The Inhibitory Effects of Propofol on Colorectal Cancer Progression through the NF-κB/HIF-1α Signaling Pathway
- Autores: Yao L.1, Zhai W.1, Jiang Z.2, He R.2, Xie W.1, Li Y.3, Hu Y.1
-
Afiliações:
- Department of Anesthesiology, Affiliated People's Hospital, Hangzhou Medical College
- Department of Anesthesiology, Shaoxing Peoples Hospital
- Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College
- Edição: Volume 24, Nº 11 (2024)
- Páginas: 878-888
- Seção: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643762
- DOI: https://doi.org/10.2174/0118715206283884240326170501
- ID: 643762
Citar
Texto integral
Resumo
Background and Objective:Colorectal cancer (CRC) is a neoplastic disease that gradually develops due to genetic variations and epigenetic changes. Surgical excision is the first-line treatment for CRC. Accumulating evidence has shown that total intravenous anesthesia has beneficial effects for CRC patients as it decreases the probability of tumor recurrence and metastasis. Propofol is one of the most frequently used intravenous anesthetics in clinical practice. However, it remains unknown whether it can reduce recurrence and metastasis after surgery in cancer patients.
Methods:CRC cell lines (HCT116 and SW480) were cultured in vitro, and different concentrations of propofol were added to the cell culture medium. The proliferation effect of propofol on CRC cell lines was evaluated by CCK-8 assay. The effect of propofol on the migration and invasion of CRC cells was evaluated by scratch healing and Transwell experiments. The inhibitory effects of propofol on NF-κB and HIF-1α expressions in CRC cell lines were determined by Western blotting and immunofluorescence assays to further clarify the regulatory effects of propofol on NF-κB and HIF-1α.
Results:Compared to the control, propofol significantly inhibited the proliferation, migration, and invasion abilities of CRC cells (HCT116 and SW480) (p < 0.0001). The expression levels of NF-κB and HIF-1α gradually decreased with increasing propofol concentration in both cell lines. After activation and inhibition of NF-κB, the expression of HIF-1α changed. Further studies showed that propofol inhibited LPS-activated NF-κB-induced expression of HIF-1α, similar to the NF-κB inhibitor Bay17083 (p < 0.0001).
Conclusion:In vitro, propofol inhibited the proliferation, migration, and invasion of CRC cells (HCT116 and SW480) in a dose-dependent manner, possibly by participating in the regulation of the NF-κB/HIF-1α signaling pathway.
Palavras-chave
Sobre autores
Liuxu Yao
Department of Anesthesiology, Affiliated People's Hospital, Hangzhou Medical College
Email: info@benthamscience.net
Wen Zhai
Department of Anesthesiology, Affiliated People's Hospital, Hangzhou Medical College
Email: info@benthamscience.net
Zongming Jiang
Department of Anesthesiology, Shaoxing Peoples Hospital
Email: info@benthamscience.net
Rui He
Department of Anesthesiology, Shaoxing Peoples Hospital
Email: info@benthamscience.net
Weiying Xie
Department of Anesthesiology, Affiliated People's Hospital, Hangzhou Medical College
Email: info@benthamscience.net
Yuhong Li
Department of Anesthesiology, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren College
Autor responsável pela correspondência
Email: info@benthamscience.net
Yiyang Hu
Department of Anesthesiology, Affiliated People's Hospital, Hangzhou Medical College
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Zygulska, A.L.; Pierzchalski, P. Novel diagnostic biomarkers in colorectal cancer. Int. J. Mol. Sci., 2022, 23(2), 852. doi: 10.3390/ijms23020852 PMID: 35055034
- Shin, A.E.; Giancotti, F.G.; Rustgi, A.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci., 2023, 44(4), 222-236. doi: 10.1016/j.tips.2023.01.003 PMID: 36828759
- Galema, H.A.; Meijer, R.P.J.; Lauwerends, L.J.; Verhoef, C.; Burggraaf, J.; Vahrmeijer, A.L.; Hutteman, M.; Keereweer, S.; Hilling, D.E. Fluorescence-guided surgery in colorectal cancer; A review on clinical results and future perspectives. Eur. J. Surg. Oncol., 2022, 48(4), 810-821. doi: 10.1016/j.ejso.2021.10.005 PMID: 34657780
- Leowattana, W.; Leowattana, P.; Leowattana, T. Systemic treatment for metastatic colorectal cancer. World J. Gastroenterol., 2023, 29(10), 1569-1588. doi: 10.3748/wjg.v29.i10.1569 PMID: 36970592
- Faroni, E.; Sabattini, S.; Lenzi, J.; Guerra, D.; Comazzi, S.; Aresu, L.; Mazzanti, A.; Zanardi, S.; Cola, V.; Lotito, E.; Marconato, L. Sleeping beauty: Anesthesia may promote relapse in dogs with diffuse large B-Cell lymphoma in complete remission after Chemo-Immunotherapy. Front. Vet. Sci., 2021, 8, 760603. doi: 10.3389/fvets.2021.760603 PMID: 34881319
- Cascella, M.; Cuomo, A.; Bifulco, F.; Perri, F.; Carbone, F.; Aprea, M.; Forte, C.A.; Fiore, M. Could the perioperative use of opioids influence cancer outcomes after surgery? A scoping review protocol. BMJ Open, 2022, 12(3), e054520. doi: 10.1136/bmjopen-2021-054520 PMID: 35292495
- Perry, N.J.S.; Buggy, D.; Ma, D. Can anesthesia influence cancer outcomes after surgery? JAMA Surg., 2019, 154(4), 279-280. doi: 10.1001/jamasurg.2018.4619 PMID: 30649136
- Walsh, C.T. Propofol: Milk of amnesia. Cell, 2018, 175(1), 10-13. doi: 10.1016/j.cell.2018.08.031 PMID: 30217361
- Xu, Y.; Pan, S.; Jiang, W.; Xue, F.; Zhu, X. Effects of propofol on the development of cancer in humans. Cell Prolif., 2020, 53(8), e12867. doi: 10.1111/cpr.12867 PMID: 32596964
- Ramirez, M.F.; Gan, T.J. Total intravenous anesthesia versus inhalation anesthesia: How do outcomes compare? Curr. Opin. Anaesthesiol., 2023, 36(4), 399-406. doi: 10.1097/ACO.0000000000001274 PMID: 37338939
- Chang, C.Y.; Wu, M.Y.; Chien, Y.J.; Su, I.M.; Wang, S.C.; Kao, M.C. Anesthesia and long-term oncological outcomes: A systematic review and meta-analysis. Anesth. Analg., 2021, 132(3), 623-634. doi: 10.1213/ANE.0000000000005237 PMID: 33105278
- Fang, P.; Zhou, J.; Xia, Z.; Lu, Y.; Liu, X. Effects of propofol versus sevoflurane on postoperative breast cancer prognosis: A narrative review. Front. Oncol., 2022, 11, 793093. doi: 10.3389/fonc.2021.793093 PMID: 35127500
- Zhao, R.; Xu, X.; Sun, L.; Zhang, G. Long-term effect of anesthesia choice on patients with hepatocellular carcinoma undergoing open liver resection. Front. Oncol., 2023, 12, 960299. doi: 10.3389/fonc.2022.960299 PMID: 36713494
- Lu, X.; Yu, Y.; Wang, Y.; Lyu, Y. Effect of propofol or etomidate as general anaesthesia induction on gastric cancer: A retrospective cohort study with 10 years follow-up. Cancer Manag. Res., 2022, 14, 2399-2407. doi: 10.2147/CMAR.S361052 PMID: 35967754
- Zhou, X.; Shao, Y.; Li, S.; Zhang, S.; Ding, C.; Zhuang, L.; Sun, J. An intravenous anesthetic drug-propofol, influences the biological characteristics of malignant tumors and reshapes the tumor microenvironment: A narrative literature review. Front. Pharmacol., 2022, 13, 1057571. doi: 10.3389/fphar.2022.1057571 PMID: 36506511
- Wang, R.; Li, S.; Hou, Q.; Zhang, B.; Chu, H.; Hou, Y.; Ni, C.; Sun, L.; Ran, Y.; Zheng, H. Propofol inhibits colon cancer cell stemness and epithelial-mesenchymal transition by regulating SIRT1, Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways. Discover Oncology, 2023, 14(1), 137. doi: 10.1007/s12672-023-00734-y PMID: 37490168
- Capece, D.; Verzella, D.; Flati, I.; Arboretto, P.; Cornice, J.; Franzoso, G. NF-κB: Blending metabolism, immunity, and inflammation. Trends Immunol., 2022, 43(9), 757-775. doi: 10.1016/j.it.2022.07.004 PMID: 35965153
- ODonnell, A.; Pepper, C.; Mitchell, S.; Pepper, A. NF-kB and the CLL microenvironment. Front. Oncol., 2023, 13, 1169397. doi: 10.3389/fonc.2023.1169397 PMID: 37064123
- Kaltschmidt, B.; Witte, K.E.; Greiner, J.F.W.; Weissinger, F.; Kaltschmidt, C. Targeting NF-κB signaling in cancer stem cells: A narrative review. Biomedicines, 2022, 10(2), 261. doi: 10.3390/biomedicines10020261 PMID: 35203471
- Rong, D.; Sun, G.; Zheng, Z.; Liu, L.; Chen, X.; Wu, F.; Gu, Y.; Dai, Y.; Zhong, W.; Hao, X.; Zhang, C.; Pan, X.; Tang, J.; Tang, W.; Wang, X. MGP promotes CD8 + T cell exhaustion by activating the NF-κB pathway leading to liver metastasis of colorectal cancer. Int. J. Biol. Sci., 2022, 18(6), 2345-2361. doi: 10.7150/ijbs.70137 PMID: 35414780
- Wang, Z.; Sun, X.; Feng, Y.; Wang, Y.; Zhang, L.; Wang, Y.; Fang, Z.; Azami, N.L.B.; Sun, M.; Li, Q. Dihydromyricetin reverses MRP2-induced multidrug resistance by preventing NF-κB-Nrf2 signaling in colorectal cancer cell. Phytomedicine, 2021, 82, 153414. doi: 10.1016/j.phymed.2020.153414 PMID: 33461143
- Xin, Y.; Zhao, L.; Peng, R. HIF-1 signaling: An emerging mechanism for mitochondrial dynamics. J. Physiol. Biochem., 2023, 79(3), 489-500. doi: 10.1007/s13105-023-00966-0 PMID: 37178248
- Vatte, S.; Ugale, R. HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke. Neurochem. Int., 2023, 170, 105605. doi: 10.1016/j.neuint.2023.105605 PMID: 37657765
- Negri, A.L. Role of prolyl hydroxylase/HIF-1 signaling in vascular calcification. Clin. Kidney J., 2023, 16(2), 205-209. doi: 10.1093/ckj/sfac224 PMID: 36755843
- Sharma, D.; Khan, H.; Kumar, A.; Grewal, A.K.; Dua, K.; Singh, T.G. Pharmacological modulation of HIF-1 in the treatment of neuropsychiatric disorders. J. Neural Transm. , 2023, 130(12), 1523-1535. doi: 10.1007/s00702-023-02698-3 PMID: 37740098
- Korbecki, J.; Simińska, D.; Dobrowolska, G.M.; Listos, J.; Gutowska, I.; Chlubek, D.; Bosiacka, B.I. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms. Int. J. Mol. Sci., 2021, 22(19), 10701. doi: 10.3390/ijms221910701 PMID: 34639040
- Gupta, S.; May, F.P.; Kupfer, S.S.; Murphy, C.C. Birth Cohort Colorectal Cancer (CRC): Implications for research and practice. Clin. Gastroenterol. Hepatol., 2024, 22(3), 455-469.e7. doi: 10.1016/j.cgh.2023.11.040 PMID: 38081492
- Kasprzak, A. Prognostic biomarkers of cell proliferation in colorectal cancer (CRC): From immunohistochemistry to molecular biology techniques. Cancers , 2023, 15(18), 4570. doi: 10.3390/cancers15184570 PMID: 37760539
- Yan, R.; Song, T.; Wang, W.; Tian, J.; Ma, X. Immunomodulatory roles of propofol and sevoflurane in murine models of breast cancer. Immunopharmacol. Immunotoxicol., 2023, 45(2), 153-159. doi: 10.1080/08923973.2022.2122501 PMID: 36073191
- Wang, J.; Cheng, C.; Lu, Y.; Ding, X.; Zhu, M.; Miao, C.; Chen, J. Novel findings of anti-cancer property of propofol. Anticancer. Agents Med. Chem., 2018, 18(2), 156-165. doi: 10.2174/1871520617666170912120327 PMID: 28901262
- Zhan, K.; Song, X.; Zhang, Q.; Yang, J.; Lu, S. Propofol-induced miR-493-3p inhibits growth and invasion of gastric cancer through suppression of DKK1-mediated Wnt/β-Catenin signaling activation. Dis. Markers, 2023, 2023, 1-8. doi: 10.1155/2023/7698706 PMID: 36762306
- Wu, J.; Zhou, F.; Lai, S.; Wang, W.; Wu, T.; Liu, Y.; Yang, L. Propofol inhibits biological function of hepatocellular carcinoma cells through LINC00475-mediated sonic hedgehog pathway. Pharmacology, 2023, 108(2), 127-137. doi: 10.1159/000527200 PMID: 36516819
- Gao, Y.; Zhou, Y.; Wang, C.; Sample, K.; Yu, X.; Ben-David, Y. Propofol mediates pancreatic cancer cell activity through the repression of ADAM8 via SP1. Oncol. Rep., 2021, 46(6), 249. doi: 10.3892/or.2021.8200 PMID: 34617574
- Zhou, R.; Konishi, Y.; Zhang, A.; Nishiwaki, K. Propofol elicits apoptosis and attenuates cell growth in esophageal cancer cell lines. Nagoya J. Med. Sci., 2023, 85(3), 579-591. doi: 10.18999/nagjms.85.3.579 PMID: 37829490
- Wang, Y.; Xu, B.; Zhou, J.; Wu, X. Propofol activates AMPK to inhibit the growth of HepG2 cells in vitro and hepatocarcinogenesis in xenograft mouse tumor models by inducing autophagy. J. Gastrointest. Oncol., 2020, 11(6), 1322-1332. doi: 10.21037/jgo-20-472 PMID: 33457004
- Xu, W.; He, Y.; Wang, Y.; Li, X.; Young, J.; Ioannidis, J.P.A.; Dunlop, M.G.; Theodoratou, E. Risk factors and risk prediction models for colorectal cancer metastasis and recurrence: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med., 2020, 18(1), 172. doi: 10.1186/s12916-020-01618-6 PMID: 32586325
- Zhang, X.; He, C.; Xiang, G. Engineering nanomedicines to inhibit hypoxia-inducible Factor-1 for cancer therapy. Cancer Lett., 2022, 530, 110-127. doi: 10.1016/j.canlet.2022.01.012 PMID: 35041892
- Li, Z.; Wei, R.; Yao, S.; Meng, F.; Kong, L. HIF-1A as a prognostic biomarker related to invasion, migration and immunosuppression of cervical cancer. Heliyon, 2024, 10(2), e24664. doi: 10.1016/j.heliyon.2024.e24664 PMID: 38298716
- Xu, Y.; Kuai, R.; Chu, Y.M.; Zhou, L.; Zhang, H.Q.; Li, J. Hypoxia facilitates the proliferation of colorectal cancer cells by inducing cancer-associated fibroblast-derived IL6. Neoplasma, 2021, 68(5), 1015-1022. doi: 10.4149/neo_2021_210308N296 PMID: 34374296
- Bian, Y.; Yin, G.; Wang, G.; Liu, T.; Liang, L.; Yang, X. Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells. Cell Biol. Toxicol., 2023, 39(5), 1957-1978. doi: 10.1007/s10565-021-09681-2 PMID: 35083610
- Zhang, Y.; Chai, N.; Wei, Z.; Li, Z.; Zhang, L.; Zhang, M.; Ren, J.; Xu, R.; Pang, X.; Zhang, B.; Tang, Q.; Sui, H. YYFZBJS inhibits colorectal tumorigenesis by enhancing Tregs-induced immunosuppression through HIF-1α mediated hypoxia in vivo and in vitro. Phytomedicine, 2022, 98, 153917. doi: 10.1016/j.phymed.2021.153917 PMID: 35093671
- Aqdas, M.; Sung, M.H. NF-κB dynamics in the language of immune cells. Trends Immunol., 2023, 44(1), 32-43. doi: 10.1016/j.it.2022.11.005 PMID: 36473794
- Kordahi, M.C.; Stanaway, I.B.; Avril, M.; Chac, D.; Blanc, M.P.; Ross, B.; Diener, C.; Jain, S.; McCleary, P.; Parker, A.; Friedman, V.; Huang, J.; Burke, W.; Gibbons, S.M.; Willis, A.D.; Darveau, R.P.; Grady, W.M.; Ko, C.W.; DePaolo, R.W. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer. Cell Host Microbe, 2021, 29(10), 1589-1598.e6. doi: 10.1016/j.chom.2021.08.013 PMID: 34536346
- Deka, K.; Li, Y. Transcriptional regulation during aberrant activation of NF-κB signalling in cancer. Cells, 2023, 12(5), 788. doi: 10.3390/cells12050788 PMID: 36899924
- Rastogi, S.; Aldosary, S.; Saeedan, A.S.; Ansari, M.N.; Singh, M.; Kaithwas, G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front. Pharmacol., 2023, 14, 1108915. doi: 10.3389/fphar.2023.1108915 PMID: 36891273
- Li, Z.L.; Ji, J.L.; Wen, Y.; Cao, J.Y.; Kharbuja, N.; Ni, W.J.; Yin, D.; Feng, S.T.; Liu, H.; Lv, L.L.; Liu, B.C.; Wang, B. HIF-1α is transcriptionally regulated by NF-κB in acute kidney injury. Am. J. Physiol. Renal Physiol., 2021, 321(2), F225-F235. doi: 10.1152/ajprenal.00119.2021 PMID: 34229478
- Liu, X.; Gao, Z.; Wang, X.; Shen, Y. Parthenolide targets NF-κB (P50) to inhibit HIF-1α-mediated metabolic reprogramming of HCC. Aging , 2022, 14(20), 8346-8356. doi: 10.18632/aging.204339 PMID: 36260873
- Huang, X.; Teng, Y.; Yang, H.; Ma, J. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-κB signal. Braz. J. Med. Biol. Res., 2016, 49(12), e5717. doi: 10.1590/1414-431x20165717 PMID: 27982283
- Ling, Q.; Wu, S.; Liao, X.; Liu, C.; Chen, Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer, 2022, 22(1), 765. doi: 10.1186/s12885-022-09848-y PMID: 35836137
- Reiner, G.N.; Perillo, M.A.; García, D.A. Effects of propofol and other GABAergic phenols on membrane molecular organization. Colloids Surf. B Biointerfaces, 2013, 101, 61-67. doi: 10.1016/j.colsurfb.2012.06.004 PMID: 22796773
- Irifune, M.; Takarada, T.; Shimizu, Y.; Endo, C.; Katayama, S.; Dohi, T.; Kawahara, M. Propofol-induced anesthesia in mice is mediated by gamma-aminobutyric acid-A and excitatory amino acid receptors. Anesth. Analg., 2003, 97(2), 424-429. doi: 10.1213/01.ANE.0000059742.62646.40 PMID: 12873929
- Ribeiro, M.P.C.; Custódio, J.B.A.; Santos, A.E. Ionotropic glutamate receptor antagonists and cancer therapy: Time to think out of the box? Cancer Chemother. Pharmacol., 2017, 79(2), 219-225. doi: 10.1007/s00280-016-3129-0 PMID: 27586965
- Zhang, D.; Li, X.; Yao, Z.; Wei, C.; Ning, N.; Li, J. GABAergic signaling facilitates breast cancer metastasis by promoting ERK1/2-dependent phosphorylation. Cancer Lett., 2014, 348(1-2), 100-108. doi: 10.1016/j.canlet.2014.03.006 PMID: 24657659
- Zhang, Q.; Wang, L.; Chen, B.; Zhuo, Q.; Bao, C.; Lin, L. Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice. Int. Immunopharmacol., 2017, 51, 158-164. doi: 10.1016/j.intimp.2017.08.015 PMID: 28843179
- Yang, N.; Liang, Y.; Yang, P.; Ji, F. Propofol suppresses LPS-induced nuclear accumulation of HIF-1α and tumor aggressiveness in non-small cell lung cancer. Oncol. Rep., 2017, 37(5), 2611-2619. doi: 10.3892/or.2017.5514 PMID: 28426124
Arquivos suplementares
