Biosynthesis and Anticancer Activity of Genistein Glycoside Derivatives
- Authors: Zheng X.1, Zhang J.1, Liu S.2, Yu Y.2, Peng Q.3, Peng Y.3, Yao X.3, Peng X.3, Zhou J.2
-
Affiliations:
- Department of Pharmacy, Hunan Vocational College of Science and Technology
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China
- Issue: Vol 24, No 13 (2024)
- Pages: 961-968
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643796
- DOI: https://doi.org/10.2174/0118715206299272240409043726
- ID: 643796
Cite item
Full Text
Abstract
As a beneficial natural flavonoid, genistein has demonstrated a wide range of biological functions via regulating a number of targets and signaling pathways, such as anti-cancer, antioxidant, antibacterial, antiinflammatory, antifungal, antiviral, iron chelation, anti-obesity, anti-diabetes, and anti-hypertension. PubMed/Medline and Web of Science were searched using appropriate keywords until the end of December 2023. Despite its many potential benefits, genisteins clinical application is limited by low hydrophilicity, poor solubility, and suboptimal bioavailability due to its structure. These challenges can be addressed through the conversion of genistein into glycosides. Glycosylation of active small molecules may enhance their solubility, stability, and biological activity. In recent years, extensive research has been conducted on the synthesis, properties, and anticancer activity of glycoconjugates. Previous reviews were devoted to discussing the biological activities of genistin, with a little summary of the biosynthesis and the structure-activity relationship for their anticancer activity of genistein glycoside derivatives. Therefore, we summarized recent advances in the biosynthesis of genistein glycosylation and discussed the antitumor activities of genistein glycoside derivatives in a structure-activity relationship, which may provide important information for further development of genistein derivatives.
About the authors
Xing Zheng
Department of Pharmacy, Hunan Vocational College of Science and Technology
Email: info@benthamscience.net
Jun Zhang
Department of Pharmacy, Hunan Vocational College of Science and Technology
Email: info@benthamscience.net
Shun Liu
Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China
Email: info@benthamscience.net
Yingzi Yu
Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China
Email: info@benthamscience.net
Qingying Peng
Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China
Email: info@benthamscience.net
Yaling Peng
Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China
Email: info@benthamscience.net
Xu Yao
Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China
Author for correspondence.
Email: info@benthamscience.net
Xingxing Peng
Institute of Pharmacy and Pharmacology, Hengyang Medicinal School,, University of South China
Author for correspondence.
Email: info@benthamscience.net
Jing Zhou
Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China
Author for correspondence.
Email: info@benthamscience.net
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477. doi: 10.1021/np068054v PMID: 17309302
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3670-3695. doi: 10.1016/j.bbagen.2013.02.008 PMID: 23428572
- Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25(3), 475-516. doi: 10.1039/b514294f PMID: 18497896
- Liu, M.; Lv, Q.; Xu, J.; Liu, B.; Zhou, Y.; Zhang, S.; Shen, X.; Wang, L. Isoflavone glucoside genistin, an inhibitor targeting Sortase A and Listeriolysin O, attenuates the virulence of Listeria monocytogenes in vivo and in vitro. Biochem. Pharmacol., 2023, 209, 115447. doi: 10.1016/j.bcp.2023.115447 PMID: 36746262
- Blanchard, S.; Thorson, J. Enzymatic tools for engineering natural product glycosylation. Curr. Opin. Chem. Biol., 2006, 10(3), 263-271. doi: 10.1016/j.cbpa.2006.04.001 PMID: 16675288
- Luzhetskyy, A.; Bechthold, A. Features and applications of bacterial glycosyltransferases: Current state and prospects. Appl. Microbiol. Biotechnol., 2008, 80(6), 945-952. doi: 10.1007/s00253-008-1672-2 PMID: 18777021
- Nagaraju, G.P.; Zafar, S.F.; El-Rayes, B.F. Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr. Rev., 2013, 71(8), 562-572. doi: 10.1111/nure.12044 PMID: 23865800
- Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother., 2015, 76, 30-38. doi: 10.1016/j.biopha.2015.10.026 PMID: 26653547
- Nabavi, S.; Daglia, M.; Tundis, R.; Loizzo, M.; Sobarzo-Sánchez, E.; Orhan, I.; Nabavi, S. Genistein: A boon for mitigating ischemic stroke. Curr. Top. Med. Chem., 2015, 15(17), 1714-1721. doi: 10.2174/1568026615666150427122709 PMID: 25915610
- Lim, Y.J.; Lyu, J.I.; Kwon, S.J.; Eom, S.H. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout. Food Chem., 2021, 339, 128080. doi: 10.1016/j.foodchem.2020.128080 PMID: 33152873
- Rahman Mazumder, M.A.; Hongsprabhas, P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed. Pharmacother., 2016, 82, 379-392. doi: 10.1016/j.biopha.2016.05.023 PMID: 27470376
- Saha, S.; Sadhukhan, P.; Sil, P. Genistein: A phytoestrogen with multifaceted therapeutic properties. Mini Rev. Med. Chem., 2014, 14(11), 920-940. doi: 10.2174/1389557514666141029233442 PMID: 25355592
- Jeminiwa, B.O.; Knight, R.M.; Braden, T.D. espindola, C.C.; Boothe, D.M.; Akingbemi, B.T. Regulation of the neuroendocrine axis in male rats by soy-based diets is independent of age and due specifically to isoflavone action. Biol. Reprod., 2020, 103(4), 892-906. doi: 10.1093/biolre/ioaa101 PMID: 32520353
- Pavese, J.M.; Farmer, R.L.; Bergan, R.C. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev., 2010, 29(3), 465-482. doi: 10.1007/s10555-010-9238-z PMID: 20730632
- Russo, M.; Russo, G.L.; Daglia, M.; Kasi, P.D.; Ravi, S.; Nabavi, S.F.; Nabavi, S.M. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem., 2016, 196, 589-600. doi: 10.1016/j.foodchem.2015.09.085 PMID: 26593532
- Ardito, F.; Gioia, D.G.; Pellegrino, M.R.; Muzio, L.L. Genistein as a potential anticancer agent against head and neck squamous cell carcinoma. Curr. Top. Med. Chem., 2018, 18(3), 174-181. doi: 10.2174/1568026618666180116122650 PMID: 29345579
- Bitto, A.; Polito, F.; Squadrito, F.; Marini, H.; DAnna, R.; Irrera, N.; Minutoli, L.; Granese, R.; Altavilla, D. Genistein aglycone: A dual mode of action anti-osteoporotic soy isoflavone rebalancing bone turnover towards bone formation. Curr. Med. Chem., 2010, 17(27), 3007-3018. doi: 10.2174/092986710791959738 PMID: 20629630
- Hemati, N.; Asis, M.; Moradi, S.; Mollica, A.; Stefanucci, A.; Nikfar, S.; Mohammadi, E.; Farzaei, M.H.; Abdollahi, M. Effects of genistein on blood pressure: A systematic review and meta-analysis. Food Res. Int., 2020, 128, 108764. doi: 10.1016/j.foodres.2019.108764 PMID: 31955737
- Behloul, N.; Wu, G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol., 2013, 698(1-3), 31-38. doi: 10.1016/j.ejphar.2012.11.013 PMID: 23178528
- Weng, L.; Zhang, F.; Wang, R.; Ma, W.; Song, Y. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chem. Biol. Interact., 2019, 310, 108665. doi: 10.1016/j.cbi.2019.05.031 PMID: 31125535
- Li, J.; Gang, D.; Yu, X.; Hu, Y.; Yue, Y.; Cheng, W.; Pan, X.; Zhang, P. Genistein: The potential for efficacy in rheumatoid arthritis. Clin. Rheumatol., 2013, 32(5), 535-540. doi: 10.1007/s10067-012-2148-4 PMID: 23307323
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419. doi: 10.3945/an.114.008052 PMID: 26178025
- Devi, K.P.; Shanmuganathan, B.; Manayi, A.; Nabavi, S.F.; Nabavi, S.M. Molecular and therapeutic targets of genistein in Alzheimers Disease. Mol. Neurobiol., 2017, 54(9), 7028-7041. doi: 10.1007/s12035-016-0215-6 PMID: 27796744
- Irrera, N.; Pizzino, G.; DAnna, R.; Vaccaro, M.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Dietary management of skin health: The role of genistein. Nutrients, 2017, 9(6), 622. doi: 10.3390/nu9060622 PMID: 28629129
- Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336. doi: 10.3389/fphar.2019.01336 PMID: 31866857
- Bosland, M.C.; Huang, J.; Schlicht, M.J.; Enk, E.; Xie, H.; Kato, I. Impact of 18-month soy protein supplementation on steroid hormones and serum biomarkers of angiogenesis, apoptosis, and the growth hormone/IGF-1 axis: Results of a randomized, placebo-controlled trial in males following prostatectomy. Nutr. Cancer, 2022, 74(1), 110-121. doi: 10.1080/01635581.2020.1870706 PMID: 33432829
- Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. Int. J. Nanomedicine, 2011, 6, 2429-2435. PMID: 22072878
- Danciu, C.; Soica, C.; Oltean, M.; Avram, S.; Borcan, F.; Csanyi, E.; Ambrus, R.; Zupko, I.; Muntean, D.; Dehelean, C.; Craina, M.; Popovici, R. Genistein in 1:1 inclusion complexes with ramified cyclodextrins: Theoretical, physicochemical and biological evaluation. Int. J. Mol. Sci., 2014, 15(2), 1962-1982. doi: 10.3390/ijms15021962 PMID: 24473144
- Han, R.; Ge, B.; Jiang, M.; Xu, G.; Dong, J.; Ni, Y. High production of genistein diglucoside derivative using cyclodextrin glycosyltransferase from Paenibacillus macerans. J. Ind. Microbiol. Biotechnol., 2017, 44(9), 1343-1354. doi: 10.1007/s10295-017-1960-x PMID: 28660368
- Ferrado, J.B.; Perez, A.A.; Baravalle, M.E.; Renna, M.S.; Ortega, H.H.; Santiago, L.G. Genistein loaded in self-assembled bovine serum albumin nanovehicles and their effects on mouse mammary adenocarcinoma cells. Colloids Surf. B Biointerfaces, 2021, 204, 111777. doi: 10.1016/j.colsurfb.2021.111777 PMID: 33932891
- Zhang, X.; Zhu, Y.; Ye, J.; Ye, Z.; Zhu, R.; Xie, G.; Zhao, Y.; Qin, M. Iris domestica (iso)flavone 7- and 3′-O-glycosyltransferases can be induced by CuCl2. Front. Plant Sci., 2021, 12, 632557. doi: 10.3389/fpls.2021.632557 PMID: 33633770
- Fujitaka, Y.; Hamada, H.; Uesugi, D.; Kuboki, A.; Shimoda, K.; Iwaki, T.; Kiriake, Y.; Saikawa, T. Synthesis of daidzein glycosides, α-tocopherol glycosides, hesperetin glycosides by bioconversion and their potential for anti-allergic functional-foods and cosmetics. Molecules, 2019, 24(16), 2975. doi: 10.3390/molecules24162975 PMID: 31426346
- Choi, Y.; Shim, J.; Kim, M. Genistin: A novel potent anti-adipogenic and anti-lipogenic agent. Molecules, 2020, 25(9), 2042. doi: 10.3390/molecules25092042 PMID: 32349444
