Moscatilin Reverses EMT Progression and its Resulting Enhanced Invasion and Migration by Affecting the TGF-β Signaling Pathway in Bladder Cancer
- Authors: Li Z.1, Yang J.2, Chen L.2, Chen P.2, Liu C.2, Long X.2, Chen B.2, Long J.2
-
Affiliations:
- College of Pharmacy, Chengdu University
- Clinical Medical College and Affiliated Hospital, Chengdu University
- Issue: Vol 24, No 14 (2024)
- Pages: 1074-1084
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643849
- DOI: https://doi.org/10.2174/0118715206307769240522075729
- ID: 643849
Cite item
Full Text
Abstract
Background:Bladder cancer metastasis is an essential process in the progression of muscle-invasive bladder cancer. EMT plays a crucial role in facilitating the spread of cancer cells. Identifying compounds that can inhibit these abilities of cancer cells is a significant international endeavor.
Objective:To explore the migration and invasion effect of Moscatilin on the bladder and clarify the mechanism of action
Methods:The anti-bladder cancer effect of Moscatilin was observed by a cell proliferation experiment. The migration and invasion of bladder cancer cells inhibited by Moscatilin were detected by Transwell and Wound healing. The effects of Moscatilin on EMT-related proteins E-cadherin, N-cadherin, Snail1, Vimentin, and TGF-β signaling pathways were detected by Western blot, and nucleic acid levels were verified by qPCR.
Results:Our study revealed that Moscatilin reduced the viability of bladder cancer cells in vitro and impeded their migration and invasion in experimental settings. Furthermore, we observed that Moscatilin decreased the activation levels of active proteins, specifically Smad3, Samd2, and MMP2. Additionally, we found that moscatilin significantly reduced the expression level of TGF-β and was also capable of reversing the overexpression effect of TGF-β. Treatment with Moscatilin also led to significant inhibition of interstitial cell markers Ncadherin and Snail1, which are associated with EMT.
Conclusion:These findings indicate that Moscatilin impedes the migration and invasion of bladder cancer cells by influencing cell survival, modulating TGF-β/Smad signaling, and inhibiting EMT.
Keywords
About the authors
Zhihao Li
College of Pharmacy, Chengdu University
Email: info@benthamscience.net
Jin Yang
Clinical Medical College and Affiliated Hospital, Chengdu University
Author for correspondence.
Email: info@benthamscience.net
Lin Chen
Clinical Medical College and Affiliated Hospital, Chengdu University
Author for correspondence.
Email: info@benthamscience.net
Pei Chen
Clinical Medical College and Affiliated Hospital, Chengdu University
Email: info@benthamscience.net
Chenhuan Liu
Clinical Medical College and Affiliated Hospital, Chengdu University
Email: info@benthamscience.net
Xiaoming Long
Clinical Medical College and Affiliated Hospital, Chengdu University
Email: info@benthamscience.net
Bo Chen
Clinical Medical College and Affiliated Hospital, Chengdu University
Email: info@benthamscience.net
Jun Long
Clinical Medical College and Affiliated Hospital, Chengdu University
Email: info@benthamscience.net
References
- Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Compérat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; Moch, H.; Necchi, A.; Panebianco, V.; Sridhar, S.S.; Znaor, A.; Catto, J.W.F.; Cumberbatch, M.G. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur. Urol., 2023, 84(2), 176-190. doi: 10.1016/j.eururo.2023.03.029 PMID: 37198015
- El-Mahdy, H.A.; Elsakka, E.G.E.; El-Husseiny, A.A.; Ismail, A.; Yehia, A.M.; Abdelmaksoud, N.M.; Elshimy, R.A.A.; Noshy, M.; Doghish, A.S. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay A review. Pathol. Res. Pract., 2023, 242, 154316. doi: 10.1016/j.prp.2023.154316 PMID: 36682282
- Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J. Clin., 2020, 70(5), 404-423. doi: 10.3322/caac.21631 PMID: 32767764
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; Quale, D.Z.; Rosenberg, J.E.; Zietman, A.L.; Holzbeierlein, J.M. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO guideline. J. Urol., 2017, 198(3), 552-559. doi: 10.1016/j.juro.2017.04.086 PMID: 28456635
- Horn, L.A.; Fousek, K.; Palena, C. Tumor plasticity and resistance to immunotherapy. Trends Cancer, 2020, 6(5), 432-441. doi: 10.1016/j.trecan.2020.02.001 PMID: 32348738
- Stefania, D.D.; Vergara, D. The many-faced program of epithelialmesenchymal transition: A system biology-based view. Front. Oncol., 2017, 7, 274. doi: 10.3389/fonc.2017.00274 PMID: 29181337
- Chang, J.W.; Seo, S.T. Im, M.A.; Won, H.R.; Liu, L.; Oh, C.; Jin, Y.L.; Piao, Y.; Kim, H.J.; Kim, J.T.; Jung, S.N.; Koo, B.S. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl. Res., 2022, 247, 58-78. doi: 10.1016/j.trsl.2022.04.003 PMID: 35462077
- Huang, Y.; Hong, W.; Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol., 2022, 15(1), 129. doi: 10.1186/s13045-022-01347-8 PMID: 36076302
- Ping, Q.; Wang, C.; Cheng, X.; Zhong, Y.; Yan, R.; Yang, M.; Shi, Y.; Li, X.; Li, X.; Huang, W.; Wang, L.; Bi, X.; Hu, L.; Yang, Y.; Wang, Y.; Gong, R.; Tan, J.; Li, R.; Li, H.; Li, J.; Wang, W.; Li, R. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J. Transl. Med., 2023, 21(1), 475. doi: 10.1186/s12967-023-04303-3 PMID: 37461061
- Rodrigues-Junior, D.M.; Tsirigoti, C.; Lim, S.K.; Heldin, C.H.; Moustakas, A. Extracellular vesicles and transforming growth factor β signaling in cancer. Front. Cell Dev. Biol., 2022, 10, 849938. doi: 10.3389/fcell.2022.849938 PMID: 35493080
- Morrison, C.D.; Parvani, J.G.; Schiemann, W.P. The relevance of the TGF-β Paradox to EMT-MET programs. Cancer Lett., 2013, 341(1), 30-40. doi: 10.1016/j.canlet.2013.02.048 PMID: 23474494
- Benjamin, D.J.; Lyou, Y. Advances in immunotherapy and the TGF-β resistance pathway in metastatic bladder cancer. Cancers , 2021, 13(22), 5724. doi: 10.3390/cancers13225724 PMID: 34830879
- Zhang, J.; Tian, X.J.; Xing, J. Signal transduction pathways of EMT induced by TGF-β SHH, and WNT and their crosstalks. J. Clin. Med., 2016, 5(4), 41. doi: 10.3390/jcm5040041 PMID: 27043642
- David, C.J.; Huang, Y.H.; Chen, M.; Su, J.; Zou, Y.; Bardeesy, N.; Iacobuzio-Donahue, C.A.; Massagué, J. TGF-β tumor suppression through a lethal EMT. Cell, 2016, 164(5), 1015-1030. doi: 10.1016/j.cell.2016.01.009 PMID: 26898331
- Kuburich, N.A.; Sabapathy, T.; Demestichas, B.R.; Maddela, J.J.; den Hollander, P.; Mani, S.A. Proactive and reactive roles of TGF-β in cancer. Semin. Cancer Biol., 2023, 95, 120-139. doi: 10.1016/j.semcancer.2023.08.002 PMID: 37572731
- Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767. doi: 10.3390/ijms20112767 PMID: 31195692
- Liang, Y.; Zhu, F.; Zhang, H.; Chen, D.; Zhang, X.; Gao, Q.; Li, Y. Conditional ablation of TGF-β signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci. Rep., 2016, 6(1), 29479. doi: 10.1038/srep29479 PMID: 27378170
- Chestnut, C.; Subramaniam, D.; Dandawate, P.; Padhye, S.; Taylor, J., III; Weir, S.; Anant, S. Targeting major signaling pathways of bladder cancer with phytochemicals: A review. Nutr. Cancer, 2021, 73(11-12), 2249-2271. doi: 10.1080/01635581.2020.1856895 PMID: 33305598
- Busaranon, K.; Plaimee, P.; Sritularak, B.; Chanvorachote, P. Moscatilin inhibits epithelial-to-mesenchymal transition and sensitizes anoikis in human lung cancer H460 cells. J. Nat. Med., 2016, 70(1), 18-27. doi: 10.1007/s11418-015-0931-7 PMID: 26384689
