Gastrodin Attenuates Colitis and Prevents Tumorigenesis in Mice by Interrupting TLR4/MD2/NF-κB Signaling Transduction


Cite item

Full Text

Abstract

Introduction::Chronic inflammation is one of the causative factors for tumorigenesis. Gastrodin is a main active ingredient isolated from Gastrodia elata Blume, a famous medicinal herb with a long edible history.

Aim::This study aimed to explore the effects of gastrodin on colitis-associated carcinogenesis (CRC) in mice and to elucidate its potential molecular mechanisms.

Methods::Balb/c mice were induced with azoxymethane (AOM) and dextran sulfate sodium (DSS) for 12 weeks. Gastrodin (50 mg/kg) was administered via oral gavage three times per week until the end of the experiment. Disease indexes, including body weight, bloody diarrhea, colon length, histopathological score, and tumor size, were measured. Tumor cell proliferation was evaluated by BrdU incorporation assay and tumor cell cytotoxicity was assessed by cell counting kit (CCK-8). The expression levels of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling molecules, NF-κB luciferase, and pro-inflammatory cytokines were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), immunoblotting, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), or reporter gene assays. The binding affinity between gastrodin and myeloid differentiation protein-2 (MD2) was analyzed by molecular docking and cellular thermal shift assay (CETSA).

Results::Gastrodin administration was demonstrated to mitigate various CRC-related symptoms in mice, including weight loss, diarrhea, and tissue abnormalities. Notably, gastrodin suppressed tumor cell growth during colitis- associated tumorigenesis, resulting in fewer and smaller adenomas in the colon. Unlike irinotecan, a broadspectrum antitumor drug, gastrodin did not exhibit apparent cytotoxicity in various colorectal adenocarcinoma cell lines. Additionally, gastrodin downregulated TLR4/NF-κB signaling molecules and pro-inflammatory mediators in mice and macrophages. Molecular docking and CETSA experiments suggested that gastrodin binds to the MD2 protein, potentially interfering with the recognition of lipopolysaccharide (LPS) by TLR4, leading to NF-κB pathway inhibition.

Conclusion::This study provides evidence for the first time that gastrodin attenuated colitis and prevented colitisrelated carcinogenesis in mice, at least partially, by diminishing tumor-promoting cytokines through the interruption of TLR4/MD2/NF-κB signaling transduction.

About the authors

Zhilun Yu

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Email: info@benthamscience.net

Bei Yue

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Email: info@benthamscience.net

Ruiyang Gao

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Email: info@benthamscience.net

Beibei Zhang

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Email: info@benthamscience.net

Xiaolong Geng

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Email: info@benthamscience.net

Cheng Lv

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Email: info@benthamscience.net

Hao Wang

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Email: info@benthamscience.net

Ziyi Wang

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Email: info@benthamscience.net

Zhengtao Wang

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Author for correspondence.
Email: info@benthamscience.net

