A Novel Tryptanthrin Derivative D6 Induces Apoptosis and DNA Damage in Non-small-cell Lung Cancer Cells Through Regulating the EGFR Pathway
- Authors: Long H.1, Zhang G.1, Zhou Y.1, Qin L.1, Zhu D.1, Chen J.1, Liu B.1, Tan H.1, Chen D.2, Li Z.1, Li C.1, Wang Z.1
-
Affiliations:
- School of Pharmaceutical Sciences, Guizhou University
- School of Pharmaceutical Sciences,, Guizhou University
- Issue: Vol 24, No 17 (2024)
- Pages: 1275-1287
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643943
- DOI: https://doi.org/10.2174/0118715206303721240715042526
- ID: 643943
Cite item
Full Text
Abstract
Background:Non-small-cell lung cancer is a prevalent malignancy associated with significant morbidity and mortality rates. Tryptanthrin and its derivatives have exhibited potent antitumor activity.
Objective:This study aims to investigate the inhibitory effect of a novel synthesized tryptanthrin derivative D6 on proliferation and the possible mechanism of human non-small cell lung cancer cell lines (A549) in vitro.
Methods:In this study, MTT assay, cell migration, colony formation assay, cell cycle analysis, cell apoptosis, JC- 1 staining assay, reactive oxygen species analysis, proteomics, western blotting, high content screening and absorption titrations analysis were performed.
Results:We found that D6 inhibited both the proliferation and migration, induced cell cycle arrest in the G2/M phase, increased levels of ROS, decreased mitochondrial membrane potential, and promoted apoptosis in A549 cells. Further mechanistic studies found that D6 reduced EGFR expression in A549 cells and inhibited the EGFR pathway by decreasing phosphorylation levels of EGFR, Stat3, AKT and Erk1/2. Moreover, DNA damage induced by D6 involved an increase in p53/MDM2 ratio and concentration-dependent accumulation of micronuclei.
Conclusion:D6 demonstrated significant antitumor activity against A549 cells by inhibiting the EGFR signaling pathway, inducing DNA damage, and subsequently leading to oxidative stress, apoptosis, and cell cycle arrest. Our findings suggest that D6 exhibits potential as an NSCLC drug, owing to its attributes such as antiproliferative activity and ability to induce apoptosis by attenuating the EGFR-mediated signaling pathway.
About the authors
Haitao Long
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Guanglong Zhang
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Yue Zhou
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Liqing Qin
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Danxue Zhu
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Jiayi Chen
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Bo Liu
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Huayuan Tan
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Danping Chen
School of Pharmaceutical Sciences,, Guizhou University
Email: info@benthamscience.net
Zhurui Li
School of Pharmaceutical Sciences, Guizhou University
Email: info@benthamscience.net
Chengpeng Li
School of Pharmaceutical Sciences, Guizhou University
Author for correspondence.
Email: info@benthamscience.net
Zhenchao Wang
School of Pharmaceutical Sciences, Guizhou University
Author for correspondence.
Email: info@benthamscience.net
References
- Mao, J.J.; Pillai, G.G.; Andrade, C.J.; Ligibel, J.A.; Basu, P.; Cohen, L.; Khan, I.A.; Mustian, K.M.; Puthiyedath, R.; Dhiman, K.S.; Lao, L.; Ghelman, R.; Cáceres Guido, P.; Lopez, G.; Gallego-Perez, D.F.; Salicrup, L.A. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA Cancer J. Clin., 2022, 72(2), 144-164. doi: 10.3322/caac.21706 PMID: 34751943
