Biosynthesis and Anticancer Activity of Genistein Glycoside Derivatives


Cite item

Full Text

Abstract

As a beneficial natural flavonoid, genistein has demonstrated a wide range of biological functions via regulating a number of targets and signaling pathways, such as anti-cancer, antioxidant, antibacterial, antiinflammatory, antifungal, antiviral, iron chelation, anti-obesity, anti-diabetes, and anti-hypertension. PubMed/Medline and Web of Science were searched using appropriate keywords until the end of December 2023. Despite its many potential benefits, genistein’s clinical application is limited by low hydrophilicity, poor solubility, and suboptimal bioavailability due to its structure. These challenges can be addressed through the conversion of genistein into glycosides. Glycosylation of active small molecules may enhance their solubility, stability, and biological activity. In recent years, extensive research has been conducted on the synthesis, properties, and anticancer activity of glycoconjugates. Previous reviews were devoted to discussing the biological activities of genistin, with a little summary of the biosynthesis and the structure-activity relationship for their anticancer activity of genistein glycoside derivatives. Therefore, we summarized recent advances in the biosynthesis of genistein glycosylation and discussed the antitumor activities of genistein glycoside derivatives in a structure-activity relationship, which may provide important information for further development of genistein derivatives.

About the authors

Xing Zheng

Department of Pharmacy, Hunan Vocational College of Science and Technology

Email: info@benthamscience.net

Jun Zhang

Department of Pharmacy, Hunan Vocational College of Science and Technology

Email: info@benthamscience.net

Shun Liu

Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China

Email: info@benthamscience.net

Yingzi Yu

Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China

Email: info@benthamscience.net

Qingying Peng

Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China

Email: info@benthamscience.net

Yaling Peng

Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China

Email: info@benthamscience.net

Xu Yao

Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China

Author for correspondence.
Email: info@benthamscience.net

Xingxing Peng

Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China

Author for correspondence.
Email: info@benthamscience.net

Jing Zhou

Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China

Author for correspondence.
Email: info@benthamscience.net

References

  1. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477. doi: 10.1021/np068054v PMID: 17309302
  2. Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3670-3695. doi: 10.1016/j.bbagen.2013.02.008 PMID: 23428572
  3. Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25(3), 475-516. doi: 10.1039/b514294f PMID: 18497896
  4. Liu, M.; Lv, Q.; Xu, J.; Liu, B.; Zhou, Y.; Zhang, S.; Shen, X.; Wang, L. Isoflavone glucoside genistin, an inhibitor targeting Sortase A and Listeriolysin O, attenuates the virulence of Listeria monocytogenes in vivo and in vitro. Biochem. Pharmacol., 2023, 209, 115447. doi: 10.1016/j.bcp.2023.115447 PMID: 36746262
