Preparation of a Novel Multifunctional Cationic Liposome Drug-carrying System and its Functional Study on Lung Cancer
- Authors: Kong Y.1, Xu L.1, Cao J.2
-
Affiliations:
- The Second Department of Thoracic Oncology,The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital
- The First Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital
- Issue: Vol 24, No 14 (2024)
- Pages: 1085-1095
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643854
- DOI: https://doi.org/10.2174/0118715206294695240522075454
- ID: 643854
Cite item
Full Text
Abstract
Background:Low-dose chemotherapy is a promising treatment strategy that may be improved by controlled delivery.
Objective:This study aimed to design polyethylene glycol-stabilized bilayer-decorated magnetic Cationic Liposomes (CLs) as a drug delivery system for integrated functional studies of lung cancer cell therapy and imaging.
Methos:A novel multifunctional folic acid targeting magnetic CLs docetaxel drug-loading system (FA-CLs-Fe- DOC) was prepared and tested for its physical properties, encapsulation rate and drug release performance. The feasibility of FA-CLs-Fe-DOC ability to inhibit tumor cells and act as an MRI contrast agent was investigated in vitro, and the target recognition and therapeutic ability of FA-CLs-Fe-DOC was studied in vivo.
Results:FA-CLs-Fe-DOC had a particle size of 221.54 ± 6.42 nm and a potential of 28.64 ± 3.56 mv, with superparamagnetic properties and better stability. The encapsulation rate was 95.36 ± 1.63%, and the drug loading capacity was 9.52 ± 0.22%, which possessed the drug slow-release performance and low cytotoxicity and could effectively inhibit the proliferation of lung cancer cells, promoting apoptosis of lung cancer cells. MRI showed that it had the function of tracking and localization of lung cancer cells. In vivo experiments confirmed the targeted recognition property and therapeutic function of lung cancer cells.
Conclusion:In this study, we successfully prepared an FA-CLs-Fe-DOC capable of specifically targeting lung cancer cells with integrated functions of efficient lung cancer cell killing and imaging localization. This targeted drug packaging technology may provide a new strategy for the design of integrated carriers for targeted cancer therapy and imaging.
Keywords
About the authors
Yi Kong
The Second Department of Thoracic Oncology,The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital
Email: info@benthamscience.net
Li Xu
The Second Department of Thoracic Oncology,The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital
Email: info@benthamscience.net
Jun Cao
The First Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Huang, J.; Deng, Y.; Tin, M.S.; Lok, V.; Ngai, C.H.; Zhang, L.; Lucero-Prisno, D.E., III; Xu, W.; Zheng, Z.J.; Elcarte, E.; Withers, M.; Wong, M.C.S. Distribution, risk factors, and temporal trends for lung cancer incidence and mortality. Chest, 2022, 161(4), 1101-1111. doi: 10.1016/j.chest.2021.12.655 PMID: 35026300
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med., 2020, 383(7), 640-649. doi: 10.1056/NEJMoa1916623 PMID: 32786189
- Lahiri, A.; Maji, A.; Potdar, P.D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.; Paul, M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer, 2023, 22(1), 40. doi: 10.1186/s12943-023-01740-y PMID: 36810079
