A Novel Tryptanthrin Derivative D6 Induces Apoptosis and DNA Damage in Non-small-cell Lung Cancer Cells Through Regulating the EGFR Pathway


Cite item

Full Text

Abstract

Background:Non-small-cell lung cancer is a prevalent malignancy associated with significant morbidity and mortality rates. Tryptanthrin and its derivatives have exhibited potent antitumor activity.

Objective:This study aims to investigate the inhibitory effect of a novel synthesized tryptanthrin derivative D6 on proliferation and the possible mechanism of human non-small cell lung cancer cell lines (A549) in vitro.

Methods:In this study, MTT assay, cell migration, colony formation assay, cell cycle analysis, cell apoptosis, JC- 1 staining assay, reactive oxygen species analysis, proteomics, western blotting, high content screening and absorption titrations analysis were performed.

Results:We found that D6 inhibited both the proliferation and migration, induced cell cycle arrest in the G2/M phase, increased levels of ROS, decreased mitochondrial membrane potential, and promoted apoptosis in A549 cells. Further mechanistic studies found that D6 reduced EGFR expression in A549 cells and inhibited the EGFR pathway by decreasing phosphorylation levels of EGFR, Stat3, AKT and Erk1/2. Moreover, DNA damage induced by D6 involved an increase in p53/MDM2 ratio and concentration-dependent accumulation of micronuclei.

Conclusion:D6 demonstrated significant antitumor activity against A549 cells by inhibiting the EGFR signaling pathway, inducing DNA damage, and subsequently leading to oxidative stress, apoptosis, and cell cycle arrest. Our findings suggest that D6 exhibits potential as an NSCLC drug, owing to its attributes such as antiproliferative activity and ability to induce apoptosis by attenuating the EGFR-mediated signaling pathway.