Wei Dou

, The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Sperling, D.; Jandorf, L.; Sriphanlop, P.; Martinez, C.; Brown, K.L.; Soper, E.R.; Hiraki, S.; Itzkowitz, S.H. Co-Care: A registry for individuals at increased risk for colorectal cancer. J. Registry Manag., 2017, 44(1), 11-16. PMID: 29595940
  3. Waldner, M.J.; Neurath, M.F. Mechanisms of immune signaling in colitis-associated cancer. Cell. Mol. Gastroenterol. Hepatol., 2015, 1(1), 6-16. doi: 10.1016/j.jcmgh.2014.11.006 PMID: 28247866
  4. Amini-Khoei, H.; Momeny, M.; Abdollahi, A.; Dehpour, A.R.; Amiri, S.; Haj-Mirzaian, A.; Tavangar, S.M.; Ghaffari, S.H.; Rahimian, R.; Mehr, S.E. Tropisetron suppresses colitis-associated cancer in a mouse model in the remission stage. Int. Immunopharmacol., 2016, 36, 9-16. doi: 10.1016/j.intimp.2016.04.014 PMID: 27104313
  5. Tammali, R.; Reddy, A.B.M.; Ramana, K.V.; Petrash, J.M.; Srivastava, S.K. Aldose reductase deficiency in mice prevents azoxymethane-induced colonic preneoplastic aberrant crypt foci formation. Carcinogenesis, 2009, 30(5), 799-807. doi: 10.1093/carcin/bgn246 PMID: 19028703
  6. Feng, Y.; Wang, J.; Tan, D.; Cheng, P.; Wu, A. Relationship between circulating inflammatory factors and glioma risk and prognosis: A meta-analysis. Cancer Med., 2019, 8(17), 7454-7468. doi: 10.1002/cam4.2585 PMID: 31599129
  7. Zhang, Y.; Pu, W.; Bousquenaud, M.; Cattin, S.; Zaric, J.; Sun, L.; Rüegg, C. Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis. Front. Oncol., 2021, 10, 564674. doi: 10.3389/fonc.2020.564674 PMID: 33489875
  8. Gaitantzi, H.; Karch, J.; Germann, L.; Cai, C.; Rausch, V.; Birgin, E.; Rahbari, N.; Seitz, T.; Hellerbrand, C.; König, C.; Augustin, H.G.; Mogler, C.; de la Torre, C.; Gretz, N.; Itzel, T.; Teufel, A.; Ebert, M.P.A.; Breitkopf-Heinlein, K. BMP-9 modulates the hepatic responses to LPS. Cells, 2020, 9(3), 617. doi: 10.3390/cells9030617 PMID: 32143367
  9. Martyanov, A.A.; Maiorov, A.S.; Filkova, A.A.; Ryabykh, A.A.; Svidelskaya, G.S.; Artemenko, E.O.; Gambaryan, S.P.; Panteleev, M.A.; Sveshnikova, A.N. Effects of bacterial lipopolysaccharides on platelet function: Inhibition of weak platelet activation. Sci. Rep., 2020, 10(1), 12296. doi: 10.1038/s41598-020-69173-x PMID: 32704001
  10. Zhao, J.; Zhang, X.; Dong, L.; Wen, Y.; Zheng, X.; Zhang, C.; Chen, R.; Zhang, Y.; Li, Y.; He, T.; Zhu, X.; Li, L. Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. Br. J. Pharmacol., 2015, 172(20), 5009-5023. doi: 10.1111/bph.13270 PMID: 26234631
  11. Deguchi, A.; Tomita, T.; Ohto, U.; Takemura, K.; Kitao, A.; Akashi-Takamura, S.; Miyake, K.; Maru, Y. Eritoran inhibits S100A8-mediated TLR4/MD-2 activation and tumor growth by changing the immune microenvironment. Oncogene, 2016, 35(11), 1445-1456. doi: 10.1038/onc.2015.211 PMID: 26165843
  12. Shen, Y.; Zhang, X.; Wang, Y.; Cao, F.; Uzan, G.; Peng, B.; Zhang, D. Celastrol targets IRAKs to block Toll-like receptor 4-mediated nuclear factor-κB activation. J. Integr. Med., 2016, 14(3), 203-208. doi: 10.1016/S2095-4964(16)60257-1 PMID: 27181127
