201900566 PMID: 31885529
  70. Kurbegovic, S.; Juhl, K.; Chen, H.; Qu, C.; Ding, B.; Leth, J.M.; Drzewiecki, K.T.; Kjaer, A.; Cheng, Z. Molecular targeted nir-ii probe for image-guided brain tumor surgery. Bioconjug. Chem., 2018, 29(11), 3833-3840. doi: 10.1021/acs.bioconjchem.8b00669 PMID: 30296054
  71. Antaris, A.L.; Chen, H.; Diao, S.; Ma, Z.; Zhang, Z.; Zhu, S.; Wang, J.; Lozano, A.X.; Fan, Q.; Chew, L.; Zhu, M.; Cheng, K.; Hong, X.; Dai, H.; Cheng, Z. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun., 2017, 8(1), 15269. doi: 10.1038/ncomms15269 PMID: 28524850
  72. Wan, H.; Ma, H.; Zhu, S.; Wang, F.; Tian, Y.; Ma, R.; Yang, Q.; Hu, Z.; Zhu, T.; Wang, W.; Ma, Z.; Zhang, M.; Zhong, Y.; Sun, H.; Liang, Y.; Dai, H. Developing a bright nir-ii fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint pd-l1. Adv. Funct. Mater., 2018, 28(50), 1804956. doi: 10.1002/adfm.201804956 PMID: 31832053
  73. Zhang, Q.; Zhou, H.; Chen, H.; Zhang, X.; He, S.; Ma, L.; Qu, C.; Fang, W.; Han, Y.; Wang, D.; Huang, Y.; Sun, Y.; Fan, Q.; Chen, Y.; Cheng, Z. Hierarchically nanostructured hybrid platform for tumor delineation and image-guided surgery via nir-ii fluorescence and pet bimodal imaging. Small, 2019, 15(45), 1903382. doi: 10.1002/smll.201903382 PMID: 31550084
  74. Peng, Y.; Zhu, L.; Wang, L.; Liu, Y.; Fang, K.; Lan, M.; Shen, D.; Liu, D.; Yu, Z.; Guo, Y. Preparation of nanobubbles modified with a small-molecule cxcr4 antagonist for targeted drug delivery to tumors and enhanced ultrasound molecular imaging. Int. J. Nanomedicine, 2019, 14, 9139-9157. doi: 10.2147/IJN.S210478 PMID: 32063704
  75. Zhou, J.L.; Lin, G.L.; Zhao, D.C.; Zhong, G.X.; Qiu, H.Z. Resection of multiple rectal carcinoids with transanal endoscopic microsurgery: Case report. World J. Gastroenterol., 2015, 21(7), 2220-2224. doi: 10.3748/wjg.v21.i7.2220 PMID: 25717261
  76. Chen, M.; Liang, X.; Gao, C.; Zhao, R.; Zhang, N.; Wang, S.; Chen, W.; Zhao, B.; Wang, J.; Dai, Z. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer. ACS Nano, 2018, 12(7), 7312-7326. doi: 10.1021/acsnano.8b03674 PMID: 29901986
  77. Wang, P.; Wang, X.; Luo, Q.; Li, Y.; Lin, X.; Fan, L.; Zhang, Y.; Liu, J.; Liu, X. Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy. Theranostics, 2019, 9(2), 369-380. doi: 10.7150/thno.29817 PMID: 30809280
  78. Wang, L.; Ma, N.; Okamoto, S.; Amaishi, Y.; Sato, E.; Seo, N.; Mineno, J.; Takesako, K.; Kato, T.; Shiku, H. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome. OncoImmunology, 2016, 5(9), e1211218. doi: 10.1080/2162402X.2016.1211218 PMID: 27757303
  79. Li, X.; Xie, G.; Zhai, J.; He, Y.; Wang, T.; Wang, Y.; Shen, L. Association of serum Interleukin-8 level with lymph node metastasis and tumor recurrence in gastric cancer. Front. Oncol., 2022, 12, 975269. doi: 10.3389/fonc.2022.975269 PMID: 36185222
  80. Kolitz-Domb, M.; Grinberg, I.; Corem-Salkmon, E.; Margel, S. Engineering of near infrared fluorescent proteinoid-poly(L-lactic acid) particles for in vivo colon cancer detection. J. Nanobiotechnology, 2014, 12(1), 30. doi: 10.1186/s12951-014-0030-z PMID: 25113279
  81. Mohajershojai, T.; Jha, P.; Boström, A.; Frejd, F.Y.; Yazaki, P.J.; Nestor, M. In vitro characterization of (177)lu-dota-m5a anti-carcinoembryonic antigen humanized antibody and hsp90 inhibition for potentiated radioimmunotherapy of colorectal cancer. Front. Oncol., 2022, 12, 849338. doi: 10.3389/fonc.2022.849338 PMID: 35433442
  82. Locker, G.Y.; Hamilton, S.; Harris, J.; Jessup, J.M.; Kemeny, N.; Macdonald, J.S.; Somerfield, M.R.; Hayes, D.F.; Bast, R.C. Jr ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol., 2006, 24(33), 5313-5327. doi: 10.1200/JCO.2006.08.2644 PMID: 17060676
  83. Zińczuk, J.; Maciejczyk, M.; Zaręba, K.; Romaniuk, W.; Markowski, A.; Kędra, B.; Zalewska, A.; Pryczynicz, A.; Matowicka-Karna, J.; Guzińska-Ustymowicz, K. Antioxidant barrier, redox status, and oxidative damage to biomolecules in patients with colorectal cancer. Can malondialdehyde and catalase be markers of colorectal cancer advancement? Biomolecules, 2019, 9(10), 637. doi: 10.3390/biom9100637 PMID: 31652642
  84. Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem., 2001, 47(4), 624-630. doi: 10.1093/clinchem/47.4.624 PMID: 11274010
  85. Tiernan, J.P.; Ingram, N.; Marston, G.; Perry, S.L.; Rushworth, J.V.; Coletta, P.L.; Millner, P.A.; Jayne, D.G.; Hughes, T.A. CEA-targeted nanoparticles allow specific in vivo fluorescent imaging of colorectal cancer models. Nanomedicine (Lond.), 2015, 10(8), 1223-1231. doi: 10.2217/nnm.14.202 PMID: 25694062