- Harisna, A.H.; Nurdiansyah, R.; Syaifie, P.H.; Nugroho, D.W.; Saputro, K.E. Firdayani; Prakoso, C.D.; Rochman, N.T.; Maulana, N.N.; Noviyanto, A.; Mardliyati, E. In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochem. Biophys. Rep., 2021, 26, 100969. doi: 10.1016/j.bbrep.2021.100969 PMID: 33681482
- Yamamoto, T.; Nagata, Y.; Hayashi, S.; Kadowaki, M. Isoflavones suppress Cyp26b1 expression in the murine colonic lamina propria. Biol. Pharm. Bull., 2020, 43(12), 1945-1949. doi: 10.1248/bpb.b20-00355 PMID: 33268713
- Takasugi, M.; Muta, E.; Yamada, K.; Arai, H. A new method to evaluate anti-allergic effect of food component by measuring leukotriene B4 from a mouse mast cell line. Cytotechnology, 2018, 70(1), 177-184. doi: 10.1007/s10616-017-0129-9 PMID: 28852902
- Rusin, A.; Zawisza-Puchałka, J.; Kujawa, K.; Pigłowska, G.A.; Wietrzyk, J.; Świtalska, M.; Kosińska, G.M.; Gruca, A.; Szeja, W.; Krawczyk, Z.; Grynkiewicz, G. Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells. Bioorg. Med. Chem., 2011, 19(1), 295-305. doi: 10.1016/j.bmc.2010.11.024 PMID: 21129977
- Li, X.; Wang, Y.; Park, J.T.; Gu, L.; Li, D. An extremely thermostable maltogenic amylase from Staphylothermus marinus: Bacillus expression of the gene and its application in genistin glycosylation. Int. J. Biol. Macromol., 2018, 107(Pt A), 413-417. doi: 10.1016/j.ijbiomac.2017.09.007 PMID: 28887188
- Amin, K.; Tranchimand, S.; Benvegnu, T.; Razzak, A.Z.; Chamieh, H. Glycoside hydrolases and glycosyltransferases from hyperthermophilic archaea: Insights on their characteristics and applications in biotechnology. Biomolecules, 2021, 11(11), 1557. doi: 10.3390/biom11111557 PMID: 34827555
- Ko, J.H.; Kim, B.G.; Kim, J.H.; Kim, H.; Lim, C.E.; Lim, J.; Lee, C.; Lim, Y.; Ahn, J.H. Four glucosyltransferases from rice: cDNA cloning, expression, and characterization. J. Plant Physiol., 2008, 165(4), 435-444. doi: 10.1016/j.jplph.2007.01.006 PMID: 17363107
- Kramer, C.M.; Prata, R.T.N.; Willits, M.G.; De Luca, V.; Steffens, J.C.; Graser, G. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry, 2003, 64(6), 1069-1076. doi: 10.1016/S0031-9422(03)00507-7 PMID: 14568073
- Cai, R.; Chen, C.; Li, Y.; Sun, K.; Zhou, F.; Chen, K.; Jia, H. Improved soluble bacterial expression and properties of the recombinant flavonoid glucosyltransferase UGT73G1 from Allium cepa. J. Biotechnol., 2017, 255, 9-15. doi: 10.1016/j.jbiotec.2017.06.011 PMID: 28627388
- Li, D.; Roh, S.A.; Shim, J.H.; Mikami, B.; Baik, M.Y.; Park, C.S.; Park, K.H. Glycosylation of genistin into soluble inclusion complex form of cyclic glucans by enzymatic modification. J. Agric. Food Chem., 2005, 53(16), 6516-6524. doi: 10.1021/jf050732g PMID: 16076143
- Park, S. Cyclic glucans enhance solubility of bioavailable flavonoids. Molecules, 2016, 21(11), 1556. doi: 10.3390/molecules21111556 PMID: 27854350
- Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Microbial glycosylation of daidzein, genistein and biochanin A: Two new glucosides of biochanin A. Molecules, 2017, 22(1), 81. doi: 10.3390/molecules22010081 PMID: 28054950
- Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Regioselective o-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca. Bioorg. Chem., 2019, 93, 102750. doi: 10.1016/j.bioorg.2019.01.046 PMID: 30755333