  5. Blanchard, S.; Thorson, J. Enzymatic tools for engineering natural product glycosylation. Curr. Opin. Chem. Biol., 2006, 10(3), 263-271. doi: 10.1016/j.cbpa.2006.04.001 PMID: 16675288
  6. Luzhetskyy, A.; Bechthold, A. Features and applications of bacterial glycosyltransferases: Current state and prospects. Appl. Microbiol. Biotechnol., 2008, 80(6), 945-952. doi: 10.1007/s00253-008-1672-2 PMID: 18777021
  7. Nagaraju, G.P.; Zafar, S.F.; El-Rayes, B.F. Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr. Rev., 2013, 71(8), 562-572. doi: 10.1111/nure.12044 PMID: 23865800
  8. Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother., 2015, 76, 30-38. doi: 10.1016/j.biopha.2015.10.026 PMID: 26653547
  9. Nabavi, S.; Daglia, M.; Tundis, R.; Loizzo, M.; Sobarzo-Sánchez, E.; Orhan, I.; Nabavi, S. Genistein: A boon for mitigating ischemic stroke. Curr. Top. Med. Chem., 2015, 15(17), 1714-1721. doi: 10.2174/1568026615666150427122709 PMID: 25915610
  10. Lim, Y.J.; Lyu, J.I.; Kwon, S.J.; Eom, S.H. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout. Food Chem., 2021, 339, 128080. doi: 10.1016/j.foodchem.2020.128080 PMID: 33152873
  11. Rahman Mazumder, M.A.; Hongsprabhas, P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed. Pharmacother., 2016, 82, 379-392. doi: 10.1016/j.biopha.2016.05.023 PMID: 27470376
  12. Saha, S.; Sadhukhan, P.; Sil, P. Genistein: A phytoestrogen with multifaceted therapeutic properties. Mini Rev. Med. Chem., 2014, 14(11), 920-940. doi: 10.2174/1389557514666141029233442 PMID: 25355592
  13. Jeminiwa, B.O.; Knight, R.M.; Braden, T.D. espindola, C.C.; Boothe, D.M.; Akingbemi, B.T. Regulation of the neuroendocrine axis in male rats by soy-based diets is independent of age and due specifically to isoflavone action†. Biol. Reprod., 2020, 103(4), 892-906. doi: 10.1093/biolre/ioaa101 PMID: 32520353
  14. Pavese, J.M.; Farmer, R.L.; Bergan, R.C. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev., 2010, 29(3), 465-482. doi: 10.1007/s10555-010-9238-z PMID: 20730632
  15. Russo, M.; Russo, G.L.; Daglia, M.; Kasi, P.D.; Ravi, S.; Nabavi, S.F.; Nabavi, S.M. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem., 2016, 196, 589-600. doi: 10.1016/j.foodchem.2015.09.085 PMID: 26593532
  16. Ardito, F.; Gioia, D.G.; Pellegrino, M.R.; Muzio, L.L. Genistein as a potential anticancer agent against head and neck squamous cell carcinoma. Curr. Top. Med. Chem., 2018, 18(3), 174-181. doi: 10.2174/1568026618666180116122650 PMID: 29345579
  17. Bitto, A.; Polito, F.; Squadrito, F.; Marini, H.; D’Anna, R.; Irrera, N.; Minutoli, L.; Granese, R.; Altavilla, D. Genistein aglycone: A dual mode of action anti-osteoporotic soy isoflavone rebalancing bone turnover towards bone formation. Curr. Med. Chem., 2010, 17(27), 3007-3018. doi: 10.2174/092986710791959738 PMID: 20629630
  18. Hemati, N.; Asis, M.; Moradi, S.; Mollica, A.; Stefanucci, A.; Nikfar, S.; Mohammadi, E.; Farzaei, M.H.; Abdollahi, M. Effects of genistein on blood pressure: A systematic review and meta-analysis. Food Res. Int., 2020, 128, 108764. doi: 10.1016/j.foodres.2019.108764 PMID: 31955737
  19. Behloul, N.; Wu, G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol., 2013, 698(1-3), 31-38. doi: 10.1016/j.ejphar.2012.11.013 PMID: 23178528
  20. Weng, L.; Zhang, F.; Wang, R.; Ma, W.; Song, Y. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chem. Biol. Interact., 2019, 310, 108665. doi: 10.1016/j.cbi.2019.05.031 PMID: 31125535
