Moscatilin Reverses EMT Progression and its Resulting Enhanced Invasion and Migration by Affecting the TGF-β Signaling Pathway in Bladder Cancer


Cite item

Full Text

Abstract

Background:Bladder cancer metastasis is an essential process in the progression of muscle-invasive bladder cancer. EMT plays a crucial role in facilitating the spread of cancer cells. Identifying compounds that can inhibit these abilities of cancer cells is a significant international endeavor.

Objective:To explore the migration and invasion effect of Moscatilin on the bladder and clarify the mechanism of action

Methods:The anti-bladder cancer effect of Moscatilin was observed by a cell proliferation experiment. The migration and invasion of bladder cancer cells inhibited by Moscatilin were detected by Transwell and Wound healing. The effects of Moscatilin on EMT-related proteins E-cadherin, N-cadherin, Snail1, Vimentin, and TGF-β signaling pathways were detected by Western blot, and nucleic acid levels were verified by qPCR.

Results:Our study revealed that Moscatilin reduced the viability of bladder cancer cells in vitro and impeded their migration and invasion in experimental settings. Furthermore, we observed that Moscatilin decreased the activation levels of active proteins, specifically Smad3, Samd2, and MMP2. Additionally, we found that moscatilin significantly reduced the expression level of TGF-β and was also capable of reversing the overexpression effect of TGF-β. Treatment with Moscatilin also led to significant inhibition of interstitial cell markers Ncadherin and Snail1, which are associated with EMT.

Conclusion:These findings indicate that Moscatilin impedes the migration and invasion of bladder cancer cells by influencing cell survival, modulating TGF-β/Smad signaling, and inhibiting EMT.

About the authors

Zhihao Li

College of Pharmacy, Chengdu University

Email: info@benthamscience.net

Jin Yang

Clinical Medical College and Affiliated Hospital, Chengdu University

Author for correspondence.
Email: info@benthamscience.net

Lin Chen

Clinical Medical College and Affiliated Hospital, Chengdu University

Author for correspondence.
Email: info@benthamscience.net

Pei Chen

Clinical Medical College and Affiliated Hospital, Chengdu University

Email: info@benthamscience.net

Chenhuan Liu

Clinical Medical College and Affiliated Hospital, Chengdu University

Email: info@benthamscience.net

Xiaoming Long

Clinical Medical College and Affiliated Hospital, Chengdu University

Email: info@benthamscience.net

Bo Chen

Clinical Medical College and Affiliated Hospital, Chengdu University

Email: info@benthamscience.net

Jun Long

Clinical Medical College and Affiliated Hospital, Chengdu University

Email: info@benthamscience.net

References

  1. Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Compérat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; Moch, H.; Necchi, A.; Panebianco, V.; Sridhar, S.S.; Znaor, A.; Catto, J.W.F.; Cumberbatch, M.G. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur. Urol., 2023, 84(2), 176-190. doi: 10.1016/j.eururo.2023.03.029 PMID: 37198015
  2. El-Mahdy, H.A.; Elsakka, E.G.E.; El-Husseiny, A.A.; Ismail, A.; Yehia, A.M.; Abdelmaksoud, N.M.; Elshimy, R.A.A.; Noshy, M.; Doghish, A.S. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay – A review. Pathol. Res. Pract., 2023, 242, 154316. doi: 10.1016/j.prp.2023.154316 PMID: 36682282
  3. Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J. Clin., 2020, 70(5), 404-423. doi: 10.3322/caac.21631 PMID: 32767764
  4. Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; Quale, D.Z.; Rosenberg, J.E.; Zietman, A.L.; Holzbeierlein, J.M. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO guideline. J. Urol., 2017, 198(3), 552-559. doi: 10.1016/j.juro.2017.04.086 PMID: 28456635
  5. Horn, L.A.; Fousek, K.; Palena, C. Tumor plasticity and resistance to immunotherapy. Trends Cancer, 2020, 6(5), 432-441. doi: 10.1016/j.trecan.2020.02.001 PMID: 32348738
  6. Stefania, D.D.; Vergara, D. The many-faced program of epithelial–mesenchymal transition: A system biology-based view. Front. Oncol., 2017, 7, 274. doi: 10.3389/fonc.2017.00274 PMID: 29181337
  7. Chang, J.W.; Seo, S.T. Im, M.A.; Won, H.R.; Liu, L.; Oh, C.; Jin, Y.L.; Piao, Y.; Kim, H.J.; Kim, J.T.; Jung, S.N.; Koo, B.S. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl. Res., 2022, 247, 58-78. doi: 10.1016/j.trsl.2022.04.003 PMID: 35462077
  8. Huang, Y.; Hong, W.; Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol., 2022, 15(1), 129. doi: 10.1186/s13045-022-01347-8 PMID: 36076302
  9. Ping, Q.; Wang, C.; Cheng, X.; Zhong, Y.; Yan, R.; Yang, M.; Shi, Y.; Li, X.; Li, X.; Huang, W.; Wang, L.; Bi, X.; Hu, L.; Yang, Y.; Wang, Y.; Gong, R.; Tan, J.; Li, R.; Li, H.; Li, J.; Wang, W.; Li, R. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J. Transl. Med., 2023, 21(1), 475. doi: 10.1186/s12967-023-04303-3 PMID: 37461061
  10. Rodrigues-Junior, D.M.; Tsirigoti, C.; Lim, S.K.; Heldin, C.H.; Moustakas, A. Extracellular vesicles and transforming growth factor β signaling in cancer. Front. Cell Dev. Biol., 2022, 10, 849938. doi: 10.3389/fcell.2022.849938 PMID: 35493080
  11. Morrison, C.D.; Parvani, J.G.; Schiemann, W.P. The relevance of the TGF-β Paradox to EMT-MET programs. Cancer Lett., 2013, 341(1), 30-40. doi: 10.1016/j.canlet.2013.02.048 PMID: 23474494
  12. Benjamin, D.J.; Lyou, Y. Advances in immunotherapy and the TGF-β resistance pathway in metastatic bladder cancer. Cancers , 2021, 13(22), 5724. doi: 10.3390/cancers13225724 PMID: 34830879
  13. Zhang, J.; Tian, X.J.; Xing, J. Signal transduction pathways of EMT induced by TGF-β SHH, and WNT and their crosstalks. J. Clin. Med., 2016, 5(4), 41. doi: 10.3390/jcm5040041 PMID: 27043642
  14. David, C.J.; Huang, Y.H.; Chen, M.; Su, J.; Zou, Y.; Bardeesy, N.; Iacobuzio-Donahue, C.A.; Massagué, J. TGF-β tumor suppression through a lethal EMT. Cell, 2016, 164(5), 1015-1030. doi: 10.1016/j.cell.2016.01.009 PMID: 26898331
  15. Kuburich, N.A.; Sabapathy, T.; Demestichas, B.R.; Maddela, J.J.; den Hollander, P.; Mani, S.A. Proactive and reactive roles of TGF-β in cancer. Semin. Cancer Biol., 2023, 95, 120-139. doi: 10.1016/j.semcancer.2023.08.002 PMID: 37572731
  16. Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767. doi: 10.3390/ijms20112767 PMID: 31195692
  17. Liang, Y.; Zhu, F.; Zhang, H.; Chen, D.; Zhang, X.; Gao, Q.; Li, Y. Conditional ablation of TGF-β signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci. Rep., 2016, 6(1), 29479. doi: 10.1038/srep29479 PMID: 27378170
  18. Chestnut, C.; Subramaniam, D.; Dandawate, P.; Padhye, S.; Taylor, J., III; Weir, S.; Anant, S. Targeting major signaling pathways of bladder cancer with phytochemicals: A review. Nutr. Cancer, 2021, 73(11-12), 2249-2271. doi: 10.1080/01635581.2020.1856895 PMID: 33305598
  19. Busaranon, K.; Plaimee, P.; Sritularak, B.; Chanvorachote, P. Moscatilin inhibits epithelial-to-mesenchymal transition and sensitizes anoikis in human lung cancer H460 cells. J. Nat. Med., 2016, 70(1), 18-27. doi: 10.1007/s11418-015-0931-7 PMID: 26384689
  20. Karakasiliotis, I.; Mavromara, P. Hepatocellular carcinoma: From hepatocyte to liver cancer stem cell. Front. Physiol., 2015, 6, 154. doi: 10.3389/fphys.2015.00154 PMID: 26042045
  21. Faguet, G.B. A brief history of cancer: Age-old milestones underlying our current knowledge database. Int. J. Cancer, 2015, 136(9), 2022-2036. doi: 10.1002/ijc.29134 PMID: 25113657
  22. Ho, C.K.; Chen, C.C. Moscatilin from the orchid Dendrobrium loddigesii is a potential anticancer agent. Cancer Invest., 2003, 21(5), 729-736. doi: 10.1081/CNV-120023771 PMID: 14628431
  23. Chen, C.A.; Chen, C.C.; Shen, C.C.; Chang, H.H.; Chen, Y.J. Moscatilin induces apoptosis and mitotic catastrophe in human esophageal cancer cells. J. Med. Food, 2013, 16(10), 869-877. doi: 10.1089/jmf.2012.2617 PMID: 24074296
  24. Pai, H.C.; Chang, L.H.; Peng, C.Y.; Chang, Y.L.; Chen, C.C.; Shen, C.C.; Teng, C.M.; Pan, S.L. Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway. J. Mol. Med. , 2013, 91(3), 347-356. doi: 10.1007/s00109-012-0945-5 PMID: 22961111
  25. Zhao, Y.; Li, Y.; Gao, Y.; Yuan, M.; Manthari, R.K.; Wang, J.; Wang, J. TGF-β1 acts as mediator in fluoride-induced autophagy in the mouse osteoblast cells. Food Chem. Toxicol., 2018, 115, 26-33. doi: 10.1016/j.fct.2018.02.065 PMID: 29505816
  26. Shirahata, A.; Sakata, M.; Sakuraba, K.; Goto, T.; Mizukami, H.; Saito, M.; Ishibashi, K.; Kigawa, G.; Nemoto, H.; Sanada, Y.; Hibi, K. Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Res., 2009, 29(1), 279-281. PMID: 19331162
  27. McConkey, D.J.; Choi, W.; Marquis, L.; Martin, F.; Williams, M.B.; Shah, J.; Svatek, R.; Das, A.; Adam, L.; Kamat, A.; Siefker-Radtke, A.; Dinney, C. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev., 2009, 28(3-4), 335-344. doi: 10.1007/s10555-009-9194-7 PMID: 20012924
  28. Wu, Y.S.; Ho, J.Y.; Yu, C.P.; Cho, C.J.; Wu, C.L.; Huang, C.S.; Gao, H.W.; Yu, D.S. Ellagic acid resensitizes gemcitabine-resistant bladder cancer cells by inhibiting epithelial-mesenchymal transition and gemcitabine transporters. Cancers , 2021, 13(9), 2032. doi: 10.3390/cancers13092032 PMID: 33922395
  29. Semeniuk-Wojtaś A.; Poddębniak-Strama, K.; Modzelewska, M.; Baryła, M.; Dziąg-Dudek, E.; Syryło, T.; Górnicka, B.; Jakieła, A.; Stec, R. Tumour microenvironment as a predictive factor for immunotherapy in non-muscle-invasive bladder cancer. Cancer Immunol. Immunother., 2023, 72(7), 1971-1989. doi: 10.1007/s00262-023-03376-9 PMID: 36928373
  30. Zhang, X.; Zhang, P.; Shao, M.; Zang, X.; Zhang, J.; Mao, F.; Qian, H.; Xu, W. SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Manag. Res., 2018, 10, 4459-4470. doi: 10.2147/CMAR.S177373 PMID: 30349378
  31. Chen, W.; Jiang, T.; Mao, H.; Gao, R.; Gao, X.; He, Y.; Zhang, H.; Chen, Q. Nodal promotes the migration and invasion of bladder cancer cells via regulation of snail. J. Cancer, 2019, 10(6), 1511-1519. doi: 10.7150/jca.29205 PMID: 31031861
  32. Chen, X.; Cao, X.; Sun, X.; Lei, R.; Chen, P.; Zhao, Y.; Jiang, Y.; Yin, J.; Chen, R.; Ye, D.; Wang, Q.; Liu, Z.; Liu, S.; Cheng, C.; Mao, J.; Hou, Y.; Wang, M.; Siebenlist, U.; Eugene Chin, Y.; Wang, Y.; Cao, L.; Hu, G.; Zhang, X. Bcl-3 regulates TGFβ signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis., 2016, 7(12), e2508. doi: 10.1038/cddis.2016.405 PMID: 27906182