- Ruby, Kumar R.J.; Vishwakarma, R.K.; Singh, S.; Khan, B.M. Molecular cloning and characterization of genistein 4′-O-glucoside specific glycosyltransferase from Bacopa monniera. Mol. Biol. Rep., 2014, 41(7), 4675-4688. doi: 10.1007/s11033-014-3338-8 PMID: 24664316
- Chai, B.; Jiang, Y.; Ni, Y.; Han, R. Engineering the 182 site of cyclodextrin glucosyltransferase for glycosylated genistein synthesis. Chin. J. Biotechnol., 2022, 38(2), 749-759. PMID: 35234395
- Pandey, R.P.; Parajuli, P.; Koirala, N.; Lee, J.H.; Park, Y.I.; Sohng, J.K. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol. Cells, 2014, 37(2), 172-177. doi: 10.14348/molcells.2014.2348 PMID: 24599002
- Koirala, N.; Pandey, R.P.; Van Thang, D.; Jung, H.J.; Sohng, J.K. Glycosylation and subsequent malonylation of isoflavonoids in E. coli: Strain development, production and insights into future metabolic perspectives. J. Ind. Microbiol. Biotechnol., 2014, 41(11), 1647-1658. doi: 10.1007/s10295-014-1504-6 PMID: 25189810
- Shrestha, A.; Pandey, R.P.; Dhakal, D.; Parajuli, P.; Sohng, J.K. Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Appl. Microbiol. Biotechnol., 2018, 102(3), 1251-1267. doi: 10.1007/s00253-017-8694-6 PMID: 29308528
- Hwang, S.T.; Yang, M.H.; Baek, S.H.; Um, J.Y.; Ahn, K.S. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway. Life Sci., 2020, 263, 118594. doi: 10.1016/j.lfs.2020.118594 PMID: 33075375
- Hooshmand, S.; Khalil, D.A.; Murillo, G.; Singletary, K.; Kamath, S.K.; Arjmandi, B.H. The combination of genistin and ipriflavone prevents mammary tumorigenesis and modulates lipid profile. Clin. Nutr., 2008, 27(4), 643-648. doi: 10.1016/j.clnu.2008.04.012 PMID: 18571816
- Russo, A.; Cardile, V.; Lombardo, L.; Vanella, L.; Acquaviva, R. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J. Nutr. Biochem., 2006, 17(2), 103-108. doi: 10.1016/j.jnutbio.2005.05.011 PMID: 16111876
- Saleh, M.A.; Antar, S.A.; Abdo, W.; Ashour, A.; Zaki, A.A. Genistin modulates high-mobility group box protein 1 (HMGB1) and nuclear factor kappa-B (NF-κB) in Ehrlich-ascites-carcinoma-bearing mice. Environ. Sci. Pollut. Res. Int., 2023, 30(1), 966-978. doi: 10.1007/s11356-022-22268-6 PMID: 35907070
- Kato, K.; Takahashi, S.; Cui, L.; Toda, T.; Suzuki, S.; Futakuchi, M.; Sugiura, S.; Shirai, T. Suppressive effects of dietary genistin and daidzin on rat prostate carcinogenesis. Jpn. J. Cancer Res., 2000, 91(8), 786-791. doi: 10.1111/j.1349-7006.2000.tb01014.x PMID: 10965018
- Choi, E.J.; Kim, T.; Lee, M.S. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells. Life Sci., 2007, 80(15), 1403-1408. doi: 10.1016/j.lfs.2006.12.031 PMID: 17291540
- Polkowski, K.; Popiołkiewicz, J.; Krzeczyński, P.; Ramza, J.; Pucko, W.; Stendel, Z.O.; Boryski, J.; Skierski, J.S.; Mazurek, A.P.; Grynkiewicz, G. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett., 2004, 203(1), 59-69. doi: 10.1016/j.canlet.2003.08.023 PMID: 14670618
- Gogler-Pigłowska, A.; Rusin, A.; Bochenek, D.; Krawczyk, Z. Aneugenic effects of the genistein glycosidic derivative substituted at C7 with the unsaturated disaccharide. Cell Biol. Toxicol., 2012, 28(5), 331-342. doi: 10.1007/s10565-012-9227-9 PMID: 22843076
- Gruca, A.; Krawczyk, Z.; Szeja, W.; Grynkiewicz, G.; Rusin, A. Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells. Molecules, 2014, 19(11), 18558-18573. doi: 10.3390/molecules191118558 PMID: 25401399
- Szeja, W.; Grynkiewicz, G.; Bieg, T.; Swierk, P.; Byczek, A.; Papaj, K.; Kitel, R.; Rusin, A. Synthesis and cytotoxicity of 2,3-enopyranosyl C-linked conjugates of genistein. Molecules, 2014, 19(6), 7072-7093. doi: 10.3390/molecules19067072 PMID: 24886936
- Liu, L.; Ahn, K.S.; Shanmugam, M.K.; Wang, H.; Shen, H.; Arfuso, F.; Chinnathambi, A.; Alharbi, S.A.; Chang, Y.; Sethi, G.; Tang, F.R. Oleuropein induces apoptosis via abrogating NF‐κB activation cascade in estrogen receptornegative breast cancer cells. J. Cell. Biochem., 2019, 120(3), 4504-4513. doi: 10.1002/jcb.27738 PMID: 30260018
- Garcia-Estevez, L.; Moreno-Bueno, G. Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res., 2019, 21(1), 35. doi: 10.1186/s13058-019-1124-1 PMID: 30823902
- Allred, C.D.; Ju, Y.H.; Allred, K.F.; Chang, J.; Helferich, W.G. Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 2001, 22(10), 1667-1673. doi: 10.1093/carcin/22.10.1667 PMID: 11577007
- Allred, C.D.; Allred, K.F.; Ju, Y.H.; Virant, S.M.; Helferich, W.G. Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer Res., 2001, 61(13), 5045-5050. PMID: 11431339
- Hamdy, S.M.; Latif, A.K.M.A.; Drees, E.A.; Soliman, S.M. Prevention of rat breast cancer by genistin and selenium. Toxicol. Ind. Health, 2012, 28(8), 746-757. doi: 10.1177/0748233711422732 PMID: 22089659
- Rigano, D.; Cardile, V.; Formisano, C.; Maldini, M.T.; Piacente, S.; Bevilacqua, J.; Russo, A.; Senatore, F. Genista sessilifolia DC. and Genista tinctoria L. inhibit UV light and nitric oxide-induced DNA damage and human melanoma cell growth. Chem. Biol. Interact., 2009, 180(2), 211-219. doi: 10.1016/j.cbi.2009.02.010 PMID: 19497419
- Ozaslan, M.; Karagoz, I.D.; Kilic, I.H.; Guldur, M.E. Ehrlich ascites carcinoma. Afr. J. Biotechnol., 2011, 10(13), 2375-2378.
- Raghavarao, T.; Nagavani, V. Anticancer potential of Nymphaea nouchali Brum flowers against Ehrlich ascites carcinoma cell lines. J. Cancer Res. Ther., 2023, 19(S8), 241. doi: 10.4103/jcrt.JCRT_160_18 PMID: 37148001
- Antosiak, A.; Milowska, K.; Maczynska, K.; Rozalska, S.; Gabryelak, T. Cytotoxic activity of genistein-8-C-glucoside form Lupinus luteus L. and genistein against human SK-OV-3 ovarian carcinoma cell line. Med. Chem. Res., 2017, 26(1), 64-73. doi: 10.1007/s00044-016-1725-5 PMID: 28111515
- Li, Y.; Mi, C. Proliferation inhibition and apoptosis onset in human ovarian carcinoma cell line SKOV3 induced by Genistein. Chin. J. Cancer, 2003, 22(6), 586-591. PMID: 12948406
- Popiołkiewicz, J.; Polkowski, K.; Skierski, J.S.; Mazurek, A.P. In vitro toxicity evaluation in the development of new anticancer drugsgenistein glycosides. Cancer Lett., 2005, 229(1), 67-75. doi: 10.1016/j.canlet.2005.01.014 PMID: 16157220
- Rusin, A.; Krawczyk, Z.; Grynkiewicz, G.; Gogler, A.; Puchałka, Z.J.; Szeja, W. Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim. Pol., 2010, 57(1), 23-34. doi: 10.18388/abp.2010_2368 PMID: 20216977
- Zaczek, A.; Brandt, B.; Bielawski, K.P. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol. Histopathol., 2005, 20(3), 1005-1015. PMID: 15944951
- Roskoski, R., Jr The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun., 2004, 319(1), 1-11. doi: 10.1016/j.bbrc.2004.04.150 PMID: 15158434
- Ono, M.; Kuwano, M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin. Cancer Res., 2006, 12(24), 7242-7251. doi: 10.1158/1078-0432.CCR-06-0646 PMID: 17189395
Supplementary files