- Karakasiliotis, I.; Mavromara, P. Hepatocellular carcinoma: From hepatocyte to liver cancer stem cell. Front. Physiol., 2015, 6, 154. doi: 10.3389/fphys.2015.00154 PMID: 26042045
- Faguet, G.B. A brief history of cancer: Age-old milestones underlying our current knowledge database. Int. J. Cancer, 2015, 136(9), 2022-2036. doi: 10.1002/ijc.29134 PMID: 25113657
- Ho, C.K.; Chen, C.C. Moscatilin from the orchid Dendrobrium loddigesii is a potential anticancer agent. Cancer Invest., 2003, 21(5), 729-736. doi: 10.1081/CNV-120023771 PMID: 14628431
- Chen, C.A.; Chen, C.C.; Shen, C.C.; Chang, H.H.; Chen, Y.J. Moscatilin induces apoptosis and mitotic catastrophe in human esophageal cancer cells. J. Med. Food, 2013, 16(10), 869-877. doi: 10.1089/jmf.2012.2617 PMID: 24074296
- Pai, H.C.; Chang, L.H.; Peng, C.Y.; Chang, Y.L.; Chen, C.C.; Shen, C.C.; Teng, C.M.; Pan, S.L. Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway. J. Mol. Med. , 2013, 91(3), 347-356. doi: 10.1007/s00109-012-0945-5 PMID: 22961111
- Zhao, Y.; Li, Y.; Gao, Y.; Yuan, M.; Manthari, R.K.; Wang, J.; Wang, J. TGF-β1 acts as mediator in fluoride-induced autophagy in the mouse osteoblast cells. Food Chem. Toxicol., 2018, 115, 26-33. doi: 10.1016/j.fct.2018.02.065 PMID: 29505816
- Shirahata, A.; Sakata, M.; Sakuraba, K.; Goto, T.; Mizukami, H.; Saito, M.; Ishibashi, K.; Kigawa, G.; Nemoto, H.; Sanada, Y.; Hibi, K. Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Res., 2009, 29(1), 279-281. PMID: 19331162
- McConkey, D.J.; Choi, W.; Marquis, L.; Martin, F.; Williams, M.B.; Shah, J.; Svatek, R.; Das, A.; Adam, L.; Kamat, A.; Siefker-Radtke, A.; Dinney, C. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev., 2009, 28(3-4), 335-344. doi: 10.1007/s10555-009-9194-7 PMID: 20012924
- Wu, Y.S.; Ho, J.Y.; Yu, C.P.; Cho, C.J.; Wu, C.L.; Huang, C.S.; Gao, H.W.; Yu, D.S. Ellagic acid resensitizes gemcitabine-resistant bladder cancer cells by inhibiting epithelial-mesenchymal transition and gemcitabine transporters. Cancers , 2021, 13(9), 2032. doi: 10.3390/cancers13092032 PMID: 33922395
- Semeniuk-Wojtaś A.; Poddębniak-Strama, K.; Modzelewska, M.; Baryła, M.; Dziąg-Dudek, E.; Syryło, T.; Górnicka, B.; Jakieła, A.; Stec, R. Tumour microenvironment as a predictive factor for immunotherapy in non-muscle-invasive bladder cancer. Cancer Immunol. Immunother., 2023, 72(7), 1971-1989. doi: 10.1007/s00262-023-03376-9 PMID: 36928373
- Zhang, X.; Zhang, P.; Shao, M.; Zang, X.; Zhang, J.; Mao, F.; Qian, H.; Xu, W. SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Manag. Res., 2018, 10, 4459-4470. doi: 10.2147/CMAR.S177373 PMID: 30349378
- Chen, W.; Jiang, T.; Mao, H.; Gao, R.; Gao, X.; He, Y.; Zhang, H.; Chen, Q. Nodal promotes the migration and invasion of bladder cancer cells via regulation of snail. J. Cancer, 2019, 10(6), 1511-1519. doi: 10.7150/jca.29205 PMID: 31031861
- Chen, X.; Cao, X.; Sun, X.; Lei, R.; Chen, P.; Zhao, Y.; Jiang, Y.; Yin, J.; Chen, R.; Ye, D.; Wang, Q.; Liu, Z.; Liu, S.; Cheng, C.; Mao, J.; Hou, Y.; Wang, M.; Siebenlist, U.; Eugene Chin, Y.; Wang, Y.; Cao, L.; Hu, G.; Zhang, X. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis., 2016, 7(12), e2508. doi: 10.1038/cddis.2016.405 PMID: 27906182
- Cano, A.; Pérez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; del Barrio, M.G.; Portillo, F.; Nieto, M.A. The transcription factor Snail controls epithelialmesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2000, 2(2), 76-83. doi: 10.1038/35000025 PMID: 10655586
- Serrels, A.; Canel, M.; Brunton, V.G.; Frame, M.C. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement. Cell Adhes. Migr., 2011, 5(4), 360-365. doi: 10.4161/cam.5.4.17290 PMID: 21836391
- Fujita, Y.; Krause, G.; Scheffner, M.; Zechner, D.; Leddy, H.E.M.; Behrens, J.; Sommer, T.; Birchmeier, W. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol., 2002, 4(3), 222-231. doi: 10.1038/ncb758 PMID: 11836526
- Guadamillas, M.C.; Cerezo, A.; del Pozo, M.A. Overcoming anoikis pathways to anchorage-independent growth in cancer. J. Cell Sci., 2011, 124(19), 3189-3197. doi: 10.1242/jcs.072165 PMID: 21940791
- Rubtsova, S.N.; Zhitnyak, I.Y.; Gloushankova, N.A. Dual role of E-cadherin in cancer cells. Tissue Barriers, 2022, 10(4), 2005420. doi: 10.1080/21688370.2021.2005420 PMID: 34821540
- Friedl, P.; Mayor, R. Tuning collective cell migration by cellcell junction regulation. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a029199. doi: 10.1101/cshperspect.a029199 PMID: 28096261
- Wangmo, C.; Charoen, N.; Jantharapattana, K.; Dechaphunkul, A.; Thongsuksai, P. Epithelialmesenchymal transition predicts survival in oral squamous cell carcinoma. Pathol. Oncol. Res., 2020, 26(3), 1511-1518. doi: 10.1007/s12253-019-00731-z PMID: 31471883
- Mendez, M.G.; Kojima, S.I.; Goldman, R.D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J., 2010, 24(6), 1838-1851. doi: 10.1096/fj.09-151639 PMID: 20097873
- Zhu, Q-S.; Rosenblatt, K.; Huang, K-L.; Lahat, G.; Brobey, R.; Bolshakov, S.; Nguyen, T.; Ding, Z.; Belousov, R.; Bill, K.; Luo, X.; Lazar, A.; Dicker, A.; Mills, G.B.; Hung, M-C.; Lev, D. Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 2011, 30(4), 457-470. doi: 10.1038/onc.2010.421 PMID: 20856200
- Trogden, K.P.; Battaglia, R.A.; Kabiraj, P.; Madden, V.J.; Herrmann, H.; Snider, N.T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. FASEB J., 2018, 32(5), 2841-2854. doi: 10.1096/fj.201700663R PMID: 29401610
- Kaufhold, S.; Bonavida, B. Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J. Exp. Clin. Cancer Res., 2014, 33(1), 62. doi: 10.1186/s13046-014-0062-0 PMID: 25084828
- Lu, J.; Kornmann, M.; Traub, B. Role of epithelial to mesenchymal transition in colorectal cancer. Int. J. Mol. Sci., 2023, 24(19), 14815. doi: 10.3390/ijms241914815 PMID: 37834263
- Song, J.; Shi, W. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochim. Biophys. Sin. , 2018, 50(1), 91-97. doi: 10.1093/abbs/gmx117 PMID: 29069287
- Ray, I.; Michael, A.; Meira, L.B.; Ellis, P.E. The role of cytokines in epithelialmesenchymal transition in gynaecological cancers: A systematic review. Cells, 2023, 12(3), 416. doi: 10.3390/cells12030416 PMID: 36766756
- Islam, S.S.; Mokhtari, R.B.; Akbari, P.; Hatina, J.; Yeger, H.; Farhat, W.A. Simultaneous targeting of bladder tumor growth, survival, and epithelial-to-mesenchymal transition with a novel therapeutic combination of acetazolamide (AZ) and sulforaphane (SFN). Target. Oncol., 2016, 11(2), 209-227. doi: 10.1007/s11523-015-0386-5 PMID: 26453055
- Oh, S.H.; Swiderska-Syn, M.; Jewell, M.L.; Premont, R.T.; Diehl, A.M. Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes. J. Hepatol., 2018, 69(2), 359-367. doi: 10.1016/j.jhep.2018.05.008 PMID: 29758331
- Wei, X.; Zhang, L.; Zhou, Z.; Kwon, O.J.; Zhang, Y.; Nguyen, H.; Dumpit, R.; True, L.; Nelson, P.; Dong, B.; Xue, W.; Birchmeier, W.; Taketo, M.M.; Xu, F.; Creighton, C.J.; Ittmann, M.M.; Xin, L. Spatially restricted stromal wnt signaling restrains prostate epithelial progenitor growth through direct and indirect mechanisms. Cell Stem Cell, 2019, 24(5), 753-768.e6. doi: 10.1016/j.stem.2019.03.010 PMID: 30982770
- Wang, X.; Eichhorn, P.J.A.; Thiery, J.P. TGF-β, EMT, and resistance to anti-cancer treatment. Semin. Cancer Biol., 2023, 97, 1-11. doi: 10.1016/j.semcancer.2023.10.004 PMID: 37944215
Supplementary files