- Chaft, J.E.; Shyr, Y.; Sepesi, B.; Forde, P.M. Preoperative and postoperative systemic therapy for operable nonsmall-cell lung cancer. J. Clin. Oncol., 2022, 40(6), 546-555. doi: 10.1200/JCO.21.01589 PMID: 34985966
- Shi, Y.; Wu, L.; Yu, X.; Xing, P.; Wang, Y.; Zhou, J.; Wang, A.; Shi, J.; Hu, Y.; Wang, Z.; An, G.; Fang, Y.; Sun, S.; Zhou, C.; Wang, C.; Ye, F.; Li, X.; Wang, J.; Wang, M.; Liu, Y.; Zhao, Y.; Yuan, Y.; Feng, J.; Chen, Z.; Shi, J.; Sun, T.; Wu, G.; Shu, Y.; Guo, Q.; Zhang, Y.; Song, Y.; Zhang, S.; Chen, Y.; Li, W.; Niu, H.; Hu, W.; Wang, L.; Huang, J.; Zhang, Y.; Cheng, Y.; Wu, Z.; Peng, B.; Sun, J.; Mancao, C.; Wang, Y.; Sun, L. Sintilimab versus docetaxel as second-line treatment in advanced or metastatic squamous non-small-cell lung cancer: An open-label, randomized controlled phase 3 trial (ORIENT-3). Cancer Commun. (Lond.), 2022, 42(12), 1314-1330. doi: 10.1002/cac2.12385 PMID: 36336841
- Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.M.; Burgio, M.A.; de Castro Carpeno, J.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R.; Butts, C.; Wójcik-Tomaszewska, J.; Coudert, B.; Garassino, M.C.; Ready, N.; Felip, E.; García, M.A.; Waterhouse, D.; Domine, M.; Barlesi, F.; Antonia, S.; Wohlleber, M.; Gerber, D.E.; Czyzewicz, G.; Spigel, D.R.; Crino, L.; Eberhardt, W.E.E.; Li, A.; Marimuthu, S.; Brahmer, J. Five-year outcomes from the randomized, Phase III Trials CheckMate 017 and 057: Nivolumab versus docetaxel in previously treated nonsmall-cell lung cancer. J. Clin. Oncol., 2021, 39(7), 723-733. doi: 10.1200/JCO.20.01605 PMID: 33449799
- Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; Zhang, Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother., 2022, 151, 113053. doi: 10.1016/j.biopha.2022.113053 PMID: 35594717
- Cao, Y.; Li, S.; Chen, J. Modeling better in vitro models for the prediction of nanoparticle toxicity: A review. Toxicol. Mech. Methods, 2021, 31(1), 1-17. doi: 10.1080/15376516.2020.1828521 PMID: 32972312
- Bartusik-Aebisher, D.; Bober, Z.; Zalejska-Fiolka, J.; Kawczyk-Krupka, A.; Aebisher, D. Multinuclear MRI in drug discovery. Molecules, 2022, 27(19), 6493. doi: 10.3390/molecules27196493 PMID: 36235031
- Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C, 2017, 70(Pt 1), 763-771. doi: 10.1016/j.msec.2016.09.052 PMID: 27770953
- Sun, X.; Tan, A.; Boyd, B.J. Magnetically-activated lipid nanocarriers in biomedical applications: A review of current status and perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(3), e1863. doi: 10.1002/wnan.1863 PMID: 36428234
- Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers (Basel), 2020, 12(6), 1397. doi: 10.3390/polym12061397 PMID: 32580366
- Meng, Y.; Niu, X.; Li, G. Liposome nanoparticles as a novel drug delivery system for therapeutic and diagnostic applications. Curr. Drug Deliv., 2022, 20(1), 41-56. PMID: 35331112
- Sainaga Jyothi, V.G.S.; Bulusu, R.; Venkata Krishna Rao, B.; Pranothi, M.; Banda, S.; Kumar Bolla, P.; Kommineni, N. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int. J. Pharm., 2022, 624, 122022. doi: 10.1016/j.ijpharm.2022.122022 PMID: 35843364
- Bogaert, B.; Sauvage, F.; Guagliardo, R.; Muntean, C.; Nguyen, V.P.; Pottie, E.; Wels, M.; Minnaert, A.K.; De Rycke, R.; Yang, Q.; Peer, D.; Sanders, N.; Remaut, K.; Paulus, Y.M.; Stove, C.; De Smedt, S.C.; Raemdonck, K. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. J. Control. Release, 2022, 350, 256-270. doi: 10.1016/j.jconrel.2022.08.009 PMID: 35963467
- Wang, A.; Zheng, Y.; Zhu, W.; Yang, L.; Yang, Y.; Peng, J. Melittin-based nano-delivery systems for cancer therapy. Biomolecules, 2022, 12(1), 118. doi: 10.3390/biom12010118 PMID: 35053266
- Pattipeiluhu, R.; Arias-Alpizar, G.; Basha, G.; Chan, K.Y.T.; Bussmann, J.; Sharp, T.H.; Moradi, M.A.; Sommerdijk, N.; Harris, E.N.; Cullis, P.R.; Kros, A.; Witzigmann, D.; Campbell, F. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv. Mater., 2022, 34(16), 2201095. doi: 10.1002/adma.202201095 PMID: 35218106
- Eguchi, M.; Hirata, S.; Ishigami, I.; Shuwari, N.; Ono, R.; Tachibana, M.; Tanuma, M.; Kasai, A.; Hashimoto, H.; Ogawara, K.; Mizuguchi, H.; Sakurai, F. Pre-treatment of oncolytic reovirus improves tumor accumulation and intratumoral distribution of PEG-liposomes. J. Control. Release, 2023, 354, 35-44. doi: 10.1016/j.jconrel.2022.12.050 PMID: 36586673
- Maruyama, M.; Tojo, H.; Toi, K.; Ienaka, Y.; Hyodo, K.; Kikuchi, H.; Ogawara, K.; Higaki, K. Effect of doxorubicin release rate from polyethylene glycol-modified liposome on anti-tumor activity in B16-BL6 tumor-bearing mice. J. Pharm. Sci., 2022, 111(2), 293-297. doi: 10.1016/j.xphs.2021.11.020 PMID: 34861247
- Zhu, Y.; Wang, A.; Zhang, S.; Kim, J.; Xia, J.; Zhang, F.; Wang, D.; Wang, Q.; Wang, J. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J. Adv. Res., 2023, 49, 159-173. doi: 10.1016/j.jare.2022.09.007 PMID: 36167294
- Nakamura, T.; Sato, Y.; Yamada, Y.; Abd Elwakil, M.M.; Kimura, S.; Younis, M.A.; Harashima, H. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv. Drug Deliv. Rev., 2022, 188, 114417. doi: 10.1016/j.addr.2022.114417 PMID: 35787389
- Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2018, 9(4), 790-810. doi: 10.1039/C7SC04004K PMID: 29675145
- Wang, S.; Low, P.S. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release, 1998, 53(1-3), 39-48. doi: 10.1016/S0168-3659(97)00236-8 PMID: 9741912
- Karpuz, M.; Silindir-Gunay, M.; Ozer, A.Y.; Ozturk, S.C.; Yanik, H.; Tuncel, M.; Aydin, C.; Esendagli, G. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur. J. Pharm. Sci., 2021, 156, 105576. doi: 10.1016/j.ejps.2020.105576 PMID: 32987115
- Gai, C.; Liu, C.; Wu, X.; Yu, M.; Zheng, J.; Zhang, W.; Lv, S.; Li, W. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis., 2020, 11(9), 751. doi: 10.1038/s41419-020-02939-3 PMID: 32929075
- Rana, S.; Shetake, N.G.; Barick, K.C.; Pandey, B.N.; Salunke, H.G.; Hassan, P.A. Folic acid conjugated Fe3O4 magnetic nanoparticles for targeted delivery of doxorubicin. Dalton Trans., 2016, 45(43), 17401-17408. doi: 10.1039/C6DT03323G PMID: 27731450
- Rathnayake, K.; Patel, U.; Hunt, E.C.; Singh, N. Fabrication of a dual-targeted liposome-coated mesoporous silica coreshell nanoassembly for targeted cancer therapy. ACS Omega, 2023, 8(38), 34481-34498. doi: 10.1021/acsomega.3c02901 PMID: 37779923
- Liang, X.; Shi, B.; Wang, K.; Fan, M.; Jiao, D.; Ao, J.; Song, N.; Wang, C.; Gu, J.; Li, Z. Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials, 2016, 82, 194-207. doi: 10.1016/j.biomaterials.2015.12.015 PMID: 26763734
- Hattori, Y.; Shimizu, S.; Ozaki, K.; Onishi, H. Effect of cationic lipid type in Folate-PEG-Modified cationic liposomes on folate receptor-mediated siRNA transfection in tumor cells. Pharmaceutics, 2019, 11(4), 181. doi: 10.3390/pharmaceutics11040181 PMID: 30991703