  21. Li, J.; Gang, D.; Yu, X.; Hu, Y.; Yue, Y.; Cheng, W.; Pan, X.; Zhang, P. Genistein: The potential for efficacy in rheumatoid arthritis. Clin. Rheumatol., 2013, 32(5), 535-540. doi: 10.1007/s10067-012-2148-4 PMID: 23307323
  22. Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419. doi: 10.3945/an.114.008052 PMID: 26178025
  23. Devi, K.P.; Shanmuganathan, B.; Manayi, A.; Nabavi, S.F.; Nabavi, S.M. Molecular and therapeutic targets of genistein in Alzheimer’s Disease. Mol. Neurobiol., 2017, 54(9), 7028-7041. doi: 10.1007/s12035-016-0215-6 PMID: 27796744
  24. Irrera, N.; Pizzino, G.; D’Anna, R.; Vaccaro, M.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Dietary management of skin health: The role of genistein. Nutrients, 2017, 9(6), 622. doi: 10.3390/nu9060622 PMID: 28629129
  25. Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336. doi: 10.3389/fphar.2019.01336 PMID: 31866857
  26. Bosland, M.C.; Huang, J.; Schlicht, M.J.; Enk, E.; Xie, H.; Kato, I. Impact of 18-month soy protein supplementation on steroid hormones and serum biomarkers of angiogenesis, apoptosis, and the growth hormone/IGF-1 axis: Results of a randomized, placebo-controlled trial in males following prostatectomy. Nutr. Cancer, 2022, 74(1), 110-121. doi: 10.1080/01635581.2020.1870706 PMID: 33432829
  27. Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. Int. J. Nanomedicine, 2011, 6, 2429-2435. PMID: 22072878
  28. Danciu, C.; Soica, C.; Oltean, M.; Avram, S.; Borcan, F.; Csanyi, E.; Ambrus, R.; Zupko, I.; Muntean, D.; Dehelean, C.; Craina, M.; Popovici, R. Genistein in 1:1 inclusion complexes with ramified cyclodextrins: Theoretical, physicochemical and biological evaluation. Int. J. Mol. Sci., 2014, 15(2), 1962-1982. doi: 10.3390/ijms15021962 PMID: 24473144
  29. Han, R.; Ge, B.; Jiang, M.; Xu, G.; Dong, J.; Ni, Y. High production of genistein diglucoside derivative using cyclodextrin glycosyltransferase from Paenibacillus macerans. J. Ind. Microbiol. Biotechnol., 2017, 44(9), 1343-1354. doi: 10.1007/s10295-017-1960-x PMID: 28660368
  30. Ferrado, J.B.; Perez, A.A.; Baravalle, M.E.; Renna, M.S.; Ortega, H.H.; Santiago, L.G. Genistein loaded in self-assembled bovine serum albumin nanovehicles and their effects on mouse mammary adenocarcinoma cells. Colloids Surf. B Biointerfaces, 2021, 204, 111777. doi: 10.1016/j.colsurfb.2021.111777 PMID: 33932891
  31. Zhang, X.; Zhu, Y.; Ye, J.; Ye, Z.; Zhu, R.; Xie, G.; Zhao, Y.; Qin, M. Iris domestica (iso)flavone 7- and 3′-O-glycosyltransferases can be induced by CuCl2. Front. Plant Sci., 2021, 12, 632557. doi: 10.3389/fpls.2021.632557 PMID: 33633770
  32. Fujitaka, Y.; Hamada, H.; Uesugi, D.; Kuboki, A.; Shimoda, K.; Iwaki, T.; Kiriake, Y.; Saikawa, T. Synthesis of daidzein glycosides, α-tocopherol glycosides, hesperetin glycosides by bioconversion and their potential for anti-allergic functional-foods and cosmetics. Molecules, 2019, 24(16), 2975. doi: 10.3390/molecules24162975 PMID: 31426346
  33. Choi, Y.; Shim, J.; Kim, M. Genistin: A novel potent anti-adipogenic and anti-lipogenic agent. Molecules, 2020, 25(9), 2042. doi: 10.3390/molecules25092042 PMID: 32349444
  34. Harisna, A.H.; Nurdiansyah, R.; Syaifie, P.H.; Nugroho, D.W.; Saputro, K.E. Firdayani; Prakoso, C.D.; Rochman, N.T.; Maulana, N.N.; Noviyanto, A.; Mardliyati, E. In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochem. Biophys. Rep., 2021, 26, 100969. doi: 10.1016/j.bbrep.2021.100969 PMID: 33681482
  35. Yamamoto, T.; Nagata, Y.; Hayashi, S.; Kadowaki, M. Isoflavones suppress Cyp26b1 expression in the murine colonic lamina propria. Biol. Pharm. Bull., 2020, 43(12), 1945-1949. doi: 10.1248/bpb.b20-00355 PMID: 33268713
  36. Takasugi, M.; Muta, E.; Yamada, K.; Arai, H. A new method to evaluate anti-allergic effect of food component by measuring leukotriene B4 from a mouse mast cell line. Cytotechnology, 2018, 70(1), 177-184. doi: 10.1007/s10616-017-0129-9 PMID: 28852902
  37. Rusin, A.; Zawisza-Puchałka, J.; Kujawa, K.; Pigłowska, G.A.; Wietrzyk, J.; Świtalska, M.; Kosińska, G.M.; Gruca, A.; Szeja, W.; Krawczyk, Z.; Grynkiewicz, G. Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells. Bioorg. Med. Chem., 2011, 19(1), 295-305. doi: 10.1016/j.bmc.2010.11.024 PMID: 21129977
  38. Li, X.; Wang, Y.; Park, J.T.; Gu, L.; Li, D. An extremely thermostable maltogenic amylase from Staphylothermus marinus: Bacillus expression of the gene and its application in genistin glycosylation. Int. J. Biol. Macromol., 2018, 107(Pt A), 413-417. doi: 10.1016/j.ijbiomac.2017.09.007 PMID: 28887188
  39. Amin, K.; Tranchimand, S.; Benvegnu, T.; Razzak, A.Z.; Chamieh, H. Glycoside hydrolases and glycosyltransferases from hyperthermophilic archaea: Insights on their characteristics and applications in biotechnology. Biomolecules, 2021, 11(11), 1557. doi: 10.3390/biom11111557 PMID: 34827555
  40. Ko, J.H.; Kim, B.G.; Kim, J.H.; Kim, H.; Lim, C.E.; Lim, J.; Lee, C.; Lim, Y.; Ahn, J.H. Four glucosyltransferases from rice: cDNA cloning, expression, and characterization. J. Plant Physiol., 2008, 165(4), 435-444. doi: 10.1016/j.jplph.2007.01.006 PMID: 17363107
  41. Kramer, C.M.; Prata, R.T.N.; Willits, M.G.; De Luca, V.; Steffens, J.C.; Graser, G. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry, 2003, 64(6), 1069-1076. doi: 10.1016/S0031-9422(03)00507-7 PMID: 14568073
  42. Cai, R.; Chen, C.; Li, Y.; Sun, K.; Zhou, F.; Chen, K.; Jia, H. Improved soluble bacterial expression and properties of the recombinant flavonoid glucosyltransferase UGT73G1 from Allium cepa. J. Biotechnol., 2017, 255, 9-15. doi: 10.1016/j.jbiotec.2017.06.011 PMID: 28627388
  43. Li, D.; Roh, S.A.; Shim, J.H.; Mikami, B.; Baik, M.Y.; Park, C.S.; Park, K.H. Glycosylation of genistin into soluble inclusion complex form of cyclic glucans by enzymatic modification. J. Agric. Food Chem., 2005, 53(16), 6516-6524. doi: 10.1021/jf050732g PMID: 16076143
  44. Park, S. Cyclic glucans enhance solubility of bioavailable flavonoids. Molecules, 2016, 21(11), 1556. doi: 10.3390/molecules21111556 PMID: 27854350
  45. Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Microbial glycosylation of daidzein, genistein and biochanin A: Two new glucosides of biochanin A. Molecules, 2017, 22(1), 81. doi: 10.3390/molecules22010081 PMID: 28054950
  46. Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Regioselective o-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca. Bioorg. Chem., 2019, 93, 102750. doi: 10.1016/j.bioorg.2019.01.046 PMID: 30755333
  47. Ruby, Kumar R.J.; Vishwakarma, R.K.; Singh, S.; Khan, B.M. Molecular cloning and characterization of genistein 4′-O-glucoside specific glycosyltransferase from Bacopa monniera. Mol. Biol. Rep., 2014, 41(7), 4675-4688. doi: 10.1007/s11033-014-3338-8 PMID: 24664316
  48. Chai, B.; Jiang, Y.; Ni, Y.; Han, R. Engineering the 182 site of cyclodextrin glucosyltransferase for glycosylated genistein synthesis. Chin. J. Biotechnol., 2022, 38(2), 749-759. PMID: 35234395
  49. Pandey, R.P.; Parajuli, P.; Koirala, N.; Lee, J.H.; Park, Y.I.; Sohng, J.K. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol. Cells, 2014, 37(2), 172-177. doi: 10.14348/molcells.2014.2348 PMID: 24599002
  50. Koirala, N.; Pandey, R.P.; Van Thang, D.; Jung, H.J.; Sohng, J.K. Glycosylation and subsequent malonylation of isoflavonoids in E. coli: Strain development, production and insights into future metabolic perspectives. J. Ind. Microbiol. Biotechnol., 2014, 41(11), 1647-1658. doi: 10.1007/s10295-014-1504-6 PMID: 25189810
  51. Shrestha, A.; Pandey, R.P.; Dhakal, D.; Parajuli, P.; Sohng, J.K. Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Appl. Microbiol. Biotechnol., 2018, 102(3), 1251-1267. doi: 10.1007/s00253-017-8694-6 PMID: 29308528
  52. Hwang, S.T.; Yang, M.H.; Baek, S.H.; Um, J.Y.; Ahn, K.S. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway. Life Sci., 2020, 263, 118594. doi: 10.1016/j.lfs.2020.118594 PMID: 33075375
  53. Hooshmand, S.; Khalil, D.A.; Murillo, G.; Singletary, K.; Kamath, S.K.; Arjmandi, B.H. The combination of genistin and ipriflavone prevents mammary tumorigenesis and modulates lipid profile. Clin. Nutr., 2008, 27(4), 643-648. doi: 10.1016/j.clnu.2008.04.012 PMID: 18571816
  54. Russo, A.; Cardile, V.; Lombardo, L.; Vanella, L.; Acquaviva, R. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J. Nutr. Biochem., 2006, 17(2), 103-108. doi: 10.1016/j.jnutbio.2005.05.011 PMID: 16111876
  55. Saleh, M.A.; Antar, S.A.; Abdo, W.; Ashour, A.; Zaki, A.A. Genistin modulates high-mobility group box protein 1 (HMGB1) and nuclear factor kappa-B (NF-κB) in Ehrlich-ascites-carcinoma-bearing mice. Environ. Sci. Pollut. Res. Int., 2023, 30(1), 966-978. doi: 10.1007/s11356-022-22268-6 PMID: 35907070
  56. Kato, K.; Takahashi, S.; Cui, L.; Toda, T.; Suzuki, S.; Futakuchi, M.; Sugiura, S.; Shirai, T. Suppressive effects of dietary genistin and daidzin on rat prostate carcinogenesis. Jpn. J. Cancer Res., 2000, 91(8), 786-791. doi: 10.1111/j.1349-7006.2000.tb01014.x PMID: 10965018
  57. Choi, E.J.; Kim, T.; Lee, M.S. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells. Life Sci., 2007, 80(15), 1403-1408. doi: 10.1016/j.lfs.2006.12.031 PMID: 17291540
  58. Polkowski, K.; Popiołkiewicz, J.; Krzeczyński, P.; Ramza, J.; Pucko, W.; Stendel, Z.O.; Boryski, J.; Skierski, J.S.; Mazurek, A.P.; Grynkiewicz, G. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett., 2004, 203(1), 59-69. doi: 10.1016/j.canlet.2003.08.023 PMID: 14670618
  59. Gogler-Pigłowska, A.; Rusin, A.; Bochenek, D.; Krawczyk, Z. Aneugenic effects of the genistein glycosidic derivative substituted at C7 with the unsaturated disaccharide. Cell Biol. Toxicol., 2012, 28(5), 331-342. doi: 10.1007/s10565-012-9227-9 PMID: 22843076
  60. Gruca, A.; Krawczyk, Z.; Szeja, W.; Grynkiewicz, G.; Rusin, A. Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells. Molecules, 2014, 19(11), 18558-18573. doi: 10.3390/molecules191118558 PMID: 25401399
  61. Szeja, W.; Grynkiewicz, G.; Bieg, T.; Swierk, P.; Byczek, A.; Papaj, K.; Kitel, R.; Rusin, A. Synthesis and cytotoxicity of 2,3-enopyranosyl C-linked conjugates of genistein. Molecules, 2014, 19(6), 7072-7093. doi: 10.3390/molecules19067072 PMID: 24886936
  62. Liu, L.; Ahn, K.S.; Shanmugam, M.K.; Wang, H.; Shen, H.; Arfuso, F.; Chinnathambi, A.; Alharbi, S.A.; Chang, Y.; Sethi, G.; Tang, F.R. Oleuropein induces apoptosis via abrogating NF‐κB activation cascade in estrogen receptor–negative breast cancer cells. J. Cell. Biochem., 2019, 120(3), 4504-4513. doi: 10.1002/jcb.27738 PMID: 30260018
  63. Garcia-Estevez, L.; Moreno-Bueno, G. Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res., 2019, 21(1), 35. doi: 10.1186/s13058-019-1124-1 PMID: 30823902
  64. Allred, C.D.; Ju, Y.H.; Allred, K.F.; Chang, J.; Helferich, W.G. Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 2001, 22(10), 1667-1673. doi: 10.1093/carcin/22.10.1667 PMID: 11577007
  65. Allred, C.D.; Allred, K.F.; Ju, Y.H.; Virant, S.M.; Helferich, W.G. Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer Res., 2001, 61(13), 5045-5050. PMID: 11431339
  66. Hamdy, S.M.; Latif, A.K.M.A.; Drees, E.A.; Soliman, S.M. Prevention of rat breast cancer by genistin and selenium. Toxicol. Ind. Health, 2012, 28(8), 746-757. doi: 10.1177/0748233711422732 PMID: 22089659
  67. Rigano, D.; Cardile, V.; Formisano, C.; Maldini, M.T.; Piacente, S.; Bevilacqua, J.; Russo, A.; Senatore, F. Genista sessilifolia DC. and Genista tinctoria L. inhibit UV light and nitric oxide-induced DNA damage and human melanoma cell growth. Chem. Biol. Interact., 2009, 180(2), 211-219. doi: 10.1016/j.cbi.2009.02.010 PMID: 19497419
  68. Ozaslan, M.; Karagoz, I.D.; Kilic, I.H.; Guldur, M.E. Ehrlich ascites carcinoma. Afr. J. Biotechnol., 2011, 10(13), 2375-2378.
  69. Raghavarao, T.; Nagavani, V. Anticancer potential of Nymphaea nouchali Brum flowers against Ehrlich ascites carcinoma cell lines. J. Cancer Res. Ther., 2023, 19(S8), 241. doi: 10.4103/jcrt.JCRT_160_18 PMID: 37148001
  70. Antosiak, A.; Milowska, K.; Maczynska, K.; Rozalska, S.; Gabryelak, T. Cytotoxic activity of genistein-8-C-glucoside form Lupinus luteus L. and genistein against human SK-OV-3 ovarian carcinoma cell line. Med. Chem. Res., 2017, 26(1), 64-73. doi: 10.1007/s00044-016-1725-5 PMID: 28111515
  71. Li, Y.; Mi, C. Proliferation inhibition and apoptosis onset in human ovarian carcinoma cell line SKOV3 induced by Genistein. Chin. J. Cancer, 2003, 22(6), 586-591. PMID: 12948406
  72. Popiołkiewicz, J.; Polkowski, K.; Skierski, J.S.; Mazurek, A.P. In vitro toxicity evaluation in the development of new anticancer drugs—genistein glycosides. Cancer Lett., 2005, 229(1), 67-75. doi: 10.1016/j.canlet.2005.01.014 PMID: 16157220
  73. Rusin, A.; Krawczyk, Z.; Grynkiewicz, G.; Gogler, A.; Puchałka, Z.J.; Szeja, W. Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim. Pol., 2010, 57(1), 23-34. doi: 10.18388/abp.2010_2368 PMID: 20216977
  74. Zaczek, A.; Brandt, B.; Bielawski, K.P. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol. Histopathol., 2005, 20(3), 1005-1015. PMID: 15944951
  75. Roskoski, R., Jr The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun., 2004, 319(1), 1-11. doi: 10.1016/j.bbrc.2004.04.150 PMID: 15158434
  76. Ono, M.; Kuwano, M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin. Cancer Res., 2006, 12(24), 7242-7251. doi: 10.1158/1078-0432.CCR-06-0646 PMID: 17189395

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers