Molecular Actions of Enicostemma hyssopifolium Whole Plant Extract on HPV18-Infected Human Cervical Cancer (HeLa) Cells


Citar

Texto integral

Resumo

Objective:Enicostemma hyssopifolium (E. hyssopifolium) contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of E. hyssopifolium on HPV18-containing HeLa cells.

Methods:The methanol extract of E. hyssopifolium whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 µg/mL) to IC50 were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR.

Results:A significant dose-dependent anti-proliferative activity (IC50 - 108.25±2 µg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 µg/mL of extract was found to result in a higher percent of cell cycle arrest at G0/G1 and G2M phases with more early apoptosis, while 160 µg/mL resulted in more cell cycle arrest at SUBG0 and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 µg/mL of extract (tail moments-19.536 ± 17.8), while 80 µg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 µg/mL of extract, while 80 µg/mL did not show a significant reduction.

Conclusion:The 160 µg/mL methanol extract of E. hyssopifolium demonstrated highly significant anti-cancer molecular effects in HeLa cells.

Sobre autores

Komal Koralahalli

Department of Biochemistry, Bharathiar University

Email: info@benthamscience.net

Sardar Hussain

Department of Biotechnology, Maharani`s Science College for Women

Email: info@benthamscience.net

David Devarajan

School of Science, Arts and Media, Karunya Institute of Technology and Sciences

Email: info@benthamscience.net

Siddikuzzaman

Department of Biotechnology, Karunya Institute of Technology and Sciences

Email: info@benthamscience.net

Berlin Mariammal

Department of Biotechnology, Karunya Institute of Technology and Sciences

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Martin, T.A.; Ye, L.; Sanders, A.J. Cancer invasion and metastasis: Molecular and cellular perspective. Madame Curie Bioscience Database; National Library of Medicine: Bethesda, MD, 2013.
  2. Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis, 2010, 31(1), 100-110. doi: 10.1093/carcin/bgp263 PMID: 19934210
  3. Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961. doi: 10.3332/ecancer.2019.961
  4. Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47. doi: 10.3390/biom10010047 PMID: 31892257
  5. Park, S.H.; Kim, M.; Lee, S.; Jung, W.; Kim, B. Therapeutic potential of natural products in treatment of cervical cancer: A review. Nutrients, 2021, 13(1), 154. doi: 10.3390/nu13010154 PMID: 33466408
  6. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  7. Lee, J.; Jeong, M.I.; Kim, H.R.; Park, H.; Moon, W.K.; Kim, B. Plant extracts as possible agents for Sequela of cancer therapies and cachexia. Antioxidants, 2020, 9(9), 836. doi: 10.3390/antiox9090836 PMID: 32906727
  8. Dasari, S.; Bernard, T.P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378. doi: 10.1016/j.ejphar.2014.07.025 PMID: 25058905
  9. de Jongh, F.E.; van Veen, R.N.; Veltman, S.J.; de Wit, R.; van der Burg, M.E.L.; van den Bent, M.J.; Planting, A.S.T.; Graveland, W.J.; Stoter, G.; Verweij, J. Weekly high-dose cisplatin is a feasible treatment option: Analysis on prognostic factors for toxicity in 400 patients. Br. J. Cancer, 2003, 88(8), 1199-1206. doi: 10.1038/sj.bjc.6600884 PMID: 12698184
  10. Pergialiotis, V.; Bellos, I.; Thomakos, N.; Haidopoulos, D.; Perrea, D.N.; Kontzoglou, K.; Daskalakis, G.; Rodolakis, A. Survival outcomes of patients with cervical cancer and accompanying hydronephrosis: A systematic review of the literature. Oncol. Rev., 2019, 13(1), 387. doi: 10.4081/oncol.2019.387 PMID: 30746036
  11. Han, R.; Yang, Y.M.; Dietrich, J.; Luebke, A.; Mayer-Pröschel, M.; Noble, M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J. Biol., 2008, 7(4), 12. doi: 10.1186/jbiol69 PMID: 18430259
  12. Kwon, S.J. Management of side effects of 5-FU based chemotherapy. Korean J. Clin. Oncol., 2005, 1(1), 51-58.
  13. Kadoyama, K.; Miki, I.; Tamura, T.; Brown, J.B.; Sakaeda, T.; Okuno, Y. Adverse event profiles of 5-fluorouracil and capecitabine: Data mining of the public version of the FDA Adverse Event Reporting System, AERS, and reproducibility of clinical observations. Int. J. Med. Sci., 2012, 9(1), 33-39. doi: 10.7150/ijms.9.33 PMID: 22211087
  14. Delano, M.J.; Ward, P.A. The immune system’s role in sepsis progression, resolution, and long‐term outcome. Immunol. Rev., 2016, 274(1), 330-353. doi: 10.1111/imr.12499 PMID: 27782333
  15. Federico, C.; Sun, J.; Muz, B.; Alhallak, K.; Cosper, P.F.; Muhammad, N.; Jeske, A.; Hinger, A.; Markovina, S.; Grigsby, P.; Schwarz, J.K.; Azab, A.K. Localized delivery of cisplatin to cervical cancer improves its therapeutic efficacy and minimizes its side effect profile. Int. J. Radiat. Oncol. Biol. Phys., 2021, 109(5), 1483-1494. doi: 10.1016/j.ijrobp.2020.11.052 PMID: 33253820
  16. Yin, S.Y.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-15. doi: 10.1155/2013/302426 PMID: 23956768
  17. Sanford, N.N.; Sher, D.J.; Ahn, C.; Aizer, A.A.; Mahal, B.A. Prevalence and nondisclosure of complementary and alternative medicine use in patients with cancer and cancer survivors in the United States. JAMA Oncol., 2019, 5(5), 735-737. doi: 10.1001/jamaoncol.2019.0349 PMID: 30973579
  18. Shirakami, Y.; Shimizu, M. Possible mechanisms of green tea and its constituents against cancer. Molecules, 2018, 23(9), 2284. doi: 10.3390/molecules23092284
  19. Liu, L.; Wang, M.; Li, X.; Yin, S.; Wang, B. An overview of novel agents for cervical cancer treatment by inducing apoptosis: Emerging drugs ongoing clinical trials and preclinical studies. Front. Med., 2021, 8, 682366. doi: 10.3389/fmed.2021.682366
  20. Xiong, Y.; Chen, L.; Luo, P. N ‐Benzylcinnamide induces apoptosis in HPV 16 and HPV 18 cervical cancer cells via suppression of E 6 and E 7 protein expression. IUBMB Life, 2015, 67(5), 374-379. doi: 10.1002/iub.1380 PMID: 25914202
  21. Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346. doi: 10.1002/biof.1344 PMID: 27896883
  22. Ezzat, S.M.; Shouman, S.A.; Elkhoely, A.; Attia, Y.M.; Elsesy, M.S.; El Senousy, A.S.; Choucry, M.A.; El Gayed, S.H.; El Sayed, A.A.; Sattar, E.A.; El Tanbouly, N. Anticancer potentiality of lignan rich fraction of six Flaxseed cultivars. Sci. Rep., 2018, 8(1), 544. doi: 10.1038/s41598-017-18944-0 PMID: 29323210
  23. Ng, W.K.; Yazan, L.S.; Ismail, M. Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of Bcl-2 protein. Toxicol. In Vitro, 2011, 25(7), 1392-1398. doi: 10.1016/j.tiv.2011.04.030
  24. Jayalekshmi, C. Bioactive compounds of Calotropis gigantea for cancer treatment. Oral Oncol Reports, 2024, 10, 100336. doi: 10.1016/j.oor.2024.100336
  25. Ali, M.; Wani, S.U.D.; Salahuddin, M. S N, M.; K, M.; Dey, T.; Zargar, M.I.; Singh, J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon, 2023, 9(2), e13684. doi: 10.1016/j.heliyon.2023.e13684 PMID: 36865478
  26. Patel, N.; Tyagi, R.K.; Tandel, N.; Garg, N.K.; Soni, N. The molecular targets of swertiamarin and its derivatives confer anti- diabetic and anti-hyperlipidemic effects. Curr. Drug Targets, 2018, 19(16), 1958-1967. doi: 10.2174/1389450119666180406113428 PMID: 29623834
  27. Vaijanathappa, J.; Puttaswamygowda, J.; Bevanhalli, R.; Dixit, S.; Prabhakaran, P. Molecular docking, antiproliferative and anticonvulsant activities of swertiamarin isolated from Enicostemma axillare. Bioorg. Chem., 2020, 94, 103428. doi: 10.1016/j.bioorg.2019.103428 PMID: 31740047
  28. Ravi, K.; Gunasekaran, K.; Rajagopalan, V.; Silambanan, S. Evaluation of the effect of enicostemma axillare extract on migration of MCF-7 cell line. J. Clin. Diagn. Res., 2019, 13(10), BC10-BC13. doi: 10.7860/JCDR/2019/42371.13241
  29. Antony, R.I.C.; Umarani, V.; Sankaranarayanan, S.; Bama, P.; Ramachandran, J. Antioxidant, antibacterial and cytotoxicity studies from flavonoid rich fraction of Enicostemma axillare (LAM.) raynal leaves. Afr. J. Pharm. Pharmacol., 2016, 10(43), 916-925. doi: 10.5897/AJPP2016.4675
  30. Krishna Veni, A.; Mohandass, S. In-vitro cytotoxic activity of Enicostemma axillare extract against hela cell line. Int. J. Pharmacogn. Phytochem. Res., 2014, 6(2), 320-323.
  31. okokon, J.E.; Nwafor, P.A.; Abia, G.O.; Bankhede, H.K. Antipyretic and antimalarial activities of crude leaf extract and fractions of Enicostema littorale. Asian Pac. J. Trop. Dis., 2012, 2(6), 442-447. doi: 10.1016/S2222-1808(12)60097-8
  32. Vigneswaran, M.; Prem, K.G.; Subiramani, S.; Siva, G.; Nandakumaran, T.; Prabha, L.; Narayanasamy, J.A. Compendious review of Enicostemma littorale Blume. Panacea to several maladies. Int. J. Sci. Eng. Res., 2017, 8, 1817-1836.
  33. Laxman, S.; Bala, P.; Yusuf, K.; Nancy, P. Pharmacognostical standardization of Enicostemma littorale Blume. Pharmacogn. J., 2010, 2(16), 15-23. doi: 10.1016/S0975-3575(10)80044-6
  34. Murali, B.; Upadhyaya, U.M.; Goyal, R.K. Effect of chronic treatment with Enicostemma littorale in non-insulin-dependent diabetic (NIDDM) rats. J. Ethnopharmacol., 2002, 81(2), 199-204. doi: 10.1016/S0378-8741(02)00077-6 PMID: 12065151
  35. Rajasekaran, D.; Manoharan, S.; Prabhakar, M.M.; Manimaran, A. Enicostemma littorale prevents tumor formation in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Hum. Exp. Toxicol., 2015, 34(9), 911-921. doi: 10.1177/0960327114562033 PMID: 26286523
  36. Kavimani, S.; Manisenthlkumar, K.T. Effect of methanolic extract of Enicostemma littorale on Dalton’s ascitic lymphoma. J. Ethnopharmacol., 2000, 71(1-2), 349-352. doi: 10.1016/S0378-8741(00)00190-2 PMID: 10904185
  37. Ghosal, S.; Jaiswal, D.K. Chemical constituents of gentianaceae XXVIII: Flavonoids of Enicostemma hyssopifolium (Willd.). Verd. J. Pharm. Sci., 1980, 69(1), 53-56. doi: 10.1002/jps.2600690115 PMID: 7354443
  38. Komal, K.P.; Berlin Grace, V.M.; Wilson, D.D.; Hussain, S. Phytochemical screening and in vitro antioxidant activity of Enicostemma hyssopifolium. Eur. J. Mol. Clin. Med., 2020, 7(3), 382-394.
  39. Patel, M.B.; Mishra, S.H. Hypoglycemic activity of C-glycosyl flavonoid from Enicostemma hyssopifolium. Pharm. Biol., 2011, 49(4), 383-391. doi: 10.3109/13880209.2010.517759 PMID: 21391839
  40. Raj, K.K. Dalton’s lymphoma as a murine model for understanding the progression and development of T-Cell lymphoma and its role in drug discovery. Int. J. Immunother. Cancer Res.,, 2017, 2017, 001-006. doi: 10.17352/2455-8591.000011
  41. Zhang, J.X.; Wei-Tan, H.; Hu, C.Y.; Wang, W.Q.; Chu, G.H.; Wei, L.H.; Chen, L. Anticancer activity of 23,24-dihydrocucurbitacin B against the HeLa human cervical cell line is due to apoptosis and G2/M cell cycle arrest. Exp. Ther. Med., 2018, 15(3), 2575-2582. doi: 10.3892/etm.2018.5710 PMID: 29456661
  42. Lam, M.; Carmichael, A.R.; Griffiths, H.R. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS One, 2012, 7(6), e40152. doi: 10.1371/journal.pone.0040152 PMID: 22761954
  43. Grace, V.M.B.; Shalini, J.V. lekha, T.T.S.; Devaraj, S.N.; Devaraj, H. Co-overexpression of p53 and bcl-2 proteins in HPV-induced squamous cell carcinoma of the uterine cervix. Gynecol. Oncol., 2003, 91(1), 51-58. doi: 10.1016/S0090-8258(03)00439-6 PMID: 14529662
  44. Berlin Grace, V.M.; Niranjali, D.S.; Radhakrishnan, P.M.; Devaraj, H. HPV-induced carcinogenesis of the uterine cervix is associated with reduced serum ATRA level. Gynecol. Oncol., 2006, 103(1), 113-119. doi: 10.1016/j.ygyno.2006.01.057 PMID: 16554086
  45. Berlin, G.V.M. HPV18 is more onco-potent than HPV16 in Uterine Cervical Carcinogenesis though HPV16 is the prevalent type in India, Chennai. Indian J. Cancer, 2009, 46, 203-207. doi: 10.4103/0019-509X.52954 PMID: 19574671
  46. Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319. doi: 10.1038/nprot.2006.339 PMID: 17406473
  47. Hossein, G.; Azimian-Zavareh, V.; Janzamin, E. Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells. Indian J. Pharmacol., 2012, 44(6), 714-721. doi: 10.4103/0253-7613.103265 PMID: 23248400
  48. Kasibhatla, S.; Amarante-Mendes, G.P.; Finucane, D.; Brunner, T.; Bossy-Wetzel, E.; Green, D.R. Acridine Orange/Ethidium Bromide (AO/EB) staining to detect apoptosis. CSH Protoc., 2006, 2006(3), pdb.prot4493.
  49. Liu, K.; Liu, P.; Liu, R.; Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res., 2015, 21, 15-20. doi: 10.12659/MSMBR.893327 PMID: 25664686
  50. Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutellingsperger, C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184(1), 39-51. doi: 10.1016/0022-1759(95)00072-I PMID: 7622868
  51. Dhawan, A.; Bajpai, M.; Pandey, A.K.; Parmar, D. THE SCGE/Comet assay protocol. Protocol for the single cell gel electrophoresis/comet assay for rapid genotoxicity assessment., 2003. Available From: http://www.cometassayindia.org/protocol%20for%20comet%20assay.pdf
  52. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335. doi: 10.1021/np200906s PMID: 22316239
  53. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. doi: 10.1038/s41573-020-00114-z PMID: 33510482
  54. Cragg, G.M.; Newman, D.J. Nature: A vital source of leads for anticancer drug development. Phytochem. Rev., 2009, 8(2), 313-331. doi: 10.1007/s11101-009-9123-y
  55. Solowey, E.; Lichtenstein, M.; Sallon, S.; Paavilainen, H.; Solowey, E.; Lorberboum-Galski, H. Evaluating medicinal plants for anticancer activity. Sci World J, 2014, 2014, 1-12. doi: 10.1155/2014/721402 PMID: 25478599
  56. Rates, S.M.K. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613. doi: 10.1016/S0041-0101(00)00154-9 PMID: 11072038
  57. Javed, I. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1129-1150. doi: 10.1016/j.apjtb.2017.10.016
  58. Sreelatha, S.; Jeyachitra, A.; Padma, P.R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol., 2011, 49(6), 1270-1275. doi: 10.1016/j.fct.2011.03.006 PMID: 21385597
  59. Amin, M.F.; Ariwibowo, T.; Putri, S.A.; Kurnia, D. Moringa oleifera: A review of the pharmacology, chemical constituents, and application for dental health. Pharmaceuticals, 2024, 17(1), 142. doi: 10.3390/ph17010142 PMID: 38276015
  60. Prabhu, A.; Krishnamoorthy, M.; Prasad, D.J.; Naik, P. Anticancer activity of friedelin isolated from ethanolic leaf extract of Cassia tora on HeLa and HSC-1 cell lines. Indian J. Appl. Res., 2011, 3(10), 1-4. doi: 10.15373/2249555X/OCT2013/121
  61. Demir, S.; Turan, I.; Aliyazicioglu, R.; Yaman, S.O.; Aliyazicioglu, Y. Primula vulgaris extract induces cell cycle arrest and apoptosis in human cervix cancer cells. J. Pharm. Anal., 2018, 8(5), 307-311. doi: 10.1016/j.jpha.2018.05.003 PMID: 30345144
  62. Tugce Ozkan, M.; Aliyazicioglu, R.; Demir, S.; Misir, S.; Turan, I.; Yildirmis, S.; Aliyazicioglu, Y. Phenolic characterisation and antioxidant activity of Primula vulgaris and its antigenotoxic effect on fibroblast cells. Jundishapur J. Nat. Pharm. Prod., 2016, 12(1), 395-401. doi: 10.5812/jjnpp.40073
  63. Demi̇r, S.; Turan, İ.; Ali̇yazicioğlu, Y. Antioxidant properties of Primula vulgaris flower extract and its cytotoxic effect on human cancer cell lines. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2019, 22(1), 78-84. doi: 10.18016/ksutarimdoga.vi.460242
  64. Demir, N.; Gungor, A.A.; Nadaroglu, H.; Demir, Y. The antioxidant and radical scavenging activities of Primrose (Primula vulgaris). Eur. J. Exp. Biol., 2014, 4(2), 395-401.
  65. Mercadante, A.A.; Kasi, A. Genetics, Cancer Cell Cycle Phases; StatPearls: Treasure Island, FL, 2024.
  66. Luo, Y.; Wu, Y.; Peng, Y.; Liu, X.; Bie, J.; Li, S. Systematic analysis to identify a key role of CDK1 in mediating gene interaction networks in cervical cancer development. Ir. J. Med. Sci., 2016, 185(1), 231-239. doi: 10.1007/s11845-015-1283-8 PMID: 25786624
  67. Kumar, S.; Mulchandani, V.; Das Sarma, J. Methanolic neem (Azadirachta indica) stem bark extract induces cell cycle arrest, apoptosis and inhibits the migration of cervical cancer cells in vitro. BMC Compl. Med. Ther., 2022, 22(1), 239. doi: 10.1186/s12906-022-03718-7 PMID: 36088372
  68. Chaudhary, G.; Goyal, S.; Poonia, P. Lawsonia inermis Linnaeus: A phytopharmacological review. Int. J. Pharm. Sci. Drug Res., 2010, 2(2), 91-98.
  69. Oulahal, N.; Degraeve, P. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides? Front. Microbiol., 2022, 12, 753518. doi: 10.3389/fmicb.2021.753518 PMID: 35058892
  70. Wang, X.; Wang, T. Swertiamarin exerts anticancer effects on human cervical cancer cells via induction of apoptosis, inhibition of cell migration and targeting of MEK-ERK pathway. Trop. J. Pharm. Res., 2021, 20(1), 75-81. doi: 10.4314/tjpr.v20i1.12
  71. Muhamad Fadzil, N.S.; Sekar, M.; Gan, S.H.; Bonam, S.R.; Wu, Y.S.; Vaijanathappa, J.; Ravi, S.; Lum, P.T.; Dhadde, S.B. Chemistry, pharmacology and therapeutic potential of swertiamarin – a promising natural lead for new drug discovery and development. Drug Des. Devel. Ther., 2021, 15, 2721-2746. doi: 10.2147/DDDT.S299753 PMID: 34188450
  72. Artun, F.T.; Karagöz, A. Antiproliferative and apoptosis inducing effects of the methanolic extract of Centaurea hermannii in human cervical cancer cell line. Biotech. Histochem., 2021, 96(1), 1-10. doi: 10.1080/10520295.2020.1751288 PMID: 32362148
  73. Aboul-Soud, M.A.M.; Ennaji, H.; Kumar, A.; Alfhili, M.A.; Bari, A.; Ahamed, M.; Chebaibi, M.; Bourhia, M.; Khallouki, F.; Alghamdi, K.M.; Giesy, J.P. Antioxidant, anti-proliferative activity and chemical fingerprinting of Centaurea calcitrapa against breast cancer cells and molecular docking of Caspase-3. Antioxidants, 2022, 11(8), 1514. doi: 10.3390/antiox11081514 PMID: 36009233
  74. Figueroa-González, G.; Pérez-Plasencia, C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol. Lett., 2017, 13(6), 3982-3988. doi: 10.3892/ol.2017.6002 PMID: 28588692
  75. Jessica, E. Cellular Senescence. The molecular basis of cancer; Elsevier Saunders: Cambridge, MA, 2015. doi: 10.1016/B978-1-4557-4066-6.00015-9
  76. Hall, A.H.S.; Alexander, K.A. RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J. Virol., 2003, 77(10), 6066-6069. doi: 10.1128/JVI.77.10.6066-6069.2003 PMID: 12719599

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024