Anti-Cancer Activity of Synthesized 5-Benzyl juglone on Selected Human Cancer Cell Lines
- Авторы: Wang C.1, Hu Y.1, Sun Y.1, Xiang S.1, Qian J.2, Liu Z.1, Ji Y.2, Cai C.3, Sun G.4, Cui J.2
-
Учреждения:
- School of Environmental Science and Engineering, Shanghai Jiaotong University
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University
- School of China-UK Low Carbon College, Shanghai Jiaotong University
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University
- Выпуск: Том 24, № 11 (2024)
- Страницы: 845-852
- Раздел: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643745
- DOI: https://doi.org/10.2174/1871520622666220926110858
- ID: 643745
Цитировать
Полный текст
Аннотация
Background:Cancer is a malignant disease that causes millions of deaths each year worldwide. As one of the cancer therapeutic strategies, chemotherapy is a means to destroy rapidly dividing cells. The main problem with cancer chemotherapy is the lack of selectivity of conventional chemotherapeutic drugs, leading to toxicity towards normal cells. Therefore, the discovery of anti-cancer agents with selectivity for fast-growing cancer cells is desirable.
Objective:In this study, we report the synthesis and identification of synthesized 5-benzyl juglone as a potential anticancer agent with selectivity toward certain cancer cell lines.
Methods:An efficient synthetic method for 5-benzyl juglone was established. The proliferation of cancer cell lines and a normal cell line treated by the target compound was studied using an MTT assay. In addition, the cell cycle arrest and apoptosis were determined by flow cytometry.
Results:Based on the Diels-Alder (D-A) reaction between 3,6-dimethoxy benzyne intermediate and furan, further acid-catalyzed intramolecular rearrangement, and CAN-mediated oxidation, a convenient synthesis of 5-benzyl juglone was achieved with high overall yield. The results from in vitro biological evaluation indicated that the juglone derivative exhibited potent antiproliferative activity against HCT-15 human colorectal cancer cells with an IC50 value of 12.27 µM. It exerted high inhibitory activity toward MCF-7 human breast cancer cells and, to a much lesser extent, to corresponding MCF-10A human breast epithelial normal cells with an IC50 ratio (IC50 in MCF-7 divided by IC50 in MCF-10A) of 0.62.
Conclusion:The mechanistic investigations indicated that 5-benzyl juglone could induce cell cycle arrest at the G0/G1 phase and promote apoptosis of HCT-15 cells. The apoptotic effects possibly contributed to its higher selectivity toward cancer cells than normal cell lines.
Ключевые слова
Об авторах
Chenhao Wang
School of Environmental Science and Engineering, Shanghai Jiaotong University
Email: info@benthamscience.net
Yuqi Hu
School of Environmental Science and Engineering, Shanghai Jiaotong University
Email: info@benthamscience.net
Yang Sun
School of Environmental Science and Engineering, Shanghai Jiaotong University
Email: info@benthamscience.net
Shouyan Xiang
School of Environmental Science and Engineering, Shanghai Jiaotong University
Email: info@benthamscience.net
Jiajun Qian
School of Chemistry and Chemical Engineering, Shanghai Jiaotong University
Email: info@benthamscience.net
Zhizhuo Liu
School of Environmental Science and Engineering, Shanghai Jiaotong University
Email: info@benthamscience.net
Yufeng Ji
School of Chemistry and Chemical Engineering, Shanghai Jiaotong University
Email: info@benthamscience.net
Chenglin Cai
School of China-UK Low Carbon College, Shanghai Jiaotong University
Email: info@benthamscience.net
Gege Sun
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University