- Xue, K.; Luo, B.; Li, X.; Deng, W.; Zeng, C.; Zuo, C. Consistency evaluation of lung adenocarcinoma tissue and circulating tumor cells related gene mutation detection based on multi-site immunomagnetic beads. J. Biomater. Appl., 2022, 36(9), 1700-1711. doi: 10.1177/08853282211065861 PMID: 35029523
- Huang, Z.L.; Li, F.; Zhang, J.T.; Shi, X.J.; Xu, Y.H.; Huang, X.Y. Research on the construction of bispecific-targeted sustained-release drug-delivery microspheres and their function in treatment of hepatocellular carcinoma. ACS Omega, 2022, 7(25), 22003-22014. doi: 10.1021/acsomega.2c02584 PMID: 35785307
- Zugazagoitia, J.; Paz-Ares, L. Extensive-stage small-cell lung cancer: First-line and second-line treatment options. J. Clin. Oncol., 2022, 40(6), 671-680. doi: 10.1200/JCO.21.01881 PMID: 34985925
- Wei, G.; Wang, Y.; Yang, G.; Wang, Y.; Ju, R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics, 2021, 11(13), 6370-6392. doi: 10.7150/thno.57828 PMID: 33995663
- Tang, H.; Xie, Y.; Zhu, M.; Jia, J.; Liu, R.; Shen, Y.; Zheng, Y.; Guo, X.; Miao, D.; Pei, J. Estrone-conjugated pegylated liposome co-loaded paclitaxel and carboplatin improve anti-tumor efficacy in ovarian cancer and reduce acute toxicity of chemo-drugs. Int. J. Nanomedicine, 2022, 17, 3013-3041. doi: 10.2147/IJN.S362263 PMID: 35836838
- Bhagya, N.; Chandrashekar, K.R. Liposome encapsulated anticancer drugs on autophagy in cancer cells Current and future perspective. Int. J. Pharm., 2023, 642, 123105. doi: 10.1016/j.ijpharm.2023.123105 PMID: 37279869
- Stolarz, A.J.; Chhetri, B.P.; Borrelli, M.J.; Jenkins, S.V.; Jamshidi-Parsian, A.; Phillips, J.H.; Fologea, D.; Gandy, J.; Griffin, R.J. Liposome formulation for tumor-targeted drug delivery using radiation therapy. Int. J. Mol. Sci., 2022, 23(19), 11662. doi: 10.3390/ijms231911662 PMID: 36232973
- Khan, F.A.; Albalawi, R.; Pottoo, F.H. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med. Res. Rev., 2022, 42(1), 227-258. doi: 10.1002/med.21809 PMID: 33891325
- Arshad, R.; Barani, M.; Rahdar, A.; Sargazi, S.; Cucchiarini, M.; Pandey, S.; Kang, M. Multi-functionalized nanomaterials and nanoparticles for diagnosis and treatment of retinoblastoma. Biosensors (Basel), 2021, 11(4), 97. doi: 10.3390/bios11040097 PMID: 33810621
- Li, Y.; Wang, M.; Huang, B.; Ping, Y.; You, J.; Gao, J. Transcriptome-wide elucidation of liposomal formulations for anticancer drug delivery. Int. J. Nanomedicine, 2017, 12, 8557-8572. doi: 10.2147/IJN.S148975 PMID: 29238192
- Daldrup-Link, H.E.; Mohanty, S.; Ansari, C.; Lenkov, O.; Shaw, A.; Ito, K.; Hong, S.H.; Hoffmann, M.; Pisani, L.; Boudreau, N.; Gambhir, S.S.; Coussens, L.M. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight, 2016, 1(6), e85608. doi: 10.1172/jci.insight.85608 PMID: 27182558
- Lee, K.H.; Liapi, E.; Vossen, J.A.; Buijs, M.; Ventura, V.P.; Georgiades, C.; Hong, K.; Kamel, I.; Torbenson, M.S.; Geschwind, J.F.H. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: Evaluation with MR imaging and implication for therapy. J. Vasc. Interv. Radiol., 2008, 19(10), 1490-1496. doi: 10.1016/j.jvir.2008.06.008 PMID: 18755602
- Ma, X.H.; Wang, S.; Liu, S.Y.; Chen, K.; Wu, Z.Y.; Li, D.F.; Mi, Y.T.; Hu, L.B.; Chen, Z.W.; Zhao, X.M. Development and in vitro study of a bi-specific magnetic resonance imaging molecular probe for hepatocellular carcinoma. World J. Gastroenterol., 2019, 25(24), 3030-3043. doi: 10.3748/wjg.v25.i24.3030 PMID: 31293339
Supplementary files