  13. Rafa, H.; Benkhelifa, S. AitYounes, S.; Saoula, H.; Belhadef, S.; Belkhelfa, M.; Boukercha, A.; Toumi, R.; Soufli, I.; Moralès, O.; de Launoit, Y.; Mahfouf, H.; Nakmouche, M.; Delhem, N.; Touil-Boukoffa, C. All-trans retinoic acid modulates TLR4/NF- κ B signaling pathway targeting TNF- α and nitric oxide synthase 2 expression in colonic mucosa during ulcerative colitis and colitis associated cancer. Mediators Inflamm., 2017, 2017, 1-16. doi: 10.1155/2017/7353252 PMID: 28408791
  14. Zhang, R.; Zhao, J.; Xu, J.; Jiao, D.X.; Wang, J.; Gong, Z.Q.; Jia, J.H. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway. Oncol. Lett., 2017, 14(4), 4305-4310. doi: 10.3892/ol.2017.6669 PMID: 28943944
  15. Chen, C.Y.; Kao, C.L.; Liu, C.M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int. J. Mol. Sci., 2018, 19(9), 2729. doi: 10.3390/ijms19092729 PMID: 30213077
  16. Zhao, S.; Li, N.; Zhen, Y.; Ge, M.; Li, Y.; Yu, B.; He, H.; Shao, R. Protective effect of gastrodin on bile duct ligation-induced hepatic fibrosis in rats. Food Chem. Toxicol., 2015, 86, 202-207. doi: 10.1016/j.fct.2015.10.010 PMID: 26498411
  17. Xi, Z.; Qiao, Y.; Wang, J.; Su, H.; Bao, Z.; Li, H.; Liao, X.; Zhong, X. Retracted: gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103. J. Cell. Mol. Med., 2020, 24(2), 1451-1459. doi: 10.1111/jcmm.14826 PMID: 31769187
  18. Cheng, J.; Fang, Z.Z.; Nagaoka, K.; Okamoto, M.; Qu, A.; Tanaka, N.; Kimura, S.; Gonzalez, F.J. Activation of intestinal human pregnane X receptor protects against azoxymethane/dextran sulfate sodium-induced colon cancer. J. Pharmacol. Exp. Ther., 2014, 351(3), 559-567. doi: 10.1124/jpet.114.215913 PMID: 25277138
  19. Di Martino, L.; Dave, M.; Menghini, P.; Xin, W.; Arseneau, K.O.; Pizarro, T.T.; Cominelli, F. Protective role for TWEAK/Fn14 in regulating acute intestinal inflammation and colitis-associated tumorigenesis. Cancer Res., 2016, 76(22), 6533-6542. doi: 10.1158/0008-5472.CAN-16-0400 PMID: 27634763
  20. Qu, L.L.; Yu, B.; Li, Z.; Jiang, W.X.; Jiang, J.D.; Kong, W.J. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother. Res., 2016, 30(3), 402-411. doi: 10.1002/ptr.5541 PMID: 26634892
  21. Zaki, M.H.; Boyd, K.L.; Vogel, P.; Kastan, M.B.; Lamkanfi, M.; Kanneganti, T.D. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity, 2010, 32(3), 379-391. doi: 10.1016/j.immuni.2010.03.003 PMID: 20303296
  22. Dou, W.; Zhang, J.; Zhang, E.; Sun, A.; Ding, L.; Chou, G.; Wang, Z.; Mani, S. Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-κB signaling pathway. J. Pharmacol. Exp. Ther., 2013, 345(3), 473-482. doi: 10.1124/jpet.112.201863 PMID: 23536316
  23. Luo, X.; Yu, Z.; Deng, C.; Zhang, J.; Ren, G.; Sun, A.; Mani, S.; Wang, Z.; Dou, W. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci. Rep., 2017, 7(1), 16374. doi: 10.1038/s41598-017-12562-6 PMID: 29180692
  24. Dou, W.; Zhang, J.; Li, H.; Kortagere, S.; Sun, K.; Ding, L.; Ren, G.; Wang, Z.; Mani, S. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway. J. Nutr. Biochem., 2014, 25(9), 923-933. doi: 10.1016/j.jnutbio.2014.04.006 PMID: 24913217
  25. Rehman, S.U.; Ali, T.; Alam, S.I.; Ullah, R.; Zeb, A.; Lee, K.W.; Rutten, B.P.F.; Kim, M.O. Ferulic acid rescues lps-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol. Neurobiol., 2019, 56(4), 2774-2790. doi: 10.1007/s12035-018-1280-9 PMID: 30058023
  26. Yuan, R.; Huang, L.; Du, L.J.; Feng, J.F.; Li, J.; Luo, Y.Y.; Xu, Q.M.; Yang, S.L.; Gao, H.; Feng, Y.L. Dihydrotanshinone exhibits an anti-inflammatory effect in vitro and in vivo through blocking TLR4 dimerization. Pharmacol. Res., 2019, 142, 102-114. doi: 10.1016/j.phrs.2019.02.017 PMID: 30794925
  27. Han, S.; Li, S.; Li, J.; He, J.; Wang, Q.Q.; Gao, X.; Yang, S.; Li, J.; Yuan, R.; Zhong, G.; Gao, H. Hederasaponin C inhibits LPS -induced acute kidney injury in mice by targeting TLR4 and regulating the PIP2/NF-κB/NLRP3 signaling pathway. Phytother. Res., 2023, 37(12), 5974-5990. doi: 10.1002/ptr.8014 PMID: 37778741
  28. Del Fabbro, S.; Calder, P.C.; Childs, C.E. Microbiota-independent immunological effects of non-digestible oligosaccharides in the context of inflammatory bowel diseases. Proc. Nutr. Soc., 2020, 79(4), 468-478. doi: 10.1017/S0029665120006953 PMID: 32345388
  29. Wei, C.; Wang, J.Y.; Xiong, F.; Wu, B.H.; Luo, M.H.; Yu, Z.C.; Liu, T.T.; Li, D.F.; Tang, Q.; Li, Y.X.; Zhang, D.G.; Xu, Z.L.; Jin, H.T.; Wang, L.S.; Yao, J. Curcumin ameliorates DSS induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol. Med. Rep., 2020, 23(1), 1. doi: 10.3892/mmr.2020.11672 PMID: 33179078
  30. Zhang, P.; Jiao, H.; Wang, C.; Lin, Y.; You, S. Chlorogenic acid ameliorates colitis and alters colonic microbiota in a mouse model of dextran sulfate sodium-induced colitis. Front. Physiol., 2019, 10, 325. doi: 10.3389/fphys.2019.00325 PMID: 30971953
  31. Ma, N.; Liu, Q.; Hou, L.; Wang, Y.; Liu, Z. MDSCs are involved in the protumorigenic potentials of GM-CSF in colitis-associated cancer. Int. J. Immunopathol. Pharmacol., 2017, 30(2), 152-162. doi: 10.1177/0394632017711055 PMID: 28534709
  32. Wang, W.; Li, J.; Ding, Z.; Li, Y.; Wang, J.; Chen, S.; Miao, J. Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J. Cell. Mol. Med., 2019, 23(9), 6454-6465. doi: 10.1111/jcmm.14539 PMID: 31293090
  33. Yang, H.L.; Yang, T.Y.; Gowrisankar, Y.V.; Liao, C.H.; Liao, J.W.; Huang, P.J.; Hseu, Y.C. Suppression of LPS-induced inflammation by chalcone flavokawain a through activation of Nrf2/ARE-mediated antioxidant genes and inhibition of ROS/NF κ B signaling pathways in primary splenocytes. Oxid. Med. Cell. Longev., 2020, 2020, 1-14. doi: 10.1155/2020/3476212 PMID: 32617135
  34. Li, Y.; Dong, M.; Wu, Z.; Huang, Y.; Qian, H.; Huang, C. Activity screening of the herb Caesalpinia sappan and an analysis of its antitumor effects. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-13. doi: 10.1155/2021/9939345 PMID: 34257693
  35. Sun, S.; Wang, Y.; Zhou, R.; Deng, Z.; Han, Y.; Han, X.; Tao, W.; Yang, Z.; Shi, C.; Hong, D.; Li, J.; Shi, D.; Zhang, Z. Targeting and regulating of an oncogene via nanovector delivery of microRNA using patient-derived xenografts. Theranostics, 2017, 7(3), 677-693. doi: 10.7150/thno.16357 PMID: 28255359
  36. Gao, H.; Sun, W.; Zhao, J.; Wu, X.; Lu, J.J.; Chen, X.; Xu, Q.; Khan, I.A.; Yang, S. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Sci. Rep., 2016, 6(1), 33720. doi: 10.1038/srep33720 PMID: 27666387
  37. Jeong, S.Y. Im, Y.; Youm, J.; Lee, H.K.; Im, S.Y. l-glutamine attenuates dss-induced colitis via induction of MAPK phosphatase-1. Nutrients, 2018, 10(3), 288. doi: 10.3390/nu10030288 PMID: 29494494
  38. Neurath, M.F. Animal models of inflammatory bowel diseases: Illuminating the pathogenesis of colitis, ileitis and cancer. Dig. Dis., 2012, 30, 91-94. doi: 10.1159/000341131 PMID: 23075875
  39. Zhang, Y.; Liang, X.; Bao, X.; Xiao, W.; Chen, G. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. Eur. J. Med. Chem., 2022, 235, 114291. doi: 10.1016/j.ejmech.2022.114291 PMID: 35307617
  40. Chandrasekaran, B.; Pal, D.; Kolluru, V.; Tyagi, A.; Baby, B.; Dahiya, N.R.; Youssef, K.; Alatassi, H.; Ankem, M.K.; Sharma, A.K.; Damodaran, C. The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models. Carcinogenesis, 2018, 39(12), 1537-1547. doi: 10.1093/carcin/bgy109 PMID: 30124785
  41. Liu, Y.; Zhao, J.; Zhao, Y.; Zong, S.; Tian, Y.; Chen, S.; Li, M.; Liu, H.; Zhang, Q.; Jing, X.; Sun, B.; Wang, H.; Sun, T.; Yang, C. Therapeutic effects of lentinan on inflammatory bowel disease and colitis-associated cancer. J. Cell. Mol. Med., 2019, 23(2), 750-760. doi: 10.1111/jcmm.13897 PMID: 30472806
  42. Masferrer, J.L.; Leahy, K.M.; Koki, A.T.; Zweifel, B.S.; Settle, S.L.; Woerner, B.M.; Edwards, D.A.; Flickinger, A.G.; Moore, R.J.; Seibert, K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res., 2000, 60(5), 1306-1311. From NLM. PMID: 10728691
  43. Wang, E.L.; Qian, Z.R.; Nakasono, M.; Tanahashi, T.; Yoshimoto, K.; Bando, Y.; Kudo, E.; Shimada, M.; Sano, T. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br. J. Cancer, 2010, 102(5), 908-915. doi: 10.1038/sj.bjc.6605558 PMID: 20145615
  44. Makkar, S.; Riehl, T.E.; Chen, B.; Yan, Y.; Alvarado, D.M.; Ciorba, M.A.; Stenson, W.F. Hyaluronic acid binding to TLR4 promotes proliferation and blocks apoptosis in colon cancer. Mol. Cancer Ther., 2019, 18(12), 2446-2456. doi: 10.1158/1535-7163.MCT-18-1225 PMID: 31484704
  45. Yoon, J.; Cho, S.J.; Ko, Y.S.; Park, J.; Shin, D.H.; Hwang, I.C.; Han, S.Y.; Nam, S.Y.; Kim, M.A.; Chang, M.S.; Lee, H.S.; Kim, W.H.; Lee, B.L. A synergistic interaction between transcription factors nuclear factor-κB and signal transducers and activators of transcription 3 promotes gastric cancer cell migration and invasion. BMC Gastroenterol., 2013, 13(1), 29. doi: 10.1186/1471-230X-13-29 PMID: 23402362
  46. Qiu, S.; Li, P.; Zhao, H.; Li, X. Maresin 1 alleviates dextran sulfate sodium-induced ulcerative colitis by regulating NRF2 and TLR4/NF-kB signaling pathway. Int. Immunopharmacol., 2020, 78, 106018. doi: 10.1016/j.intimp.2019.106018 PMID: 31780371
  47. Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch., 2005, 446(5), 475-482. doi: 10.1007/s00428-005-1264-9 PMID: 15856292
  48. Korneev, K.V.; Atretkhany, K.S.N.; Drutskaya, M.S.; Grivennikov, S.I.; Kuprash, D.V.; Nedospasov, S.A. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine, 2017, 89, 127-135. doi: 10.1016/j.cyto.2016.01.021 PMID: 26854213
  49. Zou, Y.; Qin, F.; Chen, J.; Meng, J.; Wei, L.; Wu, C.; Zhang, Q.; Wei, D.; Chen, X.; Wu, H.; Chen, X.; Dai, S. sTLR4/MD-2 complex inhibits colorectal cancer in vitro and in vivo by targeting LPS. Oncotarget, 2016, 7(32), 52032-52044. doi: 10.18632/oncotarget.10496 PMID: 27409669
  50. Wang, Y.; Shan, X.; Chen, G.; Jiang, L.; Wang, Z.; Fang, Q.; Liu, X.; Wang, J.; Zhang, Y.; Wu, W.; Liang, G. MD -2 as the target of a novel small molecule, L6H 21, in the attenuation of LPS -induced inflammatory response and sepsis. Br. J. Pharmacol., 2015, 172(17), 4391-4405. doi: 10.1111/bph.13221 PMID: 26076332

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers