A Green Synthesis of Au-Ag Alloy Nanoparticles using Polydopamine Chemistry: Evaluation of their Anticancer Potency Towards Both MCF-7 Cells and their Cancer Stem Cells Subgroup
- Авторы: Zhan H.1, Ding S.1, Shen R.1, Lv Y.1, Tian X.1, Liu G.1, Li C.1, Wang J.2
-
Учреждения:
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic Universit
- Выпуск: Том 24, № 13 (2024)
- Страницы: 969-981
- Раздел: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643800
- DOI: https://doi.org/10.2174/0118715206296123240331050206
- ID: 643800
Цитировать
Полный текст
Аннотация
Background:Limited chemotherapy efficacy and cancer stem cells (CSCs)-induced therapeutic resistance are major difficulties for tumour treatment. Adopting more efficient therapies to eliminate bulk-sensitive cancer cells and resistant CSCs is urgently needed.
Methods:Based on the potential and functional complementarity of gold and silver nanoparticles (AuNPs or AgNPs) on tumour treatment, bimetallic NPs (alloy) have been synthesized to obtain improved or even newly emerging bioactivity from a combination effect. This study reported a facile, green and economical preparation of Au-Ag alloy NPs using biocompatible polydopamine (PDA) as a reductant, capping, stabilizing and hydrophilic agent.
Results:These alloy NPs were quasi-spherical with rough surfaces and recorded in diameters of 80 nm. In addition, these alloy NPs showed good water dispersity, stability and photothermal effect. Compared with monometallic counterparts, these alloy NPs demonstrated a dramatically enhanced cytotoxic/pro-apoptotic/necrotic effect towards bulk-sensitive MCF-7 and MDA-MB-231 cells. The underlying mechanism regarding the apoptotic action was associated with a mitochondria-mediated pathway, as evidenced by Au3+/Ag+ mediated Mitochondria damage, ROS generation, DNA fragmentation and upregulation of certain apoptotic-related genes (Bax, P53 and Caspase 3). Attractively, these Au-Ag alloy NPs showed a remarkably improved inhibitory effect on the mammosphere formation capacity of MCF-7 CSCs.
Conclusion:All the positive results were attributed to incorporated properties from Au, Ag and PDA, the combination effect of chemotherapy and photothermal therapy and the nano-scaled structure of Au-Ag alloy NPs. In addition, the high biocompatibility of Au-Ag alloy NPs supported them as a good candidate in cancer therapy.
Об авторах
Honglei Zhan
Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Shiyu Ding
Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University
Email: info@benthamscience.net
Ruiyu Shen
Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University
Email: info@benthamscience.net
Yulong Lv
Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University
Email: info@benthamscience.net
Xinran Tian
Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University
Email: info@benthamscience.net
Guie Liu
Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University
Email: info@benthamscience.net
Chaoyue Li
Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University
Email: info@benthamscience.net
Jihui Wang
Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic Universit
Email: info@benthamscience.net
Список литературы
- Wu, W.; Duan, G. Clinical research progress of double primary cancers of breast and lung with breast cancer as the first primary cancer. Cancer Res. Treat., 2021, 48(04), 400-405.
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; Soerjomataram, I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022, 66, 15-23. doi: 10.1016/j.breast.2022.08.010 PMID: 36084384
- Wmga, B. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv. Cancer Res., 2021, 151, 425-468. doi: 10.1016/bs.acr.2021.02.006 PMID: 34148620
- Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health, 2019, 9(4), 217-222. doi: 10.2991/jegh.k.191008.001 PMID: 31854162
- Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38, 107382. doi: 10.1016/j.biotechadv.2019.04.004 PMID: 30978386
- Yan, H.; You, Y.; Li, X.; Liu, L.; Guo, F.; Zhang, Q.; Liu, D.; Tong, Y.; Ding, S.; Wang, J. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells. Front. Pharmacol., 2020, 11, 898. doi: 10.3389/fphar.2020.00898 PMID: 32612532
- Khutale, G.V.; Casey, A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur. J. Pharm. Biopharm., 2017, 119, 372-380. doi: 10.1016/j.ejpb.2017.07.009 PMID: 28736333
- Minko, T.; Dharap, S.S.; Fabbricatore, A.T. Enhancing the efficacy of chemotherapeutic drugs by the suppression of antiapoptotic cellular defense. Cancer Detect. Prev., 2003, 27(3), 193-202. doi: 10.1016/S0361-090X(03)00067-9 PMID: 12787726
- Satapathy, S.R.; Siddharth, S.; Das, D.; Nayak, A.; Kundu, C.N. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: Implication of base excision repair cascade. Mol. Pharmaceutics., 2015, 12(11), 4011-4025. doi: 10.1021/acs.molpharmaceut.5b00461 PMID: 26448277
- Meldolesi, J. Cancer stem cells and their vesicles, together with other stem and non-stem cells, govern critical cancer processes: perspectives for medical development. Int. J. Mol. Sci., 2022, 23(2), 625. doi: 10.3390/ijms23020625 PMID: 35054811
- Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat. Rev., 2018, 69, 152-163. doi: 10.1016/j.ctrv.2018.07.004 PMID: 30029203
- Suo, X.; Zhang, J.; Zhang, Y.; Liang, X.J.; Zhang, J.; Liu, D. A nano-based thermotherapy for cancer stem cell-targeted therapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(18), 3985-4001. doi: 10.1039/D0TB00311E PMID: 32239013
- Ho, Y.J.; Chiang, Y.J.; Kang, S.T.; Fan, C.H.; Yeh, C.K. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system. J. Control. Release, 2018, 278, 100-109. doi: 10.1016/j.jconrel.2018.04.001 PMID: 29630986
- Yun-Jung, C.; Sangiliyandi, G.; Jin-Hoi, K. Graphene oxidesilver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. Int. J. Mol. Sci., 2018, 19(3), 710. doi: 10.3390/ijms19030710 PMID: 29494563
- Motohara, T.; Yoshida, G.J.; Katabuchi, H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin. Cancer Biol., 2021, 77, 182-193. doi: 10.1016/j.semcancer.2021.03.038 PMID: 33812986
- Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647. doi: 10.1016/j.jconrel.2020.07.003 PMID: 32653502
- Al Faraj, A.; Shaik, A.S.; Ratemi, E.; Halwani, R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J. Control. Release, 2016, 225, 240-251. doi: 10.1016/j.jconrel.2016.01.053 PMID: 26827662
- Nawara, H.M.; Afify, S.M.; Hassan, G.; Zahra, M.H.; Seno, A.; Seno, M. Paclitaxel-based chemotherapy targeting cancer stem cells from mono- to combination therapy. Biomedicines, 2021, 9(5), 500. doi: 10.3390/biomedicines9050500 PMID: 34063205
