A Green Synthesis of Au-Ag Alloy Nanoparticles using Polydopamine Chemistry: Evaluation of their Anticancer Potency Towards Both MCF-7 Cells and their Cancer Stem Cells Subgroup


Цитировать

Полный текст

Аннотация

Background:Limited chemotherapy efficacy and cancer stem cells (CSCs)-induced therapeutic resistance are major difficulties for tumour treatment. Adopting more efficient therapies to eliminate bulk-sensitive cancer cells and resistant CSCs is urgently needed.

Methods:Based on the potential and functional complementarity of gold and silver nanoparticles (AuNPs or AgNPs) on tumour treatment, bimetallic NPs (alloy) have been synthesized to obtain improved or even newly emerging bioactivity from a combination effect. This study reported a facile, green and economical preparation of Au-Ag alloy NPs using biocompatible polydopamine (PDA) as a reductant, capping, stabilizing and hydrophilic agent.

Results:These alloy NPs were quasi-spherical with rough surfaces and recorded in diameters of 80 nm. In addition, these alloy NPs showed good water dispersity, stability and photothermal effect. Compared with monometallic counterparts, these alloy NPs demonstrated a dramatically enhanced cytotoxic/pro-apoptotic/necrotic effect towards bulk-sensitive MCF-7 and MDA-MB-231 cells. The underlying mechanism regarding the apoptotic action was associated with a mitochondria-mediated pathway, as evidenced by Au3+/Ag+ mediated Mitochondria damage, ROS generation, DNA fragmentation and upregulation of certain apoptotic-related genes (Bax, P53 and Caspase 3). Attractively, these Au-Ag alloy NPs showed a remarkably improved inhibitory effect on the mammosphere formation capacity of MCF-7 CSCs.

Conclusion:All the positive results were attributed to incorporated properties from Au, Ag and PDA, the combination effect of chemotherapy and photothermal therapy and the nano-scaled structure of Au-Ag alloy NPs. In addition, the high biocompatibility of Au-Ag alloy NPs supported them as a good candidate in cancer therapy.

Об авторах

Honglei Zhan

Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Shiyu Ding

Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University

Email: info@benthamscience.net

Ruiyu Shen

Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University

Email: info@benthamscience.net

Yulong Lv

Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University

Email: info@benthamscience.net

Xinran Tian

Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University

Email: info@benthamscience.net

Guie Liu

Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University

Email: info@benthamscience.net

Chaoyue Li

Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University

Email: info@benthamscience.net

Jihui Wang

Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic Universit

Email: info@benthamscience.net

Список литературы

  1. Wu, W.; Duan, G. Clinical research progress of double primary cancers of breast and lung with breast cancer as the first primary cancer. Cancer Res. Treat., 2021, 48(04), 400-405.
  2. Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; Soerjomataram, I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022, 66, 15-23. doi: 10.1016/j.breast.2022.08.010 PMID: 36084384
  3. Wmga, B. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv. Cancer Res., 2021, 151, 425-468. doi: 10.1016/bs.acr.2021.02.006 PMID: 34148620
  4. Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health, 2019, 9(4), 217-222. doi: 10.2991/jegh.k.191008.001 PMID: 31854162
  5. Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38, 107382. doi: 10.1016/j.biotechadv.2019.04.004 PMID: 30978386
  6. Yan, H.; You, Y.; Li, X.; Liu, L.; Guo, F.; Zhang, Q.; Liu, D.; Tong, Y.; Ding, S.; Wang, J. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells. Front. Pharmacol., 2020, 11, 898. doi: 10.3389/fphar.2020.00898 PMID: 32612532
  7. Khutale, G.V.; Casey, A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur. J. Pharm. Biopharm., 2017, 119, 372-380. doi: 10.1016/j.ejpb.2017.07.009 PMID: 28736333
  8. Minko, T.; Dharap, S.S.; Fabbricatore, A.T. Enhancing the efficacy of chemotherapeutic drugs by the suppression of antiapoptotic cellular defense. Cancer Detect. Prev., 2003, 27(3), 193-202. doi: 10.1016/S0361-090X(03)00067-9 PMID: 12787726
  9. Satapathy, S.R.; Siddharth, S.; Das, D.; Nayak, A.; Kundu, C.N. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: Implication of base excision repair cascade. Mol. Pharmaceutics., 2015, 12(11), 4011-4025. doi: 10.1021/acs.molpharmaceut.5b00461 PMID: 26448277
  10. Meldolesi, J. Cancer stem cells and their vesicles, together with other stem and non-stem cells, govern critical cancer processes: perspectives for medical development. Int. J. Mol. Sci., 2022, 23(2), 625. doi: 10.3390/ijms23020625 PMID: 35054811
  11. Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat. Rev., 2018, 69, 152-163. doi: 10.1016/j.ctrv.2018.07.004 PMID: 30029203
  12. Suo, X.; Zhang, J.; Zhang, Y.; Liang, X.J.; Zhang, J.; Liu, D. A nano-based thermotherapy for cancer stem cell-targeted therapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(18), 3985-4001. doi: 10.1039/D0TB00311E PMID: 32239013
  13. Ho, Y.J.; Chiang, Y.J.; Kang, S.T.; Fan, C.H.; Yeh, C.K. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system. J. Control. Release, 2018, 278, 100-109. doi: 10.1016/j.jconrel.2018.04.001 PMID: 29630986
  14. Yun-Jung, C.; Sangiliyandi, G.; Jin-Hoi, K. Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. Int. J. Mol. Sci., 2018, 19(3), 710. doi: 10.3390/ijms19030710 PMID: 29494563
  15. Motohara, T.; Yoshida, G.J.; Katabuchi, H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin. Cancer Biol., 2021, 77, 182-193. doi: 10.1016/j.semcancer.2021.03.038 PMID: 33812986
  16. Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647. doi: 10.1016/j.jconrel.2020.07.003 PMID: 32653502
  17. Al Faraj, A.; Shaik, A.S.; Ratemi, E.; Halwani, R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J. Control. Release, 2016, 225, 240-251. doi: 10.1016/j.jconrel.2016.01.053 PMID: 26827662
  18. Nawara, H.M.; Afify, S.M.; Hassan, G.; Zahra, M.H.; Seno, A.; Seno, M. Paclitaxel-based chemotherapy targeting cancer stem cells from mono- to combination therapy. Biomedicines, 2021, 9(5), 500. doi: 10.3390/biomedicines9050500 PMID: 34063205
  19. Aztopal, N.; Erkisa, M.; Erturk, E.; Ulukaya, E.; Tokullugil, A.H.; Ari, F. Valproic acid, a histone deacetylase inhibitor, induces apoptosis in breast cancer stem cells. Chem. Biol. Interact., 2018, 280, 51-58. doi: 10.1016/j.cbi.2017.12.003 PMID: 29225137
  20. Pan, Y.; Ma, X.; Liu, C.; Xing, J.; Zhou, S.; Parshad, B.; Schwerdtle, T.; Li, W.; Wu, A.; Haag, R. Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells. ACS Nano, 2021, 15(9), 15069-15084. doi: 10.1021/acsnano.1c05452 PMID: 34420298
  21. Yadav, A.S.; Radharani, N.N.V.; Gorain, M.; Bulbule, A.; Shetti, D.; Roy, G.; Baby, T.; Kundu, G.C. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. Nanoscale, 2020, 12(19), 10664-10684. doi: 10.1039/C9NR10673A PMID: 32374338
  22. Nayak, D.; Minz, A.P.; Ashe, S.; Rauta, P.R.; Kumari, M.; Chopra, P.; Nayak, B. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J. Colloid Interface Sci., 2016, 470, 142-152. doi: 10.1016/j.jcis.2016.02.043 PMID: 26939078
  23. Siddique, S.; Chow, J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci., 2020, 10(11), 3824. doi: 10.3390/app10113824
  24. Javad, B.; Farideh, N.; Marzieh, M.; Ramezani, T.; Mohamad, R. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized Using Saliva officinalis on chick chorioalantoic membrane (CAM). Molecules, 2014, 19(9), 13498-13508. doi: 10.3390/molecules190913498 PMID: 25255752
  25. Castro-Aceituno, V.; Abbai, R.; Moon, S.S.; Ahn, S.; Mathiyalagan, R.; Kim, Y.J.; Kim, Y.J.; Yang, D.C. Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line. Biomed. Pharmacother., 2017, 93, 995-1003. doi: 10.1016/j.biopha.2017.07.040 PMID: 28724260
  26. Chung, Y.; Fung, S.K.; Tong, K.C.; Wan, P.K.; Lok, C.N.; Huang, Y.; Chen, T.; Che, C.M. A multi-functional PEGylated gold iii compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem. Sci., 2016, 8(3), 1942-1953. doi: 10.1039/C6SC03210A PMID: 28451309
  27. Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target., 2018, 26(8), 617-632. doi: 10.1080/1061186X.2017.1400553 PMID: 29095640
  28. Hu, Y.; Wen, C.; Song, L.; Zhao, N.; Xu, F.J. Multifunctional hetero-nanostructures of hydroxyl-rich polycation wrapped cellulose-gold hybrids for combined cancer therapy. J. Control. Release, 2017, 255, 154-163. doi: 10.1016/j.jconrel.2017.04.001 PMID: 28385675
  29. Hu, X.; Xu, X.; Fu, F.; Yang, B.; Zhang, J.; Zhang, Y.; Binte Touhid, S.S.; Liu, L.; Dong, Y.; Liu, X.; Yao, J. Synthesis of bimetallic silver-gold nanoparticle composites using a cellulose dope: Tunable nanostructure and its biological activity. Carbohydr. Polym., 2020, 248, 116777. doi: 10.1016/j.carbpol.2020.116777 PMID: 32919567
  30. Jiang, Y.; Guo, Z.; Fang, J.; Wang, B.; Lin, Z.; Chen, Z.S.; Chen, Y.; Zhang, N.; Yang, X.; Gao, W. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer. Biomater. Adv., 2020, 107, 110224. doi: 10.1016/j.msec.2019.110224 PMID: 31761194
  31. Ahmad, T.; Sarwar, R.; Iqbal, A.; Bashir, U.; Farooq, U.; Halim, S.A.; Khan, A.; Al-Harrasi, A. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine, 2020, 15(5), 1221-1237. doi: 10.2217/nnm-2020-0051 PMID: 32370608
  32. Zhu, F.; Tan, G.; Zhong, Y.; Jiang, Y.; Cai, L.; Yu, Z.; Liu, S.; Ren, F. Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. J. Nanobiotechnology, 2019, 17(1), 44. doi: 10.1186/s12951-019-0473-3 PMID: 30917812
  33. Ban, Q.; Bai, T.; Duan, X.; Kong, J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater. Sci., 2017, 5(2), 190-210. doi: 10.1039/C6BM00600K PMID: 27990534
  34. Yang, Y.; Chen, M.; Wu, Y.; Wang, P.; Zhao, Y.; Zhu, W.; Song, Z.; Zhang, X.B. Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy. RSC Advances, 2019, 9(49), 28541-28547. doi: 10.1039/C9RA04286E PMID: 35529621
  35. Ismail, E.; Saqer, A.M.A.; Assirey, E.; Naqvi, A.; Okasha, R. Successful green synthesis of gold nanoparticles using acorchorus olitorius extract and their antiproliferative effect in cancer cells. Int. J. Mol. Sci., 2018, 19(9), 2612. doi: 10.3390/ijms19092612 PMID: 30177647
  36. Chen, C.W.; Chan, Y.C.; Hsiao, M.; Liu, R.S. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces, 2016, 8(47), 32108-32119. doi: 10.1021/acsami.6b07770 PMID: 27933825
  37. Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Mol. Pharm., 2019, 16(1), 1-23. doi: 10.1021/acs.molpharmaceut.8b00810 PMID: 30452861
  38. Jiang, T.; Song, J.; Zhang, W.; Wang, H.; Li, X.; Xia, R.; Zhu, L.; Xu, X. Au-Ag@Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment. ACS Appl. Mater. Interfaces, 2015, 7(39), 21985-21994. doi: 10.1021/acsami.5b08305 PMID: 26371629
  39. Aires, A.; Ocampo, S.M.; Simões, B.M.; Josefa Rodríguez, M.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, Á.; Clarke, R.B.; Carrascosa, J.L.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27(6), 065103. doi: 10.1088/0957-4484/27/6/065103 PMID: 26754042
  40. Rao, W.; Wang, H.; Zhong, A.; Yu, J.; Lu, X.; He, X. Nanodrug-mediated thermotherapy of cancer stem-like cells. J. Nanosci. Nanotechnol., 2016, 16(3), 2134-2142. doi: 10.1166/jnn.2016.10942 PMID: 27455612
  41. Beik, J.; Khateri, M.; Khosravi, Z.; Kamrava, S.K.; Kooranifar, S.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev., 2019, 387, 299-324. doi: 10.1016/j.ccr.2019.02.025
  42. Liu, D.; Hong, Y.; Li, Y.; Hu, C.; Yip, T.C.; Yu, W.K.; Zhu, Y.; Fong, C.C.; Wang, W.; Au, S.K.; Wang, S.; Yang, M. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics, 2020, 10(3), 1181-1196. doi: 10.7150/thno.38989 PMID: 31938059
  43. Gurunathan, S.; Han, J.W.; Park, J.H.; Kim, E.S.; Choi, Y.J.; Kwon, D.N.; Kim, J.H. Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int. J. Nanomedicine, 2015, 10, 6257-6276. doi: 10.2147/IJN.S92449 PMID: 26491296
  44. Kim, C.G.; Castro-Aceituno, V.; Abbai, R.; Lee, H.A.; Simu, S.Y.; Han, Y.; Hurh, J.; Kim, Y.J.; Yang, D.C. Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomed. Pharmacother., 2018, 99, 128-133. doi: 10.1016/j.biopha.2018.01.050 PMID: 29331758
  45. AbuMousa, R.A.; Baig, U.; Gondal, M.A.; AlSalhi, M.S.; Alqahtani, F.Y.; Akhtar, S.; Aleanizy, F.S.; Dastageer, M.A. Photo-catalytic killing of HeLa cancer cells using facile synthesized pure and Ag loaded WO3 nanoparticles. Sci. Rep., 2018, 8(1), 15224. doi: 10.1038/s41598-018-33434-7 PMID: 30323306
  46. Raja, G.; Jang, Y.K.; Suh, J.S.; Kim, H.S.; Ahn, S.H.; Kim, T.J. Microcellular environmental regulation of silver nanoparticles in cancer therapy: A critical review. Cancers (Basel), 2020, 12(3), 664. doi: 10.3390/cancers12030664 PMID: 32178476
  47. Gopisetty, M.K.; Kovács, D.; Igaz, N.; Rónavári, A.; Bélteky, P.; Rázga, Z.; Venglovecz, V.; Csoboz, B.; Boros, I.M.; Kónya, Z.; Kiricsi, M. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J. Nanobiotechnology, 2019, 17, 9. doi: 10.1186/s12951-019-0448-4 PMID: 30670028
  48. Han, J.W.; Gurunathan, S.; Choi, Y.J.; Kim, J.H. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Int. J. Nanomedicine, 2017, 12, 7529-7549. doi: 10.2147/IJN.S145147 PMID: 29066898
  49. Kovacs, D.; Szoke, K.; Igaz, N.; Spengler, G.; Molnár, J.; Tóth, T.; Madarász, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine, 2016, 12(3), 601-610. doi: 10.1016/j.nano.2015.10.015 PMID: 26656631
  50. Wen, Y.; Wang, Y. Liu, Xet; Wei, Z.; Xinhe, X.; Zhongxiao, H.; Xingjie, L. Camptothecin-based nanodrug delivery systems. Cancer Biol. Med., 2017, 14(4), 363-370. doi: 10.20892/j.issn.2095-3941.2017.0099 PMID: 29372102
  51. Sharma, C.; Ansari, S.; Ansari, M.S.; Satsangee, S.P.; Srivastava, M.M. Single-step green route synthesis of Au/Ag bimetallic nanoparticles using clove buds extract: Enhancement in antioxidant bio-efficacy and catalytic activity. Biomater. Adv., 2020, 116, 111153. doi: 10.1016/j.msec.2020.111153 PMID: 32806256
  52. Huynh, K.H.; Pham, X.H.; Kim, J.; Lee, S.H.; Chang, H.; Rho, W.Y.; Jun, B.H. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int. J. Mol. Sci., 2020, 21(14), 5174. doi: 10.3390/ijms21145174 PMID: 32708351
  53. Lomelí-Marroquín, D.; Cruz, D.M.; Nieto-Argüello, A.; Vernet Crua, A.; Chen, J.; Torres-Castro, A.; Webster, T.J.; Cholula-Díaz, J.L. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int. J. Nanomedicine, 2019, 14, 2171-2190. doi: 10.2147/IJN.S192757 PMID: 30988615
  54. Pal, A.; Shah, S.; Devi, S. Preparation of silver, gold and silver–gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100. Colloids Surf. A Physicochem. Eng. Asp., 2007, 302(1-3), 483-487. doi: 10.1016/j.colsurfa.2007.03.032
  55. Seo, J.M.; Kim, E.B.; Hyun, M.S.; Kim, B.B.; Park, T.J. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf. B Biointerfaces, 2015, 135, 27-34. doi: 10.1016/j.colsurfb.2015.07.022 PMID: 26241913
  56. Wang, W.; Liu, J.; Feng, W.; Du, S.; Ge, R.; Li, J.; Liu, Y.; Sun, H.; Zhang, D.; Zhang, H.; Yang, B. Targeting mitochondria with Au–Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomater. Sci., 2019, 7(3), 1052-1063. doi: 10.1039/C8BM01414K PMID: 30628592
  57. Sun, W.; Cai, X.; Wang, Z.; Zhao, H.; Lan, M. A novel modification method via in-situ reduction of AuAg bimetallic nanoparticles by polydopamine on carbon fiber microelectrode for H2O2 detection. Microchem. J., 2020, 154, 104595. doi: 10.1016/j.microc.2020.104595
  58. Mrowczynski, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(9), 7541-7561. doi: 10.1021/acsami.7b08392 PMID: 28786657
  59. Li, X.R.; Yin, B.; Gao, L.; Li, X.; Huang, H.; Song, G.; Zhou, Y-G. One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy. Nano Res., 2022, 15(9), 8291-8303. doi: 10.1007/s12274-022-4474-4 PMID: 35855867
  60. Muhammad, N.; Zhao, H.; Song, W.; Gu, M.; Li, Q.; Liu, Y.; Li, C.; Wang, J.; Zhan, H. Silver nanoparticles functionalized Paclitaxel nanocrystals enhance overall anti-cancer effect on human cancer cells. Nanotechnology, 2021, 32(8), 085105. doi: 10.1088/1361-6528/abcacb PMID: 33197899
  61. Zuppolini, S.; Cruz-Maya, I.; Guarino, V.; Borriello, A. Optimization of polydopamine coatings onto poly-epsilon-caprolactone electrospun fibers for the fabrication of bio-electroconductive interfaces. J. Funct. Biomater., 2020, 11(1), 19. doi: 10.3390/jfb11010019 PMID: 32192126
  62. Cui, J.; Yan, Y.; Such, G.K.; Liang, K.; Ochs, C.J.; Postma, A.; Caruso, F. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules, 2012, 13(8), 2225-2228. doi: 10.1021/bm300835r PMID: 22792863
  63. Liang, S.; Li, C.; Zhang, C.; Chen, Y.; Xu, L.; Bao, C.; Wang, X. liu, G.; zhang, F.; Cui, D. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics, 2015, 5(9), 970-984. doi: 10.7150/thno.11632 PMID: 26155313
  64. Wang, J.; Liu, N.; Su, Q.; Lv, Y.; Yang, C.; Zhan, H. Green synthesis of gold nanoparticles and study of their inhibitory effect on bulk cancer cells and cancer stem cells in breast carcinoma. Nanomaterials, 2022, 12(19), 3324. doi: 10.3390/nano12193324 PMID: 36234451
  65. Wang, J.; Muhammad, N.; Li, T.; Wang, H.; Liu, Y.; Liu, B.; Zhan, H. Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer efficacy. Mol. Pharm., 2020, 17(7), 2411-2425. doi: 10.1021/acs.molpharmaceut.0c00161 PMID: 32437163
  66. Chang, T.L.; Sun, P.K.; Zhou, X.; Besser, R.S.; Liang, J. Preparation and electrochemical performances of silver (alloy) nanoparticles decorated on reduced graphene oxide, using self-polymerization of dopamine in an acidic environment. Mater. Today Chem., 2020, 17, 100312. doi: 10.1016/j.mtchem.2020.100312
  67. Wang, J.; Zhao, H.; Song, W.; Gu, M.; Liu, Y.; Liu, B.; Zhan, H. Gold nanoparticle-decorated drug nanocrystals for enhancing anticancer efficacy and reversing drug resistance through chemo-/photothermal therapy. Mol. Pharm., 2022, 19(7), 2518-2534. doi: 10.1021/acs.molpharmaceut.2c00150 PMID: 35549267
  68. Zhan, H.; Song, W.; Gu, M.; Zhao, H.; Liu, Y.; Liu, B.; Wang, J. A new gold nanoparticles and paclitaxel co-delivery system for enhanced anti-cancer effect through chemo-photothermal combination. J. Biomed. Nanotechnol., 2022, 18(4), 957-975. doi: 10.1166/jbn.2022.3309 PMID: 35854456
  69. Li, J.L.; Gu, M. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J. Sel. Top. Quantum Electron., 2010, 16(4), 989-996. doi: 10.1109/JSTQE.2009.2030340
  70. Cheng, Y.; Meyers, J.D.; Broome, A.M.; Kenney, M.E.; Basilion, J.P.; Burda, C. Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J. Am. Chem. Soc., 2011, 133(8), 2583-2591. doi: 10.1021/ja108846h PMID: 21294543
  71. Chugh, H; Sood, D; Chandra, I Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 1210-1220. doi: 10.1080/21691401.2018.1449118
  72. Tawagi, E.; Massmann, C.; Chibli, H.; Nadeau, J.L. Differential toxicity of gold-doxorubicin in cancer cells vs. cardiomyocytes as measured by real-time growth assays and fluorescence lifetime imaging microscopy (FLIM). Analyst, 2015, 140(16), 5732-5741. doi: 10.1039/C5AN00446B PMID: 26161455
  73. Ou, Y.; Xu, S.; Zhu, D.; Yang, X. Molecular mechanisms of exopolysaccharide from aphanothece halaphytica (EPSAH) induced apoptosis in HeLa cells. PLoS One, 2014, 9(1), e87223. doi: 10.1371/journal.pone.0087223 PMID: 24466342
  74. Luo, M.; Wicha, M.S. Targeting cancer stem cell redox metabolism to enhance therapy responses. Semin. Radiat. Oncol., 2019, 29(1), 42-54. doi: 10.1016/j.semradonc.2018.10.003 PMID: 30573183
  75. Ahmed, S.; Baijal, G.; Somashekar, R.; Iyer, S.; Nayak, V. One pot synthesis of PEGylated bimetallic gold-silver nanoparticles for imaging and radiosensitization of oral cancers. Int. J. Nanomedicine, 2021, 16, 7103-7121. doi: 10.2147/IJN.S329762 PMID: 34712044

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024