Optimizing Coreopsis tinctoria Flower Extraction and Inhibiting CML Activity: Box-Behnken Design


Цитировать

Полный текст

Аннотация

Background:Chronic myelogenous leukemia (CML) is an uncommon type of cancer of the bone marrow associated with high mortality. Although several effective therapies have been developed to reduce symptoms in patients with CML, many of these methods are associated with side effects. Coreopsis tinctoria Nutt. (C. tinctoria) is a natural medicinal material that possesses antioxidant and anticancer activities. Yet, its effect in treating leukemia has still not been fully explored.

Objective:To optimize the C. tinctoria flower extraction process and investigate whether these extracts can impair CML cell survival.

Methods:The extraction process of C. tinctoria was optimized by the Box-Behnken design response surface method. K562 cells were treated with different volumes (0, 10, 25, 50, and 100 µL) of C. tinctoria flower extracts. The effect of C. tinctoria extract on cell morphology and cell apoptosis was assessed by light microscopy, laser confocal microscopy, and flow cytometry.

Results:We established the following optimized C. tinctoria flower extraction conditions: temperature of 84.4 °C, extraction period of 10 mins, solid-liquid ratio of 1:65, and times 4. These conditions were applied for C. tinctoria flower extraction. Pre-incubation of extracts prepared under the aforementioned optimal conditions with K562 cells induced cell cytotoxicity and cell apoptosis.

Conclusion:C. tinctoria flower extracts exert obvious anti-leukemia effects in vitro and may be a potential drug candidate for leukemia treatment.

Об авторах

Xinmei Chen

College of Pharmacy, Shandong University of Traditional Chinese Medicine

Автор, ответственный за переписку.
Email: info@benthamscience.net

Xinyu Zhou

College of Pharmacy, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Ya Gao

College of Pharmacy, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Список литературы

  1. Whiteley, A.E.; Price, T.T.; Cantelli, G.; Sipkins, D.A. Leukaemia: a model metastatic disease. Nat. Rev. Cancer, 2021, 21(7), 461-475. doi: 10.1038/s41568-021-00355-z PMID: 33953370
  2. Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am. J. Hematol., 2020, 95(6), 691-709. doi: 10.1002/ajh.25792 PMID: 32239758
  3. Zhao, P.; Zhong, Y.; Pan, P.; Zhang, S.; Tian, Y.; Zhang, J.; Yi, G.; Zhao, Z.; Wu, T. DNA self-assembly nanoflower reverse P-glycoprotein mediated drug resistance in chronic myelogenous leukemia therapy. Front. Bioeng. Biotechnol., 2023, 11, 1265199. doi: 10.3389/fbioe.2023.1265199
  4. Costa, A.; Scalzulli, E.; Carmosino, I.; Ielo, C.; Bisegna, M.L.; Martelli, M.; Breccia, M. Pharmacotherapeutic advances for chronic myelogenous leukemia: Beyond tyrosine kinase inhibitors. Expert Opin. Pharmacother., 2024, 25(2), 189-202. doi: 10.1080/14656566.2024.2331778 PMID: 38488824
  5. Yohannan, B.; Omo-Ogboi, A.; Kachira, J.J.; Juneja, H. Hematologic complications after kidney and pancreas transplant in a patient with chronic myeloid leukemia. Cleve. Clin. J. Med., 2024, 91(3), 183-190. doi: 10.3949/ccjm.91a.23042 PMID: 38429002
  6. Shen, J.; Hu, M.; Tan, W.; Ding, J.; Jiang, B.; Xu, L.; Hamulati, H.; He, C.; Sun, Y.; Xiao, P. Traditional uses, phytochemistry, pharmacology, and toxicology of Coreopsis tinctoria Nutt.: A review. J. Ethnopharmacol., 2021, 269, 113690.
  7. Zhou, X.; Cheng, W.; Chen, X.; Wang, K. UPLC–quadrupole time‐of‐flight–tandem mass spectrometry combined with chemometrics and network pharmacology to differentiate Coreopsis tinctoria Nutt. Biomed. Chromatogr., 2024, 38(3), e5797. doi: 10.1002/bmc.5797 PMID: 38084786
  8. Liang, Y.; Niu, H.; Ma, L.; Du, D.; Wen, L.; Xia, Q.; Huang, W. Eriodictyol 7-O-β-D glucopyranoside from Coreopsis tinctoria Nutt. ameliorates lipid disorders via protecting mitochondrial function and suppressing lipogenesis. Mol. Med. Rep., 2017, 16(2), 1298-1306. doi: 10.3892/mmr.2017.6743 PMID: 28627652
  9. Cai, W.; Yu, L.; Zhang, Y.; Feng, L.; Kong, S.; Tan, H.; Xu, H.; Huang, C. Extracts of coreopsis tinctoria nutt. flower exhibit antidiabetic effects via the inhibition of α-glucosidase activity. J. Diabetes Res., 2016, 2016, 2340276.
  10. Guo, H.; Yuan, Q.; Fu, Y.; Liu, W.; Su, Y.H.; Liu, H.; Wu, C.Y.; Zhao, L.; Zhang, Q.; Lin, D.R.; Chen, H.; Qin, W.; Wu, D.T. Extraction optimization and effects of extraction methods on the chemical structures and antioxidant activities of polysaccharides from snow chrysanthemum (Coreopsis Tinctoria). Polymers, 2019, 11(2), 215. doi: 10.3390/polym11020215 PMID: 30960199
  11. Yao, L.; Li, J.; Li, L.; Li, X.; Zhang, R.; Zhang, Y.; Mao, X. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-β1/SMADS/AMPK/NF-κB pathways. BMC Complement. Altern. Med., 2019, 19(1), 14. doi: 10.1186/s12906-018-2410-7 PMID: 30630477
  12. Abdurehman, D.; Guoruoluo, Y.; Lu, X.; Li, J.; Abudulla, R.; Liu, G.; Xin, X.; Aisa, H.A. Optimization of preparation method of hepatoprotective active components from Coreopsis tinctoria Nutt. and its action mechanism in vivo. Biomed. Pharmacother., 2023, 167, 115590.
  13. Ma, P.; Zhang, R.; Xu, L.; Liu, H.; Xiao, P. The neuroprotective effects of coreopsis tinctoria and its mechanism: Interpretation of network pharmacological and experimental data. Front. Pharmacol., 2021, 12, 791288.
  14. Li, Y.; Yang, P.; Luo, Y.; Gao, B.; Sun, J.; Lu, W.; Liu, J.; Chen, P.; Zhang, Y.; Yu, L.L. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem., 2019, 286, 8-16. doi: 10.1016/j.foodchem.2019.02.013
  15. Zhang, M.; Zhao, N.; Xie, M.; Dong, D.; Chen, W.; He, Y.; Yan, D.; Fu, H.; Liang, X.; Zhou, L. Antioxidant properties of polyphenols from snow chrysanthemum (Coreopsis tinctoria) and the modulation on intestinal microflora in vitro. Pharm. Biol., 2022, 60(1), 1771-1780. doi: 10.1080/13880209.2022.2117386 PMID: 36093612
  16. Yang, Y.; Sun, X.; Liu, J.; Kang, L.; Chen, S.; Ma, B.; Guo, B. Quantitative and qualitative analysis of flavonoids and phenolic acids in snow chrysanthemum (Coreopsis tinctoria Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. Molecules, 2016, 21(10), 1307. doi: 10.3390/molecules21101307 PMID: 27706037
  17. Bermúdez-Bazán, M.; Estarrón-Espinosa, M.; Castillo-Herrera, G.A.; Escobedo-Reyes, A.; Urias-Silvas, J.E.; Lugo-Cervantes, E.; Gschaedler-Mathis, A. Agave angustifolia Haw. leaves as a potential source of bioactive compounds: Extraction optimization and extract characterization. Molecules, 2024, 29(5), 1137. doi: 10.3390/molecules29051137 PMID: 38474649
  18. Jia, S.; Li, F.; Liu, Y.; Ren, H.; Gong, G.; Wang, Y.; Wu, S. Effects of extraction methods on the antioxidant activities of polysaccharides from Agaricus blazei Murrill. Int. J. Biol. Macromol., 2013, 62, 66-69. doi: 10.1016/j.ijbiomac.2013.08.031
  19. Tienaho, J.; Fidelis, M.; Brännström, H.; Hellström, J.; Rudolfsson, M.; Kumar, D.A.; Liimatainen, J.; Kumar, A.; Kurkilahti, M.; Kilpeläinen, P. Valorizing assorted logging residues: Response surface methodology in the extraction optimization of a green norway spruce needle-rich fraction to obtain valuable bioactive compounds. ACS Sustain. Res. Manag., 2024, 1(2), 237-249. doi: 10.1021/acssusresmgt.3c00050 PMID: 38414817
  20. Yang, L.; Zhang, F.; He, W.; Zhao, B.; Zhang, T.; Wang, S.; Zhou, L.; He, J. Extraction optimization and constituent analysis of total flavonoid from Hosta plantaginea (Lam.) Aschers flowers and its ameliorative effect on chronic prostatitis via inhibition of multiple inflammatory pathways in rats. J. Ethnopharmacol, 2024, 318(Pt A), 116922.
  21. Hui, L.; Tao, Y.; Xinmin, M. Protective effect of effective components of coreopsis tinctoria nutt on retinopathy of db/db diabetic mice. Evid. Based Complement. Alternat. Med., 2021, 2021, 9948609.
  22. Ghahramanloo, K.H.; Kamalidehghan, B.; Akbari Javar, H.; Teguh Widodo, R.; Majidzadeh, K.; Noordin, M.I. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des. Devel. Ther., 2017, 11, 2221-2226.
  23. Jiang, B.; Le, L.; Liu, H.; Xu, L.; He, C.; Hu, K.; Peng, Y.; Xiao, P. Marein protects against methylglyoxal-induced apoptosis by activating the AMPK pathway in PC12 cells. Free Radic. Res., 2016, 50(11), 1173-1187. doi: 10.1080/10715762.2016.1222374 PMID: 27596733
  24. Kianersi, F.; Abdollahi, M.R.; Mirzaie-asl, A.; Dastan, D.; Rasheed, F. Identification and tissue-specific expression of rutin biosynthetic pathway genes in Capparis spinosa elicited with salicylic acid and methyl jasmonate. Sci. Rep., 2020, 10(1), 8884. doi: 10.1038/s41598-020-65815-2 PMID: 32483287
  25. Zhang, Y.; Shi, S.; Zhao, M.; Chai, X.; Tu, P. C14-polyacetylene glycosides from the capitula of Coreopsis tinctoria and its anti-inflammatory activity against COX-2. Fitoterapia, 2013, 87, 93-97.
  26. Tian, Y.; Li, Y.; Li, F.; Zhi, Q.; Li, F.; Tang, Y.; Yang, Y.; Yin, R.; Ming, J. Protective effects of Coreopsis tinctoria flowers phenolic extract against D-galactosamine/lipopolysaccharide -induced acute liver injury by up-regulation of Nrf2, PPARα, and PPARγ. Food Chem. Toxicol., 2018, 121, 404-412.
  27. Li, H.; Xu, G.; Wu, D.; Li, J.; Cui, J.; Liu, J. Effects of ethyl acetate extract from Coreopsis tinctoria on learning and memory impairment in D -galactose-induced aging mice and the underlying molecular mechanism. Food Funct., 2021, 12(6), 2531-2542. doi: 10.1039/D0FO03293J PMID: 33621295
  28. Yu, Q.; Chen, W.; Zhong, J.; Qing, D.; Yan, C. Structural elucidation of three novel oligosaccharides from Kunlun chrysanthemum flower tea and their bioactivities. Food Chem. Toxicol., 2021, 149, 112032. doi: 10.1016/j.fct.2021.112032
  29. Yao, X.; Gu, C.; Tian, L.; Wang, X.; Tang, H. Comparative study on the antioxidant activities of extracts of Coreopsis tinctoria flowering tops from Kunlun Mountains, Xinjiang, north-western China. Nat. Prod. Res., 2016, 30(4), 429-432. doi: 10.1080/14786419.2015.1015019 PMID: 25776853
  30. Wu, D.T.; Yuan, Q.; Guo, H.; Fu, Y.; Li, F.; Wang, S.P.; Gan, R.Y. Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota. Food Res. Int., 2021, 141, 109888. doi: 10.1016/j.foodres.2020.109888
  31. Li, Y.; Zhang, J.; Yan, C.; Chen, Q.; Xiang, C.; Zhang, Q.; Wang, X.; Jiang, K. Marein prevented LPS-induced osteoclastogenesis by regulating the NF-κB pathway In Vitro. J. Microbiol. Biotechnol., 2022, 32(2), 141-148. doi: 10.4014/jmb.2109.09033 PMID: 35001005
  32. Baghban, N.; Khoradmehr, A.; Afshar, A.; Jafari, N.; Zendehboudi, T.; Rasekh, P.; Abolfathi, L.G.; Barmak, A.; Mohebbi, G.; Akmaral, B.; Askerovich, K.A.; Maratovich, M.N.; Azari, H.; Assadi, M.; Nabipour, I.; Tamadon, A. MRI tracking of marine proliferating cells in vivo using anti-oct4 antibody-conjugated iron nanoparticles for precision in regenerative medicine. Biosensors, 2023, 13(2), 268. doi: 10.3390/bios13020268 PMID: 36832034
  33. Matutes, E.; Polliack, A. Morphological and immunophenotypic features of chronic lymphocytic leukemia. Rev. Clin. Exp. Hematol., 2000, 4(1), 22-47. doi: 10.1046/j.1468-0734.2000.00002.x PMID: 11486329
  34. Wufuer, Y.; Yang, X.; Guo, L.; Aximujiang, K.; Zhong, L.; Yunusi, K.; Wu, G. The antitumor effect and mechanism of total flavonoids from Coreopsis tinctoria nutt (snow chrysanthemum) on lung cancer using network pharmacology and molecular docking. Front. Pharmacol., 2022, 13, 761785.
  35. Dias, T.; Liu, B.; Jones, P.; Houghton, P.J.; Mota-Filipe, H.; Paulo, A. Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells. J. Ethnopharmacol., 2012, 139(2), 485-492. doi: 10.1016/j.jep.2011.11.038 PMID: 22143153

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024