- Aztopal, N.; Erkisa, M.; Erturk, E.; Ulukaya, E.; Tokullugil, A.H.; Ari, F. Valproic acid, a histone deacetylase inhibitor, induces apoptosis in breast cancer stem cells. Chem. Biol. Interact., 2018, 280, 51-58. doi: 10.1016/j.cbi.2017.12.003 PMID: 29225137
- Pan, Y.; Ma, X.; Liu, C.; Xing, J.; Zhou, S.; Parshad, B.; Schwerdtle, T.; Li, W.; Wu, A.; Haag, R. Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells. ACS Nano, 2021, 15(9), 15069-15084. doi: 10.1021/acsnano.1c05452 PMID: 34420298
- Yadav, A.S.; Radharani, N.N.V.; Gorain, M.; Bulbule, A.; Shetti, D.; Roy, G.; Baby, T.; Kundu, G.C. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. Nanoscale, 2020, 12(19), 10664-10684. doi: 10.1039/C9NR10673A PMID: 32374338
- Nayak, D.; Minz, A.P.; Ashe, S.; Rauta, P.R.; Kumari, M.; Chopra, P.; Nayak, B. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J. Colloid Interface Sci., 2016, 470, 142-152. doi: 10.1016/j.jcis.2016.02.043 PMID: 26939078
- Siddique, S.; Chow, J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci., 2020, 10(11), 3824. doi: 10.3390/app10113824
- Javad, B.; Farideh, N.; Marzieh, M.; Ramezani, T.; Mohamad, R. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized Using Saliva officinalis on chick chorioalantoic membrane (CAM). Molecules, 2014, 19(9), 13498-13508. doi: 10.3390/molecules190913498 PMID: 25255752
- Castro-Aceituno, V.; Abbai, R.; Moon, S.S.; Ahn, S.; Mathiyalagan, R.; Kim, Y.J.; Kim, Y.J.; Yang, D.C. Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line. Biomed. Pharmacother., 2017, 93, 995-1003. doi: 10.1016/j.biopha.2017.07.040 PMID: 28724260
- Chung, Y.; Fung, S.K.; Tong, K.C.; Wan, P.K.; Lok, C.N.; Huang, Y.; Chen, T.; Che, C.M. A multi-functional PEGylated gold iii compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem. Sci., 2016, 8(3), 1942-1953. doi: 10.1039/C6SC03210A PMID: 28451309
- Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target., 2018, 26(8), 617-632. doi: 10.1080/1061186X.2017.1400553 PMID: 29095640
- Hu, Y.; Wen, C.; Song, L.; Zhao, N.; Xu, F.J. Multifunctional hetero-nanostructures of hydroxyl-rich polycation wrapped cellulose-gold hybrids for combined cancer therapy. J. Control. Release, 2017, 255, 154-163. doi: 10.1016/j.jconrel.2017.04.001 PMID: 28385675
- Hu, X.; Xu, X.; Fu, F.; Yang, B.; Zhang, J.; Zhang, Y.; Binte Touhid, S.S.; Liu, L.; Dong, Y.; Liu, X.; Yao, J. Synthesis of bimetallic silver-gold nanoparticle composites using a cellulose dope: Tunable nanostructure and its biological activity. Carbohydr. Polym., 2020, 248, 116777. doi: 10.1016/j.carbpol.2020.116777 PMID: 32919567
- Jiang, Y.; Guo, Z.; Fang, J.; Wang, B.; Lin, Z.; Chen, Z.S.; Chen, Y.; Zhang, N.; Yang, X.; Gao, W. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer. Biomater. Adv., 2020, 107, 110224. doi: 10.1016/j.msec.2019.110224 PMID: 31761194
- Ahmad, T.; Sarwar, R.; Iqbal, A.; Bashir, U.; Farooq, U.; Halim, S.A.; Khan, A.; Al-Harrasi, A. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine, 2020, 15(5), 1221-1237. doi: 10.2217/nnm-2020-0051 PMID: 32370608
- Zhu, F.; Tan, G.; Zhong, Y.; Jiang, Y.; Cai, L.; Yu, Z.; Liu, S.; Ren, F. Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. J. Nanobiotechnology, 2019, 17(1), 44. doi: 10.1186/s12951-019-0473-3 PMID: 30917812
- Ban, Q.; Bai, T.; Duan, X.; Kong, J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater. Sci., 2017, 5(2), 190-210. doi: 10.1039/C6BM00600K PMID: 27990534
- Yang, Y.; Chen, M.; Wu, Y.; Wang, P.; Zhao, Y.; Zhu, W.; Song, Z.; Zhang, X.B. Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy. RSC Advances, 2019, 9(49), 28541-28547. doi: 10.1039/C9RA04286E PMID: 35529621
- Ismail, E.; Saqer, A.M.A.; Assirey, E.; Naqvi, A.; Okasha, R. Successful green synthesis of gold nanoparticles using acorchorus olitorius extract and their antiproliferative effect in cancer cells. Int. J. Mol. Sci., 2018, 19(9), 2612. doi: 10.3390/ijms19092612 PMID: 30177647
- Chen, C.W.; Chan, Y.C.; Hsiao, M.; Liu, R.S. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces, 2016, 8(47), 32108-32119. doi: 10.1021/acsami.6b07770 PMID: 27933825
- Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Mol. Pharm., 2019, 16(1), 1-23. doi: 10.1021/acs.molpharmaceut.8b00810 PMID: 30452861
- Jiang, T.; Song, J.; Zhang, W.; Wang, H.; Li, X.; Xia, R.; Zhu, L.; Xu, X. Au-Ag@Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment. ACS Appl. Mater. Interfaces, 2015, 7(39), 21985-21994. doi: 10.1021/acsami.5b08305 PMID: 26371629
- Aires, A.; Ocampo, S.M.; Simões, B.M.; Josefa Rodríguez, M.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, Á.; Clarke, R.B.; Carrascosa, J.L.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27(6), 065103. doi: 10.1088/0957-4484/27/6/065103 PMID: 26754042
- Rao, W.; Wang, H.; Zhong, A.; Yu, J.; Lu, X.; He, X. Nanodrug-mediated thermotherapy of cancer stem-like cells. J. Nanosci. Nanotechnol., 2016, 16(3), 2134-2142. doi: 10.1166/jnn.2016.10942 PMID: 27455612
- Beik, J.; Khateri, M.; Khosravi, Z.; Kamrava, S.K.; Kooranifar, S.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev., 2019, 387, 299-324. doi: 10.1016/j.ccr.2019.02.025
- Liu, D.; Hong, Y.; Li, Y.; Hu, C.; Yip, T.C.; Yu, W.K.; Zhu, Y.; Fong, C.C.; Wang, W.; Au, S.K.; Wang, S.; Yang, M. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics, 2020, 10(3), 1181-1196. doi: 10.7150/thno.38989 PMID: 31938059
- Gurunathan, S.; Han, J.W.; Park, J.H.; Kim, E.S.; Choi, Y.J.; Kwon, D.N.; Kim, J.H. Reduced graphene oxidesilver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int. J. Nanomedicine, 2015, 10, 6257-6276. doi: 10.2147/IJN.S92449 PMID: 26491296
- Kim, C.G.; Castro-Aceituno, V.; Abbai, R.; Lee, H.A.; Simu, S.Y.; Han, Y.; Hurh, J.; Kim, Y.J.; Yang, D.C. Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomed. Pharmacother., 2018, 99, 128-133. doi: 10.1016/j.biopha.2018.01.050 PMID: 29331758
- AbuMousa, R.A.; Baig, U.; Gondal, M.A.; AlSalhi, M.S.; Alqahtani, F.Y.; Akhtar, S.; Aleanizy, F.S.; Dastageer, M.A. Photo-catalytic killing of HeLa cancer cells using facile synthesized pure and Ag loaded WO3 nanoparticles. Sci. Rep., 2018, 8(1), 15224. doi: 10.1038/s41598-018-33434-7 PMID: 30323306
- Raja, G.; Jang, Y.K.; Suh, J.S.; Kim, H.S.; Ahn, S.H.; Kim, T.J. Microcellular environmental regulation of silver nanoparticles in cancer therapy: A critical review. Cancers (Basel), 2020, 12(3), 664. doi: 10.3390/cancers12030664 PMID: 32178476
- Gopisetty, M.K.; Kovács, D.; Igaz, N.; Rónavári, A.; Bélteky, P.; Rázga, Z.; Venglovecz, V.; Csoboz, B.; Boros, I.M.; Kónya, Z.; Kiricsi, M. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J. Nanobiotechnology, 2019, 17, 9. doi: 10.1186/s12951-019-0448-4 PMID: 30670028
- Han, J.W.; Gurunathan, S.; Choi, Y.J.; Kim, J.H. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Int. J. Nanomedicine, 2017, 12, 7529-7549. doi: 10.2147/IJN.S145147 PMID: 29066898
- Kovacs, D.; Szoke, K.; Igaz, N.; Spengler, G.; Molnár, J.; Tóth, T.; Madarász, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine, 2016, 12(3), 601-610. doi: 10.1016/j.nano.2015.10.015 PMID: 26656631
- Wen, Y.; Wang, Y. Liu, Xet; Wei, Z.; Xinhe, X.; Zhongxiao, H.; Xingjie, L. Camptothecin-based nanodrug delivery systems. Cancer Biol. Med., 2017, 14(4), 363-370. doi: 10.20892/j.issn.2095-3941.2017.0099 PMID: 29372102
- Sharma, C.; Ansari, S.; Ansari, M.S.; Satsangee, S.P.; Srivastava, M.M. Single-step green route synthesis of Au/Ag bimetallic nanoparticles using clove buds extract: Enhancement in antioxidant bio-efficacy and catalytic activity. Biomater. Adv., 2020, 116, 111153. doi: 10.1016/j.msec.2020.111153 PMID: 32806256
- Huynh, K.H.; Pham, X.H.; Kim, J.; Lee, S.H.; Chang, H.; Rho, W.Y.; Jun, B.H. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int. J. Mol. Sci., 2020, 21(14), 5174. doi: 10.3390/ijms21145174 PMID: 32708351
- Lomelí-Marroquín, D.; Cruz, D.M.; Nieto-Argüello, A.; Vernet Crua, A.; Chen, J.; Torres-Castro, A.; Webster, T.J.; Cholula-Díaz, J.L. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int. J. Nanomedicine, 2019, 14, 2171-2190. doi: 10.2147/IJN.S192757 PMID: 30988615
- Pal, A.; Shah, S.; Devi, S. Preparation of silver, gold and silvergold bimetallic nanoparticles in w/o microemulsion containing TritonX-100. Colloids Surf. A Physicochem. Eng. Asp., 2007, 302(1-3), 483-487. doi: 10.1016/j.colsurfa.2007.03.032
- Seo, J.M.; Kim, E.B.; Hyun, M.S.; Kim, B.B.; Park, T.J. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf. B Biointerfaces, 2015, 135, 27-34. doi: 10.1016/j.colsurfb.2015.07.022 PMID: 26241913
- Wang, W.; Liu, J.; Feng, W.; Du, S.; Ge, R.; Li, J.; Liu, Y.; Sun, H.; Zhang, D.; Zhang, H.; Yang, B. Targeting mitochondria with AuAg@Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomater. Sci., 2019, 7(3), 1052-1063. doi: 10.1039/C8BM01414K PMID: 30628592
- Sun, W.; Cai, X.; Wang, Z.; Zhao, H.; Lan, M. A novel modification method via in-situ reduction of AuAg bimetallic nanoparticles by polydopamine on carbon fiber microelectrode for H2O2 detection. Microchem. J., 2020, 154, 104595. doi: 10.1016/j.microc.2020.104595
- Mrowczynski, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(9), 7541-7561. doi: 10.1021/acsami.7b08392 PMID: 28786657
- Li, X.R.; Yin, B.; Gao, L.; Li, X.; Huang, H.; Song, G.; Zhou, Y-G. One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy. Nano Res., 2022, 15(9), 8291-8303. doi: 10.1007/s12274-022-4474-4 PMID: 35855867
- Muhammad, N.; Zhao, H.; Song, W.; Gu, M.; Li, Q.; Liu, Y.; Li, C.; Wang, J.; Zhan, H. Silver nanoparticles functionalized Paclitaxel nanocrystals enhance overall anti-cancer effect on human cancer cells. Nanotechnology, 2021, 32(8), 085105. doi: 10.1088/1361-6528/abcacb PMID: 33197899
- Zuppolini, S.; Cruz-Maya, I.; Guarino, V.; Borriello, A. Optimization of polydopamine coatings onto poly-epsilon-caprolactone electrospun fibers for the fabrication of bio-electroconductive interfaces. J. Funct. Biomater., 2020, 11(1), 19. doi: 10.3390/jfb11010019 PMID: 32192126
- Cui, J.; Yan, Y.; Such, G.K.; Liang, K.; Ochs, C.J.; Postma, A.; Caruso, F. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules, 2012, 13(8), 2225-2228. doi: 10.1021/bm300835r PMID: 22792863
- Liang, S.; Li, C.; Zhang, C.; Chen, Y.; Xu, L.; Bao, C.; Wang, X. liu, G.; zhang, F.; Cui, D. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics, 2015, 5(9), 970-984. doi: 10.7150/thno.11632 PMID: 26155313
- Wang, J.; Liu, N.; Su, Q.; Lv, Y.; Yang, C.; Zhan, H. Green synthesis of gold nanoparticles and study of their inhibitory effect on bulk cancer cells and cancer stem cells in breast carcinoma. Nanomaterials, 2022, 12(19), 3324. doi: 10.3390/nano12193324 PMID: 36234451
- Wang, J.; Muhammad, N.; Li, T.; Wang, H.; Liu, Y.; Liu, B.; Zhan, H. Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer efficacy. Mol. Pharm., 2020, 17(7), 2411-2425. doi: 10.1021/acs.molpharmaceut.0c00161 PMID: 32437163
- Chang, T.L.; Sun, P.K.; Zhou, X.; Besser, R.S.; Liang, J. Preparation and electrochemical performances of silver (alloy) nanoparticles decorated on reduced graphene oxide, using self-polymerization of dopamine in an acidic environment. Mater. Today Chem., 2020, 17, 100312. doi: 10.1016/j.mtchem.2020.100312
- Wang, J.; Zhao, H.; Song, W.; Gu, M.; Liu, Y.; Liu, B.; Zhan, H. Gold nanoparticle-decorated drug nanocrystals for enhancing anticancer efficacy and reversing drug resistance through chemo-/photothermal therapy. Mol. Pharm., 2022, 19(7), 2518-2534. doi: 10.1021/acs.molpharmaceut.2c00150 PMID: 35549267
- Zhan, H.; Song, W.; Gu, M.; Zhao, H.; Liu, Y.; Liu, B.; Wang, J. A new gold nanoparticles and paclitaxel co-delivery system for enhanced anti-cancer effect through chemo-photothermal combination. J. Biomed. Nanotechnol., 2022, 18(4), 957-975. doi: 10.1166/jbn.2022.3309 PMID: 35854456
- Li, J.L.; Gu, M. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J. Sel. Top. Quantum Electron., 2010, 16(4), 989-996. doi: 10.1109/JSTQE.2009.2030340
- Cheng, Y.; Meyers, J.D.; Broome, A.M.; Kenney, M.E.; Basilion, J.P.; Burda, C. Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J. Am. Chem. Soc., 2011, 133(8), 2583-2591. doi: 10.1021/ja108846h PMID: 21294543
- Chugh, H; Sood, D; Chandra, I Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 1210-1220. doi: 10.1080/21691401.2018.1449118
- Tawagi, E.; Massmann, C.; Chibli, H.; Nadeau, J.L. Differential toxicity of gold-doxorubicin in cancer cells vs. cardiomyocytes as measured by real-time growth assays and fluorescence lifetime imaging microscopy (FLIM). Analyst, 2015, 140(16), 5732-5741. doi: 10.1039/C5AN00446B PMID: 26161455
- Ou, Y.; Xu, S.; Zhu, D.; Yang, X. Molecular mechanisms of exopolysaccharide from aphanothece halaphytica (EPSAH) induced apoptosis in HeLa cells. PLoS One, 2014, 9(1), e87223. doi: 10.1371/journal.pone.0087223 PMID: 24466342
- Luo, M.; Wicha, M.S. Targeting cancer stem cell redox metabolism to enhance therapy responses. Semin. Radiat. Oncol., 2019, 29(1), 42-54. doi: 10.1016/j.semradonc.2018.10.003 PMID: 30573183
- Ahmed, S.; Baijal, G.; Somashekar, R.; Iyer, S.; Nayak, V. One pot synthesis of PEGylated bimetallic gold-silver nanoparticles for imaging and radiosensitization of oral cancers. Int. J. Nanomedicine, 2021, 16, 7103-7121. doi: 10.2147/IJN.S329762 PMID: 34712044
Дополнительные файлы