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Oser, M.G.; Niederst, M.J.; Sequist, L.V.; Engelman, J.A. Transformation from non-small-cell lung cancer to small-cell lung cancer: Molecular drivers and cells of origin. Lancet Oncol., 2015, 16(4), e165-e172. doi: 10.1016/S1470-2045(14)71180-5 PMID: 25846096
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
- Arbour, K.C.; Riely, G.J. Systemic therapy for locally advanced and metastatic nonsmall cell lung cancer: A review. JAMA, 2019, 322(8), 764-774. doi: 10.1001/jama.2019.11058 PMID: 31454018
- Xiang, Y.C.; Shen, J.; Si, Y.; Liu, X.W.; Zhang, L.; Wen, J.; Zhang, T.; Yu, Q.Q.; Lu, J.F.; Xiang, K.; Liu, Y. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer. Chin. J. Nat. Med., 2021, 19(3), 195-204. doi: 10.1016/S1875-5364(21)60021-3 PMID: 33781453
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201-249. doi: 10.1038/s41392-021-00572-w PMID: 34054126
- Mazumder, A.; Cerella, C.; Diederich, M. Natural scaffolds in anticancer therapy and precision medicine. Biotechnol. Adv., 2018, 36(6), 1563-1585. doi: 10.1016/j.biotechadv.2018.04.009 PMID: 29729870
- Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin. Cancer Biol., 2016, 40-41, 1-3. doi: 10.1016/j.semcancer.2016.08.006 PMID: 27565447
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; Majeed, M.; Bishayee, A.; Bochkov, V.; Bonn, G.K.; Braidy, N.; Bucar, F.; Cifuentes, A.; DOnofrio, G.; Bodkin, M.; Diederich, M.; Dinkova-Kostova, A.T.; Efferth, T.; El Bairi, K.; Arkells, N.; Fan, T-P.; Fiebich, B.L.; Freissmuth, M.; Georgiev, M.I.; Gibbons, S.; Godfrey, K.M.; Gruber, C.W.; Heer, J.; Huber, L.A.; Ibanez, E.; Kijjoa, A.; Kiss, A.K.; Lu, A.; Macias, F.A.; Miller, M.J.S.; Mocan, A.; Müller, R.; Nicoletti, F.; Perry, G.; Pittalà, V.; Rastrelli, L.; Ristow, M.; Russo, G.L.; Silva, A.S.; Schuster, D.; Sheridan, H.; Skalicka-Woźniak, K.; Skaltsounis, L.; Sobarzo-Sánchez, E.; Bredt, D.S.; Stuppner, H.; Sureda, A.; Tzvetkov, N.T.; Vacca, R.A.; Aggarwal, B.B.; Battino, M.; Giampieri, F.; Wink, M.; Wolfender, J-L.; Xiao, J.; Yeung, A.W.K.; Lizard, G.; Popp, M.A.; Heinrich, M.; Berindan-Neagoe, I.; Stadler, M.; Daglia, M.; Verpoorte, R.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. doi: 10.1038/s41573-020-00114-z PMID: 33510482
- Du, J.; Liu, P.; Zhu, Y.; Wang, G.; Xing, S.; Liu, T.; Xia, J.; Dong, S.; Lv, N.; Li, Z. Novel tryptanthrin derivatives with benzenesulfonamide substituents: Design, synthesis, and anti-inflammatory evaluation. Eur. J. Med. Chem., 2023, 246, 114956. doi: 10.1016/j.ejmech.2022.114956 PMID: 36450214
- Shankar, G.M.; Alex, V.V.; Nisthul, A.A.; Bava, S.V.; Sundaram, S.; Retnakumari, A.P.; Chittalakkottu, S.; Anto, R.J. Pre‐clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Prolif., 2020, 53(1), e12710. doi: 10.1111/cpr.12710 PMID: 31663659
- Yu, S.; Chern, J.; Chen, T.; Chiu, Y.; Chen, H.; Chen, Y. Cytotoxicity and reversal of multidrug resistance by tryptanthrin-derived indoloquinazolines. Acta Pharmacol. Sin., 2010, 31(2), 259-264. doi: 10.1038/aps.2009.198 PMID: 20139909
- Zou, Y.; Zhang, G.; Li, C.; Long, H.; Chen, D.; Li, Z.; Ouyang, G.; Zhang, W.; Zhang, Y.; Wang, Z. Discovery of tryptanthrin and its derivatives and its activities against nsclc in vitrovia both apoptosis and autophagy pathways. Int. J. Mol. Sci., 2023, 24(2), 1450-1465. doi: 10.3390/ijms24021450 PMID: 36674964
- Zhang, G.; Li, C.; Li, Y.; Chen, D.; Li, Z.; Wang, Z.; Ouyang, G. Design, synthesis, and mechanism of novel 9-aliphatic amine tryptanthrin derivatives against phytopathogenic bacteria. J. Agric. Food Chem., 2023, 71(39), 14232-14242. doi: 10.1021/acs.jafc.3c03738 PMID: 37749804
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319. doi: 10.1038/nprot.2006.339 PMID: 17406473
- Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J. Invest. Dermatol., 2017, 137(2), e11-e16. doi: 10.1016/j.jid.2016.11.020 PMID: 28110712
- Fu, M.; Yan, Y.; Su, H.; Wang, J.; Shi, X.; Zhou, H.; Zhang, Q.; Xu, X. Spleen proteome profiling of dairy goats infected with C. pseudotuberculosis by TMT-based quantitative proteomics approach. J. Proteomics, 2021, 248, 104352. doi: 10.1016/j.jprot.2021.104352 PMID: 34411763
- Stojic, L.; Lun, A.T.L.; Mascalchi, P.; Ernst, C.; Redmond, A.M.; Mangei, J.; Barr, A.R.; Bousgouni, V.; Bakal, C.; Marioni, J.C.; Odom, D.T.; Gergely, F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat. Commun., 2020, 11(1), 1851-1873. doi: 10.1038/s41467-020-14978-7 PMID: 32296040
- Kanjanasirirat, P.; Suksatu, A.; Manopwisedjaroen, S.; Munyoo, B.; Tuchinda, P.; Jearawuttanakul, K.; Seemakhan, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Rangkasenee, N.; Pitiporn, S.; Waranuch, N.; Chabang, N.; Khemawoot, P.; Sa-ngiamsuntorn, K.; Pewkliang, Y.; Thongsri, P.; Chutipongtanate, S.; Hongeng, S.; Borwornpinyo, S.; Thitithanyanont, A. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci. Rep., 2020, 10(1), 19963. doi: 10.1038/s41598-020-77003-3 PMID: 33203926
- Subastri, A.; Ramamurthy, C.H.; Suyavaran, A.; Mareeswaran, R.; Lokeswara Rao, P.; Harikrishna, M.; Suresh Kumar, M.; Sujatha, V.; Thirunavukkarasu, C. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA. Int. J. Biol. Macromol., 2015, 78, 122-129. doi: 10.1016/j.ijbiomac.2015.03.036 PMID: 25858879
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88. doi: 10.1038/s41580-021-00404-3 PMID: 34508254
- Chaudhry, G.S.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol., 2022, 13, 842376. doi: 10.3389/fphar.2022.842376 PMID: 36034846
- Willems, P.H.G.M.; Rossignol, R.; Dieteren, C.E.J.; Murphy, M.P.; Koopman, W.J.H. Redox homeostasis and mitochondrial dynamics. Cell Metab., 2015, 22(2), 207-218. doi: 10.1016/j.cmet.2015.06.006 PMID: 26166745
- Zhao, M.; Wang, Y.; Li, L.; Liu, S.; Wang, C.; Yuan, Y.; Yang, G.; Chen, Y.; Cheng, J.; Lu, Y.; Liu, J. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics, 2021, 11(4), 1845-1863. doi: 10.7150/thno.50905 PMID: 33408785
- Diebold, L.; Chandel, N.S. Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med., 2016, 100, 86-93. doi: 10.1016/j.freeradbiomed.2016.04.198 PMID: 27154978
- Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res., 2019, 29(5), 347-364. doi: 10.1038/s41422-019-0164-5 PMID: 30948788
- Zhong, Y.; Zhang, Y.; Gu, Y.; Wu, S.; Shen, W.; Tan, M. Novel Fe(II) and Co(II) complexes of natural product tryptanthrin: Synthesis and binding with G-quadruplex DNA. Bioinorg. Chem. Appl., 2016, 2016, 1-7. doi: 10.1155/2016/5075847 PMID: 27698647
- Cuella-Martin, R.; Oliveira, C.; Lockstone, H.E.; Snellenberg, S.; Grolmusova, N.; Chapman, J.R. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol. Cell, 2016, 64(1), 51-64. doi: 10.1016/j.molcel.2016.08.002 PMID: 27546791
- Blay, V.; Tolani, B.; Ho, S.P.; Arkin, M.R. High-throughput screening: Todays biochemical and cell-based approaches. Drug Discov. Today, 2020, 25(10), 1807-1821. doi: 10.1016/j.drudis.2020.07.024 PMID: 32801051
- Ou, H.L.; Schumacher, B. DNA damage responses and p53 in the aging process. Blood, 2018, 131(5), 488-495. doi: 10.1182/blood-2017-07-746396 PMID: 29141944
- Scott, E.C.; Baines, A.C.; Gong, Y.; Moore, R., Jr; Pamuk, G.E.; Saber, H.; Subedee, A.; Thompson, M.D.; Xiao, W.; Pazdur, R.; Rao, V.A.; Schneider, J.; Beaver, J.A. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat. Rev. Drug Discov., 2023, 22(8), 625-640. doi: 10.1038/s41573-023-00723-4 PMID: 37344568
- Zhang, S.; Qi, F.; Fang, X.; Yang, D.; Hu, H.; Huang, Q.; Kuang, C.; Yang, Q. Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives. Eur. J. Med. Chem., 2018, 160, 133-145. doi: 10.1016/j.ejmech.2018.10.017 PMID: 30321802
- Chang, H.N.; Yeh, Y.C.; Chueh, H.Y.; Pang, J.H.S. The anti-angiogenic effect of tryptanthrin is mediated by the inhibition of apelin promoter activity and shortened mRNA half-life in human vascular endothelial cells. Phytomedicine, 2019, 58, 152879. doi: 10.1016/j.phymed.2019.152879 PMID: 31005035
- Shabna, A.; Antony, J.; Vijayakurup, V.; Saikia, M.; Liju, V.B.; Retnakumari, A.P.; Amrutha, N.A.; Alex, V.V.; Swetha, M.; Aiswarya, S.U.; Jannet, S.; Unni, U.S.; Sundaram, S.; Sherin, D.R.; Anto, N.P.; Bava, S.V.; Chittalakkottu, S.; Ran, S.; Anto, R.J. Pharmacological attenuation of melanoma by tryptanthrin pertains to the suppression of MITF-M through MEK/ERK signaling axis. Cell. Mol. Life Sci., 2022, 79(9), 478-483. doi: 10.1007/s00018-022-04476-y PMID: 35948813
- Gao, J.Y.; Chang, C.S.; Lien, J.C.; Chen, T.W.; Hu, J.L.; Weng, J.R. Synthetic tryptanthrin derivatives induce cell cycle arrest and apoptosis via Akt and MAPKs in human hepatocellular carcinoma cells. Biomedicines, 2021, 9(11), 1527. doi: 10.3390/biomedicines9111527 PMID: 34829756
- Li, F.N.; Zhang, Q.Y.; Li, O.; Liu, S.L.; Yang, Z.Y.; Pan, L.J.; Zhao, C.; Gong, W.; Shu, Y.J.; Dong, P. ESRRA promotes gastric cancer development by regulating the CDC25C/CDK1/CyclinB1 pathway via DSN1. Int. J. Biol. Sci., 2021, 17(8), 1909-1924. doi: 10.7150/ijbs.57623 PMID: 34131395
- Huang, F.Y.; Wong, D.K.H.; Seto, W.K.; Mak, L.Y.; Cheung, T.T.; Yuen, M.F. Tumor suppressive role of mitochondrial sirtuin 4 in induction of G2/M cell cycle arrest and apoptosis in hepatitis B virus-related hepatocellular carcinoma. Cell Death Discov., 2021, 7(1), 88. doi: 10.1038/s41420-021-00470-8 PMID: 33931611
- Patil, S.M.; Kunda, N.K. Nisin ZP, an antimicrobial peptide, induces cell death and inhibits non-small cell lung cancer (NSCLC) progression in vitro in 2D and 3D cell culture. Pharm. Res., 2022, 39(11), 2859-2870. doi: 10.1007/s11095-022-03220-2 PMID: 35246758
- Newman, S.A.; Short, J.L.; Nicolazzo, J.A. Reduction in ABCG2 mRNA expression in human immortalised brain microvascular endothelial cells by ferric ammonium citrate is mediated by reactive oxygen species and activation of ERK1/2 signalling. Pharm. Res., 2023, 40(3), 651-660. doi: 10.1007/s11095-022-03458-w PMID: 36539667
- Wang, W.; Chen, Y.; Yin, Y.; Wang, X.; Ye, X.; Jiang, K.; Zhang, Y.; Zhang, J.; Zhang, W.; Zhuge, Y.; Chen, L.; Peng, C.; Xiong, A.; Yang, L.; Wang, Z. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch. Toxicol., 2022, 96(7), 2003-2019. doi: 10.1007/s00204-022-03281-7 PMID: 35357534
- Harjes, U. EGFR is going circular. Nat. Rev. Cancer, 2021, 21(5), 280-293. doi: 10.1038/s41568-021-00350-4 PMID: 33758414
- Levantini, E.; Maroni, G.; Del Re, M.; Tenen, D.G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol., 2022, 85, 253-275. doi: 10.1016/j.semcancer.2022.04.002 PMID: 35427766
Supplementary files