  86. Shahid, S.; Chaudhry, M.N.; Mahmood, N. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in cancer patients receiving radiotherapy. Am. J. Cancer Res., 2015, 5(8), 2455-2466. PMID: 26396921
  87. Moding, E.J.; Kastan, M.B.; Kirsch, D.G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov., 2013, 12(7), 526-542. doi: 10.1038/nrd4003 PMID: 23812271
  88. Tsai, T.L.; Lai, Y.H.; Chen, H.H.W.; Su, W.C. Overcoming radiation resistance by iron-platinum metal alloy nanoparticles in human copper transport 1-overexpressing cancer cells via mitochondrial disturbance. Int. J. Nanomedicine, 2021, 16, 2071-2085. doi: 10.2147/IJN.S283147 PMID: 33727814
  89. Zhao, L.; Qiu, G.; Wang, K.; Chen, H.; Ruan, F.; Liu, N.; Deng, Z.; Yao, Y.; Guo, D.; Wang, D.; Sha, L.; Kong, X.; Liu, W.; Zhang, Y. A nano-integrated diagnostic and therapeutic platform with oxidation–reduction reactions in tumor microenvironments. Nanoscale Adv., 2020, 2(5), 2192-2202. doi: 10.1039/C9NA00786E PMID: 36132527
  90. Schaue, D.; McBride, W.H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol., 2015, 12(9), 527-540. doi: 10.1038/nrclinonc.2015.120 PMID: 26122185
  91. Zhang, P.; Darmon, A.; Marill, J.; Mohamed Anesary, N.; Paris, S. Radiotherapy-activated hafnium oxide nanoparticles produce abscopal effect in a mouse colorectal cancer model. Int. J. Nanomedicine, 2020, 15, 3843-3850. doi: 10.2147/IJN.S250490 PMID: 32581534
  92. Alamilla-Presuel, J.C.; Burgos-Molina, A.M.; González-Vidal, A.; Sendra-Portero, F.; Ruiz-Gómez, M.J. Factors and molecular mechanisms of radiation resistance in cancer cells. Int. J. Radiat. Biol., 2022, 98(8), 1301-1315. doi: 10.1080/09553002.2022.2047825 PMID: 35225732
  93. Lee, K.J.; Ko, E.J.; Park, Y.Y.; Park, S.S.; Ju, E.J.; Park, J.; Shin, S.H.; Suh, Y.A.; Hong, S.M.; Park, I.J.; Kim, K.; Hwang, J.J.; Jang, S.J.; Lee, J.S.; Song, S.Y.; Jeong, S.Y.; Choi, E.K. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer. Biomaterials, 2020, 255, 120151. doi: 10.1016/j.biomaterials.2020.120151 PMID: 32505033
  94. Hou, L.; Zhong, T.; Cheng, P.; Long, B.; Shi, L.; Meng, X.; Yao, H. Self-assembled peptide-paclitaxel nanoparticles for enhancing therapeutic efficacy in colorectal cancer. Front. Bioeng. Biotechnol., 2022, 10, 938662. doi: 10.3389/fbioe.2022.938662 PMID: 36246349
  95. Kyula, J.N.; Van Schaeybroeck, S.; Doherty, J.; Fenning, C.S.; Longley, D.B.; Johnston, P.G. Chemotherapy-induced activation of ADAM-17: A novel mechanism of drug resistance in colorectal cancer. Clin. Cancer Res., 2010, 16(13), 3378-3389. doi: 10.1158/1078-0432.CCR-10-0014 PMID: 20570921
  96. Xiong, Q.; Bai, Y.; Shi, R.; Wang, J.; Xu, W.; Zhang, M.; Song, T. Preferentially released miR-122 from cyclodextrin-based star copolymer nanoparticle enhances hepatoma chemotherapy by apoptosis induction and cytotoxics efflux inhibition. Bioact. Mater., 2021, 6(11), 3744-3755. doi: 10.1016/j.bioactmat.2021.03.026 PMID: 33898875
  97. Wang, J.; Wang, F.; Li, F.; Zhang, W.; Shen, Y.; Zhou, D.; Guo, S. A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(17), 2954-2962. doi: 10.1039/C5TB02450A PMID: 27152196
  98. Zha, S.; Ueno, M.; Liang, Y.; Okada, S.; Oda, T.; Ishibashi, F. Induction of apoptotic cell death in human leukemia u937 cells by c18 hydroxy unsaturated fatty acid isolated from red alga tricleocarpa jejuensis. Mar. Drugs, 2021, 19(3), 138. doi: 10.3390/md19030138 PMID: 33801204
  99. He, Y.; Ju, Y.; Hu, Y.; Wang, B.; Che, S.; Jian, Y.; Zhuo, W.; Fu, X.; Cheng, Y.; Zheng, S.; Huang, N.; Qian, Z.; Liu, J.; Zhou, P.; Gao, X. Brd4 proteolysis-targeting chimera nanoparticles sensitized colorectal cancer chemotherapy. J. Control. Release, 2023, 354, 155-166. doi: 10.1016/j.jconrel.2022.12.035 PMID: 36538950
  100. Jin, X.; Yan, Y.; Wang, D.; Ding, D.; Ma, T.; Ye, Z.; Jimenez, R.; Wang, L.; Wu, H.; Huang, H. Dub3 promotes bet inhibitor resistance and cancer progression by deubiquitinating brd4. Mol. Cell, 2018, 71(4), 592-605.e4. doi: 10.1016/j.molcel.2018.06.036 PMID: 30057199
  101. Wang, R.; Cao, X.J.; Kulej, K.; Liu, W.; Ma, T.; MacDonald, M.; Chiang, C.M.; Garcia, B.A.; You, J. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc. Natl. Acad. Sci. USA, 2017, 114(27), E5352-E5361. doi: 10.1073/pnas.1703071114 PMID: 28630312
  102. Bao, Y.; Wu, X.; Chen, J.; Hu, X.; Zeng, F.; Cheng, J.; Jin, H.; Lin, X.; Chen, L.F. Brd4 modulates the innate immune response through Mnk2–eIF4E pathway-dependent translational control of IκBα. Proc. Natl. Acad. Sci. USA, 2017, 114(20), E3993-E4001. doi: 10.1073/pnas.1700109114 PMID: 28461486
  103. Huang, Z.; Yang, R.; Zhang, L.; Zhu, M.; Zhang, C.; Wen, J.; Li, H. BRD4 inhibition alleviates mechanical stress-induced TMJ OA-like pathological changes and attenuates TREM1-mediated inflammatory response. Clin. Epigenetics, 2021, 13(1), 10. doi: 10.1186/s13148-021-01008-6 PMID: 33446277
  104. Takagawa, Y.; Gen, Y.; Muramatsu, T.; Tanimoto, K.; Inoue, J.; Harada, H.; Inazawa, J. Mir-1293, a candidate for mirna-based cancer therapeutics, simultaneously targets brd4 and the DNA repair pathway. Mol. Ther., 2020, 28(6), 1494-1505. doi: 10.1016/j.ymthe.2020.04.001 PMID: 32320642
  105. Tan, Y.F.; Wang, M.; Chen, Z.Y.; Wang, L.; Liu, X.H. Inhibition of BRD4 prevents proliferation and epithelial–mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis., 2020, 11(4), 239. doi: 10.1038/s41419-020-2431-2 PMID: 32303673
  106. Lang, T.; Zhu, R.; Zhu, X.; Yan, W.; Li, Y.; Zhai, Y.; Wu, T.; Huang, X.; Yin, Q.; Li, Y. Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy. Nat. Commun., 2023, 14(1), 4746. doi: 10.1038/s41467-023-40439-y PMID: 37550297
  107. Dewhirst, M.W.; Secomb, T.W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer, 2017, 17(12), 738-750. doi: 10.1038/nrc.2017.93 PMID: 29123246
  108. Yan, J.; Guan, Z.Y.; Zhu, W.F.; Zhong, L.Y.; Qiu, Z.Q.; Yue, P.F.; Wu, W.T.; Liu, J.; Huang, X. Preparation of puerarin chitosan oral nanoparticles by ionic gelation method and its related kinetics. Pharmaceutics, 2020, 12(3), 216. doi: 10.3390/pharmaceutics12030216 PMID: 32131425
  109. Zhao, X.; Pan, J.; Li, W.; Yang, W.; Qin, L.; Pan, Y. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int. J. Nanomed., 2018, 13, 6207-6221. doi: 10.2147/IJN.S176928 PMID: 30349245
  110. Hao, T.; Fu, Y.; Yang, Y.; Yang, S.; Liu, J.; Tang, J.; Ridwan, K.A.; Teng, Y.; Liu, Z.; Li, J.; Guo, N.; Yu, P. Tumor vasculature-targeting PEGylated peptide-drug conjugate prodrug nanoparticles improve chemotherapy and prevent tumor metastasis. Eur. J. Med. Chem., 2021, 219, 113430. doi: 10.1016/j.ejmech.2021.113430 PMID: 33865152
  111. Egorova, A.A.; Shtykalova, S.V.; Maretina, M.A.; Sokolov, D.I.; Selkov, S.A.; Baranov, V.S.; Kiselev, A.V. Synergistic anti-angiogenic effects using peptide-based combinatorial delivery of sirnas targeting vegfa, vegfr1, and endoglin genes. Pharmaceutics, 2019, 11(6), 261. doi: 10.3390/pharmaceutics11060261 PMID: 31174285
  112. Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187. doi: 10.1016/j.jconrel.2011.09.063 PMID: 21945285
  113. Liu, L.; Liu, L.; Li, Y.; Huang, X.; Gu, D.; Wei, B.; Su, D.; Jin, G. Ultrasmall superparamagnetic nanoparticles targeting E-selectin: Synthesis and effects in mice in vitro and in vivo. Int. J. Nanomed., 2019, 14, 4517-4528. doi: 10.2147/IJN.S199571 PMID: 31354271
  114. Jubeli, E.; Moine, L.; Vergnaud-Gauduchon, J.; Barratt, G. E-selectin as a target for drug delivery and molecular imaging. J. Control. Release, 2012, 158(2), 194-206. doi: 10.1016/j.jconrel.2011.09.084 PMID: 21983284
  115. Deschepper, F.M.; Zoppi, R.; Pirro, M.; Hensbergen, P.J.; Dall’Olio, F.; Kotsias, M.; Gardner, R.A.; Spencer, D.I.R.; Videira, P.A. L1cam as an e-selectin ligand in colon cancer. Int. J. Mol. Sci., 2020, 21(21), 8286. doi: 10.3390/ijms21218286 PMID: 33167483
  116. Li, J.M.; Yu, R.; Zhang, L.P.; Wen, S.Y.; Wang, S.J.; Zhang, X.Y.; Xu, Q.; Kong, L.D. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: A benefit of short-chain fatty acids. Microbiome, 2019, 7(1), 98. doi: 10.1186/s40168-019-0713-7 PMID: 31255176
  117. Lamprinaki, D.; Garcia-Vello, P.; Marchetti, R.; Hellmich, C.; McCord, K.A.; Bowles, K.M.; Macauley, M.S.; Silipo, A.; De Castro, C.; Crocker, P.R.; Juge, N. Siglec-7 mediates immunomodulation by colorectal cancer-associated fusobacterium nucleatum ssp. Animalis. Front. Immunol., 2021, 12, 744184. doi: 10.3389/fimmu.2021.744184 PMID: 34659241
  118. Yin, H.; Miao, Z.; Wang, L.; Su, B.; Liu, C.; Jin, Y.; Wu, B.; Han, H.; Yuan, X. Fusobacterium nucleatum promotes liver metastasis in colorectal cancer by regulating the hepatic immune niche and altering gut microbiota. Aging (Albany NY), 2022, 14(4), 1941-1958. doi: 10.18632/aging.203914 PMID: 35212644
  119. Liu, H.; Du, J.; Chao, S.; Li, S.; Cai, H.; Zhang, H.; Chen, G.; Liu, P.; Bu, P. Fusobacterium nucleatum promotes colorectal cancer cell to acquire stem cell-like features by manipulating lipid droplet-mediated numb degradation. Adv. Sci. (Weinh.), 2022, 9(12), 2105222. doi: 10.1002/advs.202105222 PMID: 35170250
  120. Rubinstein, M.R.; Baik, J.E.; Lagana, S.M.; Han, R.P.; Raab, W.J.; Sahoo, D.; Dalerba, P.; Wang, T.C.; Han, Y.W. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β‐catenin modulator Annexin A1. EMBO Rep., 2019, 20(4), e47638. doi: 10.15252/embr.201847638 PMID: 30833345
  121. Serna, G.; Ruiz-Pace, F.; Hernando, J.; Alonso, L.; Fasani, R.; Landolfi, S.; Comas, R.; Jimenez, J.; Elez, E.; Bullman, S.; Tabernero, J.; Capdevila, J.; Dienstmann, R.; Nuciforo, P. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann. Oncol., 2020, 31(10), 1366-1375. doi: 10.1016/j.annonc.2020.06.003 PMID: 32569727
  122. Zheng, D.W.; Dong, X.; Pan, P.; Chen, K.W.; Fan, J.X.; Cheng, S.X.; Zhang, X.Z. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng., 2019, 3(9), 717-728. doi: 10.1038/s41551-019-0423-2 PMID: 31332342
  123. Gu, B.; Wang, B.; Li, X.; Feng, Z.; Ma, C.; Gao, L.; Yu, Y.; Zhang, J.; Zheng, P.; Wang, Y.; Li, H.; Zhang, T.; Chen, H. Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment. Front. Immunol., 2022, 13, 1050421. doi: 10.3389/fimmu.2022.1050421 PMID: 36466825
  124. Li, J.; Wang, S.; Fontana, F.; Tapeinos, C.; Shahbazi, M.A.; Han, H.; Santos, H.A. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact. Mater., 2023, 23, 471-507. doi: 10.1016/j.bioactmat.2022.11.013 PMID: 36514388
  125. McCabe-Lankford, E.E.; Brown, T.L.; Levi-Polyachenko, N.H. Assessing fluorescence detection and effective photothermal therapy of near‐infrared polymer nanoparticles using alginate tissue phantoms. Lasers Surg. Med., 2018, 50(10), 1040-1049. doi: 10.1002/lsm.22955 PMID: 29953621
  126. Srinivasan, S.; Pogue, B.W.; Jiang, S.; Dehghani, H.; Kogel, C.; Soho, S.; Gibson, J.J.; Tosteson, T.D.; Poplack, S.P.; Paulsen, K.D. Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography. Proc. Natl. Acad. Sci. USA, 2003, 100(21), 12349-12354. doi: 10.1073/pnas.2032822100 PMID: 14514888
  127. Yue, X.; Zhang, Q.; Dai, Z. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv. Drug Deliv. Rev., 2017, 115, 155-170. doi: 10.1016/j.addr.2017.04.007 PMID: 28455188
  128. O’Neal, D.P.; Hirsch, L.R.; Halas, N.J.; Payne, J.D.; West, J.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett., 2004, 209(2), 171-176. doi: 10.1016/j.canlet.2004.02.004 PMID: 15159019
  129. Burke, A.; Ding, X.; Singh, R.; Kraft, R.A.; Levi-Polyachenko, N.; Rylander, M.N.; Szot, C.; Buchanan, C.; Whitney, J.; Fisher, J.; Hatcher, H.C.; D’Agostino, R., Jr; Kock, N.D.; Ajayan, P.M.; Carroll, D.L.; Akman, S.; Torti, F.M.; Torti, S.V. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 12897-12902. doi: 10.1073/pnas.0905195106 PMID: 19620717
  130. Graham-Gurysh, E.; Kelkar, S.; McCabe-Lankford, E.; Kuthirummal, N.; Brown, T.; Kock, N.D.; Mohs, A.M.; Levi-Polyachenko, N. Hybrid donor-acceptor polymer particles with amplified energy transfer for detection and on-demand treatment of breast cancer. ACS Appl. Mater. Interfaces, 2018, 10(9), 7697-7703. doi: 10.1021/acsami.7b19503 PMID: 29457709
  131. Xing, Y.; Li, L.; Ai, X.; Fu, L. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy. Int. J. Nanomedicine, 2016, 11, 4327-4338. doi: 10.2147/IJN.S97441 PMID: 27621625
  132. Hao, M.; Kong, C.; Jiang, C.; Hou, R.; Zhao, X.; Li, J.; Wang, Y.; Gao, Y.; Zhang, H.; Yang, B.; Jiang, J. Polydopamine-coated Au-Ag nanoparticle-guided photothermal colorectal cancer therapy through multiple cell death pathways. Acta Biomater., 2019, 83, 414-424. doi: 10.1016/j.actbio.2018.10.032 PMID: 30366131
  133. McCarthy, B.; Cudykier, A.; Singh, R.; Levi-Polyachenko, N.; Soker, S. Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids. Sci. Rep., 2021, 11(1), 1532. doi: 10.1038/s41598-021-81122-w PMID: 33452397
  134. Khaled, Y.S.; Khot, M.I.; Aiyappa-Maudsley, R.; Maisey, T.; Pramanik, A.; Tiernan, J.; Lintern, N.; Al-Enezi, E.; Shamsuddin, S.H.; Tomlinson, D.; Coletta, L.; Millner, P.A.; Hughes, T.A.; Jayne, D.G. Photoactive imaging and therapy for colorectal cancer using a CEA-Affimer conjugated Foslip nanoparticle. Nanoscale, 2024, 16(14), 7185-7199. doi: 10.1039/D3NR04118B PMID: 38506227
  135. Wang, Y.; Li, P.; Chen, L.; Gao, W.; Zeng, F.; Kong, L.X. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles. Drug Deliv., 2015, 22(2), 191-198. doi: 10.3109/10717544.2013.875603 PMID: 24437926
  136. Nandi, R.; Mishra, S.; Maji, T.K.; Manna, K.; Kar, P.; Banerjee, S.; Dutta, S.; Sharma, S.K.; Lemmens, P.; Saha, K.D.; Pal, S.K. A novel nanohybrid for cancer theranostics: folate sensitized Fe 2 O 3 nanoparticles for colorectal cancer diagnosis and photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(21), 3927-3939. doi: 10.1039/C6TB03292C PMID: 32264254
  137. Soumoy, L.; Ghanem, G.E.; Saussez, S.; Journe, F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol. Res., 2022, 184, 106442. doi: 10.1016/j.phrs.2022.106442 PMID: 36096424
  138. Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387. doi: 10.1038/nrc1071 PMID: 12724736
  139. Sharman, W.M.; Allen, C.M.; van Lier, J.E. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today, 1999, 4(11), 507-517. doi: 10.1016/S1359-6446(99)01412-9 PMID: 10529768
  140. Yuan, Z.; Liu, C.; Sun, Y.; Li, Y.; Wu, H.; Ma, S.; Shang, J.; Zhan, Y.; Yin, P.; Gao, F. Bufalin exacerbates Photodynamic therapy of colorectal cancer by targeting SRC-3/HIF-1α pathway. Int. J. Pharm., 2022, 624, 122018. doi: 10.1016/j.ijpharm.2022.122018 PMID: 35839982
  141. Kang, S.; Lee, S.; Park, S. Irgd peptide as a tumor-penetrating enhancer for tumor-targeted drug delivery. Polymers (Basel), 2020, 12(9), 1906. doi: 10.3390/polym12091906 PMID: 32847045
  142. Zuo, H. Irgd: A promising peptide for cancer imaging and a potential therapeutic agent for various cancers. J. Oncol., 2019, 2019, 1-15. doi: 10.1155/2019/9367845 PMID: 31346334
  143. Ostroverkhov, P.V.; Semkina, A.S.; Naumenko, V.A.; Plotnikova, E.A.; Melnikov, P.A.; Abakumova, T.O.; Yakubovskaya, R.I.; Mironov, A.F.; Vodopyanov, S.S.; Abakumov, A.M.; Majouga, A.G.; Grin, M.A.; Chekhonin, V.P.; Abakumov, M.A. Synthesis and characterization of bacteriochlorin loaded magnetic nanoparticles (MNP) for personalized MRI guided photosensitizers delivery to tumor. J. Colloid Interface Sci., 2019, 537, 132-141. doi: 10.1016/j.jcis.2018.10.087 PMID: 30439612
  144. Huang, T.; Zhao, M.; Yu, Q.; Feng, Z.; Xie, M.; Liu, S.; Zhang, K.Y.; Zhao, Q.; Huang, W. De novo design of polymeric carrier to photothermally release singlet oxygen for hypoxic tumor treatment. Research, 2019, 2019, 2019/9269081. doi: 10.34133/2019/9269081 PMID: 31549095
  145. Yang, Z.L.; Tian, W.; Wang, Q.; Zhao, Y.; Zhang, Y.L.; Tian, Y.; Tang, Y.X.; Wang, S.J.; Liu, Y.; Ni, Q.Q.; Lu, G.M.; Teng, Z.G.; Zhang, L.J. Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors. Adv. Sci. (Weinh.), 2018, 5(5), 1700847. doi: 10.1002/advs.201700847 PMID: 29876209
  146. Nascimento-Filho, C.H.V.; Webber, L.P.; Borgato, G.B.; Goloni-Bertollo, E.M.; Squarize, C.H.; Castilho, R.M. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN. FASEB J., 2019, 33(12), 13435-13449. doi: 10.1096/fj.201900722R PMID: 31560860
  147. Dong, Y.; Zhou, L.; Shen, Z.; Ma, Q.; Zhao, Y.; Sun, Y.; Cao, J. Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy. Drug Deliv., 2022, 29(1), 238-253. doi: 10.1080/10717544.2021.2023701 PMID: 35001784
  148. Sun, J.; Du, K.; Diao, J.; Cai, X.; Feng, F.; Wang, S. Gsh and H2O2 co-activatable mitochondria-targeted photodynamic therapy under normoxia and hypoxia. Angew. Chem. Int. Ed., 2020, 59(29), 12122-12128. doi: 10.1002/anie.202003895 PMID: 32297412
  149. Zhang, L.; Yang, X.Q.; Wei, J.S.; Li, X.; Wang, H.; Zhao, Y.D. Intelligent gold nanostars for in vivo CT imaging and catalase-enhanced synergistic photodynamic & photothermal tumor therapy. Theranostics, 2019, 9(19), 5424-5442. doi: 10.7150/thno.33015 PMID: 31534494
  150. Sun, T.; Zhang, Y.; Zhang, C.; Wang, H.; Pan, H.; Liu, J.; Li, Z.; Chen, L.; Chang, J.; Zhang, W. Cyanobacteria-based bio-oxygen pump promoting hypoxia-resistant photodynamic therapy. Front. Bioeng. Biotechnol., 2020, 8, 237. doi: 10.3389/fbioe.2020.00237 PMID: 32266251
  151. Liang, X.; Chen, M.; Bhattarai, P.; Hameed, S.; Dai, Z. Perfluorocarbon@porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer. ACS Nano, 2020, 14(10), 13569-13583. doi: 10.1021/acsnano.0c05617 PMID: 32915537
  152. Zhu, D.; Zhang, J.; Luo, G.; Duo, Y.; Tang, B.Z. Bright bacterium for hypoxia-tolerant photodynamic therapy against orthotopic colon tumors by an interventional method. Adv. Sci. (Weinh.), 2021, 8(15), 2004769. doi: 10.1002/advs.202004769 PMID: 34145986
  153. Yang, C.C.; Tsai, M.H.; Li, K.Y.; Hou, C.H.; Lin, F.H. Carbon-doped TiO2 activated by x-ray irradiation for the generation of reactive oxygen species to enhance photodynamic therapy in tumor treatment. Int. J. Mol. Sci., 2019, 20(9), 2072. doi: 10.3390/ijms20092072 PMID: 31035468
  154. Chen, H.; Wang, G.D.; Chuang, Y.J.; Zhen, Z.; Chen, X.; Biddinger, P.; Hao, Z.; Liu, F.; Shen, B.; Pan, Z.; Xie, J. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Lett., 2015, 15(4), 2249-2256. doi: 10.1021/nl504044p PMID: 25756781
  155. Chen, H.; Sun, X.; Wang, G.D.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J.; Shen, B. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Mater. Horiz., 2017, 4(6), 1092-1101. doi: 10.1039/C7MH00442G PMID: 31528350
  156. Gong, L.; Zhang, Y.; Zhao, J.; Zhang, Y.; Tu, K.; Jiao, L.; Xu, Q.; Zhang, M.; Han, S. All-in-one biomimetic nanoplatform based on hollow polydopamine nanoparticles for synergistically enhanced radiotherapy of colon cancer. Small, 2022, 18(14), 2107656. doi: 10.1002/smll.202107656 PMID: 35150039
  157. Lin, A.; Gorbanev, Y.; De Backer, J.; Van Loenhout, J.; Van Boxem, W.; Lemière, F.; Cos, P.; Dewilde, S.; Smits, E.; Bogaerts, A. Non-thermal plasma as a unique delivery system of short-lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells. Adv. Sci. (Weinh.), 2019, 6(6), 1802062. doi: 10.1002/advs.201802062 PMID: 30937272
  158. Zhao, H.; Chen, Y.; Shen, P.; Gong, L. Identification of immune cell infiltration landscape and their prognostic significance in uveal melanoma. Front. Cell Dev. Biol., 2021, 9, 713569. doi: 10.3389/fcell.2021.713569 PMID: 34513843
  159. Sharma, A.; Houshyar, R.; Bhosale, P.; Choi, J.I.; Gulati, R.; Lall, C. Chemotherapy induced liver abnormalities: An imaging perspective. Clin. Mol. Hepatol., 2014, 20(3), 317-326. doi: 10.3350/cmh.2014.20.3.317 PMID: 25320738
  160. Beyrend, G.; van der Gracht, E.; Yilmaz, A.; van Duikeren, S.; Camps, M.; Höllt, T.; Vilanova, A.; van Unen, V.; Koning, F.; de Miranda, N.F.C.C.; Arens, R.; Ossendorp, F. PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors. J. Immunother. Cancer, 2019, 7(1), 217. doi: 10.1186/s40425-019-0700-3 PMID: 31412943
  161. Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264. doi: 10.1038/nrc3239 PMID: 22437870
  162. Wang, L.; Zhang, T.; Zheng, Y.; Li, Y.; Tang, X.; Chen, Q.; Mao, W.; Li, W.; Liu, X.; Zhu, J. Combination of irinotecan silicasome nanoparticles with radiation therapy sensitizes immunotherapy by modulating the activation of the cGAS/STING pathway for colorectal cancer. Mater. Today Bio, 2023, 23, 100809. doi: 10.1016/j.mtbio.2023.100809 PMID: 37779919
  163. Hu, Y.; Chen, D.; Hong, M.; Liu, J.; Li, Y.; Hao, J.; Lu, L.; Yin, Z.; Wu, Y. Apoptosis, pyroptosis, and ferroptosis conspiringly induce immunosuppressive hepatocellular carcinoma microenvironment and γδ t-cell imbalance. Front. Immunol., 2022, 13, 845974. doi: 10.3389/fimmu.2022.845974 PMID: 35444645
  164. Salas-Benito, D.; Pérez-Gracia, J.L.; Ponz-Sarvisé, M.; Rodriguez-Ruiz, M.E.; Martínez-Forero, I.; Castañón, E.; López-Picazo, J.M.; Sanmamed, M.F.; Melero, I. Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov., 2021, 11(6), 1353-1367. doi: 10.1158/2159-8290.CD-20-1312 PMID: 33712487
  165. Huang, F.Y.; Lei, J.; Sun, Y.; Yan, F.; Chen, B.; Zhang, L.; Lu, Z.; Cao, R.; Lin, Y.Y.; Wang, C.C.; Tan, G.H. Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes. OncoImmunology, 2018, 7(7), e1446720. doi: 10.1080/2162402X.2018.1446720 PMID: 29900064
  166. Van Hoecke, L.; Raes, L.; Stremersch, S.; Brans, T.; Fraire, J.C.; Roelandt, R.; Declercq, W.; Vandenabeele, P.; Raemdonck, K.; Braeckmans, K.; Saelens, X. Delivery of mixed-lineage kinase domain-like protein by vapor nanobubble photoporation induces necroptotic-like cell death in tumor cells. Int. J. Mol. Sci., 2019, 20(17), 4254. doi: 10.3390/ijms20174254 PMID: 31480289
  167. Li, J.; Luo, G.; Zhang, C.; Long, S.; Guo, L.; Yang, G.; Wang, F.; Zhang, L.; Shi, L.; Fu, Y.; Zhang, Y. In situ injectable hydrogel-loaded drugs induce anti-tumor immune responses in melanoma immunochemotherapy. Mater. Today Bio, 2022, 14, 100238. doi: 10.1016/j.mtbio.2022.100238 PMID: 35330634
  168. Li, Q.; Su, R.; Bao, X.; Cao, K.; Du, Y.; Wang, N.; Wang, J.; Xing, F.; Yan, F.; Huang, K.; Feng, S. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater., 2022, 144, 109-120. doi: 10.1016/j.actbio.2022.03.030 PMID: 35314366
  169. Zhang, H.; Lan, M.; Cui, G.; Zhu, W. The influence of caerulomycin a on the intestinal microbiota in sd rats. Mar. Drugs, 2020, 18(5), 277. doi: 10.3390/md18050277 PMID: 32456087
  170. Saffarian, A.; Mulet, C.; Regnault, B.; Amiot, A.; Tran-Van-Nhieu, J.; Ravel, J.; Sobhani, I.; Sansonetti, P.J.; Pédron, T. Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. MBio, 2019, 10(4), e01315-e01319. doi: 10.1128/mBio.01315-19 PMID: 31311881
  171. Nighot, M.; Rawat, M.; Al-Sadi, R.; Castillo, E.F.; Nighot, P.; Ma, T.Y. Lipopolysaccharide-induced increase in intestinal permeability is mediated by tak-1 activation of ikk and mlck/mylk gene. Am. J. Pathol., 2019, 189(4), 797-812. doi: 10.1016/j.ajpath.2018.12.016 PMID: 30711488
  172. Song, W.; Tiruthani, K.; Wang, Y.; Shen, L.; Hu, M.; Dorosheva, O.; Qiu, K.; Kinghorn, K.A.; Liu, R.; Huang, L. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater., 2018, 30(52), 1805007. doi: 10.1002/adma.201805007 PMID: 30387230
  173. Ma, C.C.; Wang, Z.L.; Xu, T.; He, Z.Y.; Wei, Y.Q. The approved gene therapy drugs worldwide: From 1998 to 2019. Biotechnol. Adv., 2020, 40, 107502. doi: 10.1016/j.biotechadv.2019.107502 PMID: 31887345
  174. Tang, R.; Xu, Z. Gene therapy: a double-edged sword with great powers. Mol. Cell. Biochem., 2020, 474(1-2), 73-81. doi: 10.1007/s11010-020-03834-3 PMID: 32696132
  175. Aghamiri, S.; Jafarpour, A.; Malekshahi, Z.V.; Mahmoudi, G.M.; Negahdari, B. Targeting siRNA in colorectal cancer therapy: Nanotechnology comes into view. J. Cell. Physiol., 2019, 234(9), 14818-14827. doi: 10.1002/jcp.28281 PMID: 30919964
  176. Yu, M.; Wang, H.; Zhao, W.; Ge, X.; Huang, W.; Lin, F.; Tang, W.; Li, A.; Liu, S.; Li, R.K.; Jiang, S.H.; Xue, J. Targeting type Iγ phosphatidylinositol phosphate kinase overcomes oxaliplatin resistance in colorectal cancer. Theranostics, 2022, 12(9), 4386-4398. doi: 10.7150/thno.69863 PMID: 35673560
  177. Huang, C.Z.; Zhou, Y.; Tong, Q.S.; Duan, Q.J.; Zhang, Q.; Du, J.Z.; Yao, X.Q. Precision medicine-guided co-delivery of ASPN siRNA and oxaliplatin by nanoparticles to overcome chemoresistance of colorectal cancer. Biomaterials, 2022, 290, 121827. doi: 10.1016/j.biomaterials.2022.121827 PMID: 36228517
  178. Salehi, K.A.M.; Karpisheh, V.; Sahami, G.P.; Melnikova, L.A.; Olegovna Zekiy, A.; Mohammadi, M.; Hojjat-Farsangi, M.; Majidi, Z.N.; Mahmoodpoor, A.; Hassannia, H.; Aghebati-Maleki, L.; Jafari, R.; Jadidi-Niaragh, F. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo. Int. J. Biol. Macromol., 2021, 186, 849-863. doi: 10.1016/j.ijbiomac.2021.07.034 PMID: 34245737
  179. Gao, Z.; Dong, K.; Zhang, H. The roles of CD73 in cancer. BioMed Res. Int., 2014, 2014, 1-9. doi: 10.1155/2014/460654 PMID: 25126561
  180. Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; Epstein-Barash, H.; Zhang, L.; Koteliansky, V.; Fitzgerald, K.; Fava, E.; Bickle, M.; Kalaidzidis, Y.; Akinc, A.; Maier, M.; Zerial, M. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol., 2013, 31(7), 638-646. doi: 10.1038/nbt.2612 PMID: 23792630
  181. Li, P.P.; Yan, Y.; Zhang, H.T.; Cui, S.; Wang, C.H.; Wei, W.; Qian, H.G.; Wang, J.C.; Zhang, Q. Biological activities of siRNA-loaded lanthanum phosphate nanoparticles on colorectal cancer. J. Control. Release, 2020, 328, 45-58. doi: 10.1016/j.jconrel.2020.08.027 PMID: 32860924
  182. Li, J.; Zhang, J.; Gao, Y.; Lei, S.; Wu, J.; Chen, X.; Wang, K.; Duan, X.; Men, K. Targeted sirna delivery by bioinspired cancer cell membrane-coated nanoparticles with enhanced anti-cancer immunity. Int. J. Nanomed., 2023, 18, 5961-5982. doi: 10.2147/IJN.S429036 PMID: 37901359
  183. Rudzinski, W.E.; Palacios, A.; Ahmed, A.; Lane, M.A.; Aminabhavi, T.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr. Polym., 2016, 147, 323-332. doi: 10.1016/j.carbpol.2016.04.041 PMID: 27178938
  184. Ratti, F.; Fiorentini, G.; Cipriani, F.; Catena, M.; Paganelli, M.; Aldrighetti, L. Laparoscopic vs open surgery for colorectal liver metastases. JAMA Surg., 2018, 153(11), 1028-1035. doi: 10.1001/jamasurg.2018.2107 PMID: 30027220
  185. Balachandran, V.P.; Arora, A.; Gönen, M.; Ito, H.; Turcotte, S.; Shia, J.; Viale, A.; Snoeren, N.; van Hooff, S.R.; Rinkes, I.H.M.B.; Adam, R.; Kingham, T.P.; Allen, P.J.; DeMatteo, R.P.; Jarnagin, W.R.; D’Angelica, M.I. A validated prognostic multigene expression assay for overall survival in resected colorectal cancer liver metastases. Clin. Cancer Res., 2016, 22(10), 2575-2582. doi: 10.1158/1078-0432.CCR-15-1071 PMID: 26733613
  186. Moulton, C.A.; Gu, C.S.; Law, C.H.; Tandan, V.R.; Hart, R.; Quan, D.; Fairfull Smith, R.J.; Jalink, D.W.; Husien, M.; Serrano, P.E.; Hendler, A.L.; Haider, M.A.; Ruo, L.; Gulenchyn, K.Y.; Finch, T.; Julian, J.A.; Levine, M.N.; Gallinger, S. Effect of PET before liver resection on surgical management for colorectal adenocarcinoma metastases: A randomized clinical trial. JAMA, 2014, 311(18), 1863-1869. doi: 10.1001/jama.2014.3740 PMID: 24825641
  187. Chang, J.; Nicolas, E.; Marks, D.; Sander, C.; Lerro, A.; Buendia, M.A.; Xu, C.; Mason, W.S.; Moloshok, T.; Bort, R.; Zaret, K.S.; Taylor, J.M. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol., 2004, 1(2), 106-113. doi: 10.4161/rna.1.2.1066 PMID: 17179747
  188. Bandiera, S.; Pfeffer, S.; Baumert, T.F.; Zeisel, M.B. miR-122 – A key factor and therapeutic target in liver disease. J. Hepatol., 2015, 62(2), 448-457. doi: 10.1016/j.jhep.2014.10.004 PMID: 25308172
  189. Sendi, H.; Yazdimamaghani, M.; Hu, M.; Sultanpuram, N.; Wang, J.; Moody, A.S.; McCabe, E.; Zhang, J.; Graboski, A.; Li, L.; Rojas, J.D.; Dayton, P.A.; Huang, L.; Wang, A.Z. Nanoparticle delivery of mir-122 inhibits colorectal cancer liver metastasis. Cancer Res., 2022, 82(1), 105-113. doi: 10.1158/0008-5472.CAN-21-2269 PMID: 34753773
  190. Niu, Y.; Zhao, X.; Wu, Y.S.; Li, M.M.; Wang, X.J.; Yang, Y.G. N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics, 2013, 11(1), 8-17. doi: 10.1016/j.gpb.2012.12.002 PMID: 23453015
  191. Huang, R.; Yang, L.; Zhang, Z.; Liu, X.; Fei, Y.; Tong, W.M.; Niu, Y.; Liang, Z. RNA m(6)a demethylase alkbh5 protects against pancreatic ductal adenocarcinoma via targeting regulators of iron metabolism. Front. Cell Dev. Biol., 2021, 9, 724282. doi: 10.3389/fcell.2021.724282 PMID: 34733841
  192. Tsuchiya, K.; Yoshimura, K.; Iwashita, Y.; Inoue, Y.; Ohta, T.; Watanabe, H.; Yamada, H.; Kawase, A.; Tanahashi, M.; Ogawa, H.; Funai, K.; Shinmura, K.; Suda, T.; Sugimura, H. m6A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther., 2022, 29(10), 1355-1372. doi: 10.1038/s41417-022-00451-8 PMID: 35318440
  193. Jin, S.; Li, M.; Chang, H.; Wang, R.; Zhang, Z.; Zhang, J.; He, Y.; Ma, H. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol. Cancer, 2022, 21(1), 97. doi: 10.1186/s12943-022-01572-2 PMID: 35395767
  194. Shen, C.; Sheng, Y.; Zhu, A.C.; Robinson, S.; Jiang, X.; Dong, L.; Chen, H.; Su, R.; Yin, Z.; Li, W.; Deng, X.; Chen, Y.; Hu, Y.C.; Weng, H.; Huang, H.; Prince, E.; Cogle, C.R.; Sun, M.; Zhang, B.; Chen, C.W.; Marcucci, G.; He, C.; Qian, Z.; Chen, J. Rna demethylase alkbh5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell, 2020, 27(1), 64-80.e9. doi: 10.1016/j.stem.2020.04.009 PMID: 32402250
  195. Chen, P.; Li, S.; Zhang, K.; Zhao, R.; Cui, J.; Zhou, W.; Liu, Y.; Zhang, L.; Cheng, Y. N6-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression. Oncogene, 2021, 40(37), 5600-5612. doi: 10.1038/s41388-021-01966-4 PMID: 34312488
  196. Islam, M.A.; Xu, Y.; Tao, W.; Ubellacker, J.M.; Lim, M.; Aum, D.; Lee, G.Y.; Zhou, K.; Zope, H.; Yu, M.; Cao, W.; Oswald, J.T.; Dinarvand, M.; Mahmoudi, M.; Langer, R.; Kantoff, P.W.; Farokhzad, O.C.; Zetter, B.R.; Shi, J. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat. Biomed. Eng., 2018, 2(11), 850-864. doi: 10.1038/s41551-018-0284-0 PMID: 31015614
  197. Islam, M.A.; Reesor, E.K.G.; Xu, Y.; Zope, H.R.; Zetter, B.R.; Shi, J. Biomaterials for mRNA delivery. Biomater. Sci., 2015, 3(12), 1519-1533. doi: 10.1039/C5BM00198F PMID: 26280625
  198. Strużyńska, L. Dual implications of nanosilver-induced autophagy: Nanotoxicity and anti-cancer effects. Int. J. Mol. Sci., 2023, 24(20), 15386. doi: 10.3390/ijms242015386 PMID: 37895066
  199. Deobagkar, D.D.; Patil, N.; Gade, W.N. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: Alterations in DNA methylation. Int. J. Nanomed., 2016, 11, 4509-4519. doi: 10.2147/IJN.S110390 PMID: 27660443
  200. Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe nanoparticles: Are we there yet? Int. J. Mol. Sci., 2020, 22(1), 385. doi: 10.3390/ijms22010385 PMID: 33396561
  201. Li, L.; Sun, J.; Li, X.; Zhang, Y.; Wang, Z.; Wang, C.; Dai, J.; Wang, Q. Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials, 2012, 33(6), 1714-1721. doi: 10.1016/j.biomaterials.2011.11.030 PMID: 22137123
  202. De Jong, W.H.; Van Der Ven, L.T.M.; Sleijffers, A.; Park, M.V.D.Z.; Jansen, E.H.J.M.; Van Loveren, H.; Vandebriel, R.J. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials, 2013, 34(33), 8333-8343. doi: 10.1016/j.biomaterials.2013.06.048 PMID: 23886731
  203. Masotti, A.; Miller, M.R.; Celluzzi, A.; Rose, L.; Micciulla, F.; Hadoke, P.W.F.; Bellucci, S.; Caporali, A. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine, 2016, 12(6), 1511-1522. doi: 10.1016/j.nano.2016.02.017 PMID: 27013131
  204. Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692. doi: 10.2217/nnm.16.5 PMID: 27003448
  205. Moghimi, S.M.; Hunter, A.C.; Andresen, T.L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 481-503. doi: 10.1146/annurev-pharmtox-010611-134623 PMID: 22035254
  206. Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release, 2016, 240, 332-348. doi: 10.1016/j.jconrel.2016.01.020 PMID: 26774224
  207. Cisterna, B.A.; Kamaly, N.; Choi, W.I.; Tavakkoli, A.; Farokhzad, O.C.; Vilos, C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond.), 2016, 11(18), 2443-2456. doi: 10.2217/nnm-2016-0194 PMID: 27529192
  208. Guo, Y.; Wang, M.; Zou, Y.; Jin, L.; Zhao, Z.; Liu, Q.; Wang, S.; Li, J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J. Nanobiotechnol., 2022, 20(1), 371. doi: 10.1186/s12951-022-01586-4 PMID: 35953863

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024