  33. Cano, A.; Pérez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; del Barrio, M.G.; Portillo, F.; Nieto, M.A. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2000, 2(2), 76-83. doi: 10.1038/35000025 PMID: 10655586
  34. Serrels, A.; Canel, M.; Brunton, V.G.; Frame, M.C. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement. Cell Adhes. Migr., 2011, 5(4), 360-365. doi: 10.4161/cam.5.4.17290 PMID: 21836391
  35. Fujita, Y.; Krause, G.; Scheffner, M.; Zechner, D.; Leddy, H.E.M.; Behrens, J.; Sommer, T.; Birchmeier, W. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol., 2002, 4(3), 222-231. doi: 10.1038/ncb758 PMID: 11836526
  36. Guadamillas, M.C.; Cerezo, A.; del Pozo, M.A. Overcoming anoikis – pathways to anchorage-independent growth in cancer. J. Cell Sci., 2011, 124(19), 3189-3197. doi: 10.1242/jcs.072165 PMID: 21940791
  37. Rubtsova, S.N.; Zhitnyak, I.Y.; Gloushankova, N.A. Dual role of E-cadherin in cancer cells. Tissue Barriers, 2022, 10(4), 2005420. doi: 10.1080/21688370.2021.2005420 PMID: 34821540
  38. Friedl, P.; Mayor, R. Tuning collective cell migration by cell–cell junction regulation. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a029199. doi: 10.1101/cshperspect.a029199 PMID: 28096261
  39. Wangmo, C.; Charoen, N.; Jantharapattana, K.; Dechaphunkul, A.; Thongsuksai, P. Epithelial–mesenchymal transition predicts survival in oral squamous cell carcinoma. Pathol. Oncol. Res., 2020, 26(3), 1511-1518. doi: 10.1007/s12253-019-00731-z PMID: 31471883
  40. Mendez, M.G.; Kojima, S.I.; Goldman, R.D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J., 2010, 24(6), 1838-1851. doi: 10.1096/fj.09-151639 PMID: 20097873
  41. Zhu, Q-S.; Rosenblatt, K.; Huang, K-L.; Lahat, G.; Brobey, R.; Bolshakov, S.; Nguyen, T.; Ding, Z.; Belousov, R.; Bill, K.; Luo, X.; Lazar, A.; Dicker, A.; Mills, G.B.; Hung, M-C.; Lev, D. Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 2011, 30(4), 457-470. doi: 10.1038/onc.2010.421 PMID: 20856200
  42. Trogden, K.P.; Battaglia, R.A.; Kabiraj, P.; Madden, V.J.; Herrmann, H.; Snider, N.T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. FASEB J., 2018, 32(5), 2841-2854. doi: 10.1096/fj.201700663R PMID: 29401610
  43. Kaufhold, S.; Bonavida, B. Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J. Exp. Clin. Cancer Res., 2014, 33(1), 62. doi: 10.1186/s13046-014-0062-0 PMID: 25084828
  44. Lu, J.; Kornmann, M.; Traub, B. Role of epithelial to mesenchymal transition in colorectal cancer. Int. J. Mol. Sci., 2023, 24(19), 14815. doi: 10.3390/ijms241914815 PMID: 37834263
  45. Song, J.; Shi, W. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochim. Biophys. Sin. , 2018, 50(1), 91-97. doi: 10.1093/abbs/gmx117 PMID: 29069287
  46. Ray, I.; Michael, A.; Meira, L.B.; Ellis, P.E. The role of cytokines in epithelial–mesenchymal transition in gynaecological cancers: A systematic review. Cells, 2023, 12(3), 416. doi: 10.3390/cells12030416 PMID: 36766756
  47. Islam, S.S.; Mokhtari, R.B.; Akbari, P.; Hatina, J.; Yeger, H.; Farhat, W.A. Simultaneous targeting of bladder tumor growth, survival, and epithelial-to-mesenchymal transition with a novel therapeutic combination of acetazolamide (AZ) and sulforaphane (SFN). Target. Oncol., 2016, 11(2), 209-227. doi: 10.1007/s11523-015-0386-5 PMID: 26453055
  48. Oh, S.H.; Swiderska-Syn, M.; Jewell, M.L.; Premont, R.T.; Diehl, A.M. Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes. J. Hepatol., 2018, 69(2), 359-367. doi: 10.1016/j.jhep.2018.05.008 PMID: 29758331
  49. Wei, X.; Zhang, L.; Zhou, Z.; Kwon, O.J.; Zhang, Y.; Nguyen, H.; Dumpit, R.; True, L.; Nelson, P.; Dong, B.; Xue, W.; Birchmeier, W.; Taketo, M.M.; Xu, F.; Creighton, C.J.; Ittmann, M.M.; Xin, L. Spatially restricted stromal wnt signaling restrains prostate epithelial progenitor growth through direct and indirect mechanisms. Cell Stem Cell, 2019, 24(5), 753-768.e6. doi: 10.1016/j.stem.2019.03.010 PMID: 30982770
  50. Wang, X.; Eichhorn, P.J.A.; Thiery, J.P. TGF-β, EMT, and resistance to anti-cancer treatment. Semin. Cancer Biol., 2023, 97, 1-11. doi: 10.1016/j.semcancer.2023.10.004 PMID: 37944215

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers