Cerium Oxide Nanoparticles Synthesis using Alhagi Maurorum Leaf Extract and Evaluation of Their Cytotoxic Effect on Breast Cancer Cell Lines and Antibacterial Effects


Цитировать

Полный текст

Аннотация

Introduction:Green synthesis offers a fast, simple, and economical method for producing metallic nanoparticles.The basis of this method is to obtain nanoparticles using natural materials, such as plants, fungi, and bacteria, instead of harmful and expensive chemical-reducing agents. In this study, CeO2NPs were produced using Alhagi maurorum extract, and their anticancer and antibacterial activities were evaluated.

Methods:Alhagi maurorum extract was prepared according to a previously described protocol, and CeO2NPs were synthesized from the salt of this extract. The resulting nanoparticles were characterized using Transmission electron microscopy (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The antibacterial and cytotoxic effects of the nanoparticles were measured by MIC, MBC, and MTT assays, respectively. The results were analyzed using one-way analysis of variance (ANOVA) using Prism software.

Results:The MTT assay on breast cancer cell lines showed that the cytotoxic effect of CeO2NPs on cell lines was concentration-dependent. In addition, this nanoparticle was more effective against Gram-positive bacteria.

Conclusion:These nanoparticles can be used as cancer drug delivery systems with specific targeting at low concentrations in addition to anticancer treatments. It can also have biological and medicinal applications, such as natural food preservation and wound dressing.

Об авторах

Sayedeh Hosseini

Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences

Email: info@benthamscience.net

Mehrdad Khatami

Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University

Email: info@benthamscience.net

Amirkian Asadollahi

Student Research Committee, Shahrekord University of Medical Sciences

Email: info@benthamscience.net

Hajar Yaghoobi

Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Nazaripour, E.; Mousazadeh, F.; Moghadam, D.M.; Najafi, K.; Borhani, F.; Sarani, M.; Ghasemi, M.; Rahdar, A.; Iravani, S.; Khatami, M. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. In: Inorg. Chem. Commun., 2021, 131, 108800. doi: 10.1016/j.inoche.2021.108800
  2. Pal, G.; Rai, P.; Pandey, A. Green synthesis of nanoparticles: A greener approach for a cleaner future.Green Synthesis, Characterization and Applications of Nanoparticles Micro and Nano Technologies; Elsevier, 2019, pp. 1-26. doi: 10.1016/B978-0-08-102579-6.00001-0
  3. Jadoun, S.; Chinnam, S.; Chauhan, NPS. Biosynthesis of nanoparticles using plant extract. In: Nanotechnology in Herbal Medicine; Woodhead Publishing, 2023, pp. 101-117. doi: 10.1016/B978-0-323-99527-6.00006-9
  4. Yuan, C.; Jiang, B.; Xu, X.; Wan, Y.; Wang, L.; Chen, J. Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract. J. Exp. Nanosci., 2022, 17(1), 113-125. doi: 10.1080/17458080.2021.2011860
  5. Bahamin, N.; Ahmadian, S.; Kopaei, R.M.; Mobini, G.; Shafiezadeh, M.; Soltani, A. A comparative study on anticancer effects of the Alhagi maurorum and Amygdalus haussknechtii extracts alone and in combination with docetaxel on 4T1 breast cancer cells. Evid. Based Complement. Alternat. Med., 2021, 2021, 5517944. doi: 10.1155/2021/5517944
  6. Said, A.; Elfotouh, A.M. Antitumor evaluation of alhagi maurorum extracts and flavonoids. Middle East J. Appl. Sci., 2014, 4(3), 471-476.
  7. Miri, A.; Beiki, H.; Najafidoust, A.; Khatami, M.; Sarani, M. Cerium oxide nanoparticles: Green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess Biosyst. Eng., 2021, 44(9), 1891-1899. doi: 10.1007/s00449-021-02569-9 PMID: 33891183
  8. Bakkiyaraj, R.; Balakrishnan, M.; Subramanian, R. Synthesis, structural characterization, optical studies of CeO2 nanoparticles and its cytotoxic 1061ctiveity. Mater. Res. Innov., 2017, 21(6), 351-357. doi: 10.1080/14328917.2016.1265256
  9. Dar, M.; Gul, R.; Karuppiah, P.; Al-Dhabi, N.; Alfadda, A. Antibacterial activity of cerium oxide nanoparticles against ESKAPE pathogens. Crystals , 2022, 12(2), 179. doi: 10.3390/cryst12020179
  10. Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater., 2019, 62(11), 1727-1739. doi: 10.1007/s40843-019-9471-7
  11. Lin, W.; Huang, Y.; Zhou, X.D.; Ma, Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol., 2006, 25(6), 451-457. doi: 10.1080/10915810600959543 PMID: 17132603
  12. Eka, P.G.; Rilda, Y.; Syukri, S.; Labanni, A.; Arief, S. Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J. Mater. Res. Technol., 2021, 15, 2355-2364. doi: 10.1016/j.jmrt.2021.09.075
  13. Sabouri, Z.; Sabouri, M.; Amiri, M.S.; Khatami, M.; Darroudi, M. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater. Technol., 2020, 37(8), 555-568.
  14. Miri, A.; Sarani, M.; Barani, M.; Varma, R.S.; Miri, M.J. In-vitro cytotoxic performance of pure and co-doped CeO2 nanoparticles on breast cancer cell, colon cancer cell, and mouse embryo fibroblast cell lines; Res. Square, 2022. doi: 10.21203/rs.3.rs-1300456/v1
  15. Zamani, K.; Bakhshi, A.N.; Akhavan, F.; Yousefi, M.; Golmoradi, R.; Ramezani, M.; Bach, H.; Razavi, S.; Irajian, G.R.; Gerami, M.; Pakdin-Parizi, A.; Tafrihi, M.; Ramezani, F. Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol., 2021, 21(1), 68. doi: 10.1186/s12896-021-00727-1 PMID: 34876083
  16. Qi, M.; Li, W.; Zheng, X.; Li, X.; Sun, Y.; Wang, Y.; Li, C.; Wang, L. Cerium and its oxidant-based nanomaterials for antibacterial applications: A state-of-the-art review. Front. Mater., 2020, 7, 213. doi: 10.3389/fmats.2020.00213
  17. Ahmed, H.E.; Iqbal, Y.; Aziz, M.H.; Atif, M.; Batool, Z.; Hanif, A.; Yaqub, N.; Farooq, W.A.; Ahmad, S.; Fatehmulla, A.; Ahmad, H. Green synthesis of CeO2 nanoparticles from the abelmoschus esculentus extract: Evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules, 2021, 26(15), 4659. doi: 10.3390/molecules26154659 PMID: 34361812
  18. Kannan, S.K.; Sundrarajan, M. A green approach for the synthesis of a cerium oxide nanoparticle: Characterization and antibacterial activity. Int. J. Nanosci., 2014, 13(3), 1450018. doi: 10.1142/S0219581X14500185
  19. Snafi, A.AE. Antibacterial effect of the phenolic extract of Alhagi maurorum. IOSR J. Pharm., 2019, 9(9), 47-55.
  20. Pop, O.L.; Mesaros, A.; Vodnar, D.C.; Suharoschi, R. Tăbăran, F.; Magerușan, L.; Tódor, I.S.; Diaconeasa, Z.; Balint, A.; Ciontea, L.; Socaciu, C. Cerium oxide nanoparticles and their efficient antibacterial application in vitro against gram-positive and gram-negative pathogens. Nanomaterials , 2020, 10(8), 1614. doi: 10.3390/nano10081614 PMID: 32824660
  21. Fifere, N.; Airinei, A.; Dobromir, M.; Sacarescu, L.; Dunca, S.I. Revealing the effect of synthesis conditions on the structural, optical, and antibacterial properties of cerium oxide nanoparticles. Nanomaterials , 2021, 11(10), 2596. doi: 10.3390/nano11102596 PMID: 34685037
  22. Altaf, M.; Manoharadas, S.; Zeyad, M.T. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm 1062ctivety against bacterial pathogens. Microsc. Res. Tech., 2021, 84(8), 1638-1648. doi: 10.1002/jemt.23724 PMID: 33559164
  23. Shahnazarian, D.; Hagemann, J.; Aburto, M.; Rose, S. Informed consent in human subjects research. Off. Prot. Res. Subj., 2013, 2013, 1-22.
  24. Farias, IAP; Santos, DCCL; Sampaio, FC. Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: A systematic review. Biomed Res. Int., 2018, 2018, 1923606. doi: 10.1155/2018/1923606
  25. Magdalane, C.M.; Kaviyarasu, K.; Vijaya, J.J.; Siddhardha, B.; Jeyaraj, B. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity. J. Photochem. Photobiol. B, 2016, 163, 77-86. doi: 10.1016/j.jphotobiol.2016.08.013 PMID: 27541568
  26. Farhangi, J.M.; Es-haghi, A.; Yazdi, T.M.E.; Rahdar, A.; Baino, F. MOF-mediated synthesis of CuO/CeO2 composite nanoparticles: Characterization and estimation of the cellular toxicity against breast cancer cell line (MCF-7). J. Funct. Biomater., 2021, 12(4), 53. doi: 10.3390/jfb12040053
  27. Rahdar, A.; Aliahmad, M.; Azizi, Y.; Keikha, N.; Moudi, M.; Keshavarzi, F. CuO-NiO nano composites: Synthesis, characterization, and cytotoxicity evaluation. Nanomedicine Res J., 2017, 2(2), 78-86.
  28. Atif, M; Iqbal, S; Alam, F.M; Ismail, M; Mansoor, Q; Mughal, L Manganese-doped cerium oxide nanocomposite induced photodynamic therapy in MCF-7 cancer cells and antibacterial activity. Biomed Res. Int., 2019, 2019, 1-13.
  29. Abuid, N.J.; Asfura, G.K.M.; LaShoto, D.J.; Poulos, A.M.; Stabler, C.L. Biomedical applications of cerium oxide nanoparticles: A potent redox modulator and drug delivery agent, 2019, 283-301.
  30. Taherzadeh, D.; Amiri, H.; Darroudi, M. Green synthesis of cerium oxide nanoparticles using Falcaria vulgaris leaf extract and its anti-tumoral effects in prostate cancer; Res. Squa, 2023. doi: 10.21203/rs.3.rs-2568195/v1

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024