About the authors

Haitao Long

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Guanglong Zhang

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Yue Zhou

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Liqing Qin

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Danxue Zhu

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Jiayi Chen

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Bo Liu

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Huayuan Tan

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Danping Chen

School of Pharmaceutical Sciences,, Guizhou University

Email: info@benthamscience.net

Zhurui Li

School of Pharmaceutical Sciences, Guizhou University

Email: info@benthamscience.net

Chengpeng Li

School of Pharmaceutical Sciences, Guizhou University

Author for correspondence.
Email: info@benthamscience.net

Zhenchao Wang

School of Pharmaceutical Sciences, Guizhou University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mao, J.J.; Pillai, G.G.; Andrade, C.J.; Ligibel, J.A.; Basu, P.; Cohen, L.; Khan, I.A.; Mustian, K.M.; Puthiyedath, R.; Dhiman, K.S.; Lao, L.; Ghelman, R.; Cáceres Guido, P.; Lopez, G.; Gallego-Perez, D.F.; Salicrup, L.A. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA Cancer J. Clin., 2022, 72(2), 144-164. doi: 10.3322/caac.21706 PMID: 34751943
  2. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  3. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  4. Oser, M.G.; Niederst, M.J.; Sequist, L.V.; Engelman, J.A. Transformation from non-small-cell lung cancer to small-cell lung cancer: Molecular drivers and cells of origin. Lancet Oncol., 2015, 16(4), e165-e172. doi: 10.1016/S1470-2045(14)71180-5 PMID: 25846096
  5. Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
  6. Arbour, K.C.; Riely, G.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer: A review. JAMA, 2019, 322(8), 764-774. doi: 10.1001/jama.2019.11058 PMID: 31454018
  7. Xiang, Y.C.; Shen, J.; Si, Y.; Liu, X.W.; Zhang, L.; Wen, J.; Zhang, T.; Yu, Q.Q.; Lu, J.F.; Xiang, K.; Liu, Y. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer. Chin. J. Nat. Med., 2021, 19(3), 195-204. doi: 10.1016/S1875-5364(21)60021-3 PMID: 33781453
  8. Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201-249. doi: 10.1038/s41392-021-00572-w PMID: 34054126
  9. Mazumder, A.; Cerella, C.; Diederich, M. Natural scaffolds in anticancer therapy and precision medicine. Biotechnol. Adv., 2018, 36(6), 1563-1585. doi: 10.1016/j.biotechadv.2018.04.009 PMID: 29729870
  10. Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin. Cancer Biol., 2016, 40-41, 1-3. doi: 10.1016/j.semcancer.2016.08.006 PMID: 27565447
  11. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; Majeed, M.; Bishayee, A.; Bochkov, V.; Bonn, G.K.; Braidy, N.; Bucar, F.; Cifuentes, A.; D’Onofrio, G.; Bodkin, M.; Diederich, M.; Dinkova-Kostova, A.T.; Efferth, T.; El Bairi, K.; Arkells, N.; Fan, T-P.; Fiebich, B.L.; Freissmuth, M.; Georgiev, M.I.; Gibbons, S.; Godfrey, K.M.; Gruber, C.W.; Heer, J.; Huber, L.A.; Ibanez, E.; Kijjoa, A.; Kiss, A.K.; Lu, A.; Macias, F.A.; Miller, M.J.S.; Mocan, A.; Müller, R.; Nicoletti, F.; Perry, G.; Pittalà, V.; Rastrelli, L.; Ristow, M.; Russo, G.L.; Silva, A.S.; Schuster, D.; Sheridan, H.; Skalicka-Woźniak, K.; Skaltsounis, L.; Sobarzo-Sánchez, E.; Bredt, D.S.; Stuppner, H.; Sureda, A.; Tzvetkov, N.T.; Vacca, R.A.; Aggarwal, B.B.; Battino, M.; Giampieri, F.; Wink, M.; Wolfender, J-L.; Xiao, J.; Yeung, A.W.K.; Lizard, G.; Popp, M.A.; Heinrich, M.; Berindan-Neagoe, I.; Stadler, M.; Daglia, M.; Verpoorte, R.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. doi: 10.1038/s41573-020-00114-z PMID: 33510482
  12. Du, J.; Liu, P.; Zhu, Y.; Wang, G.; Xing, S.; Liu, T.; Xia, J.; Dong, S.; Lv, N.; Li, Z. Novel tryptanthrin derivatives with benzenesulfonamide substituents: Design, synthesis, and anti-inflammatory evaluation. Eur. J. Med. Chem., 2023, 246, 114956. doi: 10.1016/j.ejmech.2022.114956 PMID: 36450214
  13. Shankar, G.M.; Alex, V.V.; Nisthul, A.A.; Bava, S.V.; Sundaram, S.; Retnakumari, A.P.; Chittalakkottu, S.; Anto, R.J. Pre‐clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Prolif., 2020, 53(1), e12710. doi: 10.1111/cpr.12710 PMID: 31663659
  14. Yu, S.; Chern, J.; Chen, T.; Chiu, Y.; Chen, H.; Chen, Y. Cytotoxicity and reversal of multidrug resistance by tryptanthrin-derived indoloquinazolines. Acta Pharmacol. Sin., 2010, 31(2), 259-264. doi: 10.1038/aps.2009.198 PMID: 20139909
  15. Zou, Y.; Zhang, G.; Li, C.; Long, H.; Chen, D.; Li, Z.; Ouyang, G.; Zhang, W.; Zhang, Y.; Wang, Z. Discovery of tryptanthrin and its derivatives and its activities against nsclc in vitrovia both apoptosis and autophagy pathways. Int. J. Mol. Sci., 2023, 24(2), 1450-1465. doi: 10.3390/ijms24021450 PMID: 36674964
  16. Zhang, G.; Li, C.; Li, Y.; Chen, D.; Li, Z.; Wang, Z.; Ouyang, G. Design, synthesis, and mechanism of novel 9-aliphatic amine tryptanthrin derivatives against phytopathogenic bacteria. J. Agric. Food Chem., 2023, 71(39), 14232-14242. doi: 10.1021/acs.jafc.3c03738 PMID: 37749804
  17. Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319. doi: 10.1038/nprot.2006.339 PMID: 17406473
  18. Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J. Invest. Dermatol., 2017, 137(2), e11-e16. doi: 10.1016/j.jid.2016.11.020 PMID: 28110712
  19. Fu, M.; Yan, Y.; Su, H.; Wang, J.; Shi, X.; Zhou, H.; Zhang, Q.; Xu, X. Spleen proteome profiling of dairy goats infected with C. pseudotuberculosis by TMT-based quantitative proteomics approach. J. Proteomics, 2021, 248, 104352. doi: 10.1016/j.jprot.2021.104352 PMID: 34411763
  20. Stojic, L.; Lun, A.T.L.; Mascalchi, P.; Ernst, C.; Redmond, A.M.; Mangei, J.; Barr, A.R.; Bousgouni, V.; Bakal, C.; Marioni, J.C.; Odom, D.T.; Gergely, F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat. Commun., 2020, 11(1), 1851-1873. doi: 10.1038/s41467-020-14978-7 PMID: 32296040
  21. Kanjanasirirat, P.; Suksatu, A.; Manopwisedjaroen, S.; Munyoo, B.; Tuchinda, P.; Jearawuttanakul, K.; Seemakhan, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Rangkasenee, N.; Pitiporn, S.; Waranuch, N.; Chabang, N.; Khemawoot, P.; Sa-ngiamsuntorn, K.; Pewkliang, Y.; Thongsri, P.; Chutipongtanate, S.; Hongeng, S.; Borwornpinyo, S.; Thitithanyanont, A. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci. Rep., 2020, 10(1), 19963. doi: 10.1038/s41598-020-77003-3 PMID: 33203926
  22. Subastri, A.; Ramamurthy, C.H.; Suyavaran, A.; Mareeswaran, R.; Lokeswara Rao, P.; Harikrishna, M.; Suresh Kumar, M.; Sujatha, V.; Thirunavukkarasu, C. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA. Int. J. Biol. Macromol., 2015, 78, 122-129. doi: 10.1016/j.ijbiomac.2015.03.036 PMID: 25858879
  23. Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88. doi: 10.1038/s41580-021-00404-3 PMID: 34508254
  24. Chaudhry, G.S.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol., 2022, 13, 842376. doi: 10.3389/fphar.2022.842376 PMID: 36034846
  25. Willems, P.H.G.M.; Rossignol, R.; Dieteren, C.E.J.; Murphy, M.P.; Koopman, W.J.H. Redox homeostasis and mitochondrial dynamics. Cell Metab., 2015, 22(2), 207-218. doi: 10.1016/j.cmet.2015.06.006 PMID: 26166745
  26. Zhao, M.; Wang, Y.; Li, L.; Liu, S.; Wang, C.; Yuan, Y.; Yang, G.; Chen, Y.; Cheng, J.; Lu, Y.; Liu, J. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics, 2021, 11(4), 1845-1863. doi: 10.7150/thno.50905 PMID: 33408785
  27. Diebold, L.; Chandel, N.S. Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med., 2016, 100, 86-93. doi: 10.1016/j.freeradbiomed.2016.04.198 PMID: 27154978
  28. Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res., 2019, 29(5), 347-364. doi: 10.1038/s41422-019-0164-5 PMID: 30948788
  29. Zhong, Y.; Zhang, Y.; Gu, Y.; Wu, S.; Shen, W.; Tan, M. Novel Fe(II) and Co(II) complexes of natural product tryptanthrin: Synthesis and binding with G-quadruplex DNA. Bioinorg. Chem. Appl., 2016, 2016, 1-7. doi: 10.1155/2016/5075847 PMID: 27698647
  30. Cuella-Martin, R.; Oliveira, C.; Lockstone, H.E.; Snellenberg, S.; Grolmusova, N.; Chapman, J.R. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol. Cell, 2016, 64(1), 51-64. doi: 10.1016/j.molcel.2016.08.002 PMID: 27546791
  31. Blay, V.; Tolani, B.; Ho, S.P.; Arkin, M.R. High-throughput screening: Today’s biochemical and cell-based approaches. Drug Discov. Today, 2020, 25(10), 1807-1821. doi: 10.1016/j.drudis.2020.07.024 PMID: 32801051
  32. Ou, H.L.; Schumacher, B. DNA damage responses and p53 in the aging process. Blood, 2018, 131(5), 488-495. doi: 10.1182/blood-2017-07-746396 PMID: 29141944
  33. Scott, E.C.; Baines, A.C.; Gong, Y.; Moore, R., Jr; Pamuk, G.E.; Saber, H.; Subedee, A.; Thompson, M.D.; Xiao, W.; Pazdur, R.; Rao, V.A.; Schneider, J.; Beaver, J.A. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat. Rev. Drug Discov., 2023, 22(8), 625-640. doi: 10.1038/s41573-023-00723-4 PMID: 37344568
  34. Zhang, S.; Qi, F.; Fang, X.; Yang, D.; Hu, H.; Huang, Q.; Kuang, C.; Yang, Q. Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives. Eur. J. Med. Chem., 2018, 160, 133-145. doi: 10.1016/j.ejmech.2018.10.017 PMID: 30321802
  35. Chang, H.N.; Yeh, Y.C.; Chueh, H.Y.; Pang, J.H.S. The anti-angiogenic effect of tryptanthrin is mediated by the inhibition of apelin promoter activity and shortened mRNA half-life in human vascular endothelial cells. Phytomedicine, 2019, 58, 152879. doi: 10.1016/j.phymed.2019.152879 PMID: 31005035
  36. Shabna, A.; Antony, J.; Vijayakurup, V.; Saikia, M.; Liju, V.B.; Retnakumari, A.P.; Amrutha, N.A.; Alex, V.V.; Swetha, M.; Aiswarya, S.U.; Jannet, S.; Unni, U.S.; Sundaram, S.; Sherin, D.R.; Anto, N.P.; Bava, S.V.; Chittalakkottu, S.; Ran, S.; Anto, R.J. Pharmacological attenuation of melanoma by tryptanthrin pertains to the suppression of MITF-M through MEK/ERK signaling axis. Cell. Mol. Life Sci., 2022, 79(9), 478-483. doi: 10.1007/s00018-022-04476-y PMID: 35948813
  37. Gao, J.Y.; Chang, C.S.; Lien, J.C.; Chen, T.W.; Hu, J.L.; Weng, J.R. Synthetic tryptanthrin derivatives induce cell cycle arrest and apoptosis via Akt and MAPKs in human hepatocellular carcinoma cells. Biomedicines, 2021, 9(11), 1527. doi: 10.3390/biomedicines9111527 PMID: 34829756
  38. Li, F.N.; Zhang, Q.Y.; Li, O.; Liu, S.L.; Yang, Z.Y.; Pan, L.J.; Zhao, C.; Gong, W.; Shu, Y.J.; Dong, P. ESRRA promotes gastric cancer development by regulating the CDC25C/CDK1/CyclinB1 pathway via DSN1. Int. J. Biol. Sci., 2021, 17(8), 1909-1924. doi: 10.7150/ijbs.57623 PMID: 34131395
  39. Huang, F.Y.; Wong, D.K.H.; Seto, W.K.; Mak, L.Y.; Cheung, T.T.; Yuen, M.F. Tumor suppressive role of mitochondrial sirtuin 4 in induction of G2/M cell cycle arrest and apoptosis in hepatitis B virus-related hepatocellular carcinoma. Cell Death Discov., 2021, 7(1), 88. doi: 10.1038/s41420-021-00470-8 PMID: 33931611
  40. Patil, S.M.; Kunda, N.K. Nisin ZP, an antimicrobial peptide, induces cell death and inhibits non-small cell lung cancer (NSCLC) progression in vitro in 2D and 3D cell culture. Pharm. Res., 2022, 39(11), 2859-2870. doi: 10.1007/s11095-022-03220-2 PMID: 35246758
  41. Newman, S.A.; Short, J.L.; Nicolazzo, J.A. Reduction in ABCG2 mRNA expression in human immortalised brain microvascular endothelial cells by ferric ammonium citrate is mediated by reactive oxygen species and activation of ERK1/2 signalling. Pharm. Res., 2023, 40(3), 651-660. doi: 10.1007/s11095-022-03458-w PMID: 36539667
  42. Wang, W.; Chen, Y.; Yin, Y.; Wang, X.; Ye, X.; Jiang, K.; Zhang, Y.; Zhang, J.; Zhang, W.; Zhuge, Y.; Chen, L.; Peng, C.; Xiong, A.; Yang, L.; Wang, Z. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch. Toxicol., 2022, 96(7), 2003-2019. doi: 10.1007/s00204-022-03281-7 PMID: 35357534
  43. Harjes, U. EGFR is going circular. Nat. Rev. Cancer, 2021, 21(5), 280-293. doi: 10.1038/s41568-021-00350-4 PMID: 33758414
  44. Levantini, E.; Maroni, G.; Del Re, M.; Tenen, D.G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol., 2022, 85, 253-275. doi: 10.1016/j.semcancer.2022.04.002 PMID: 35427766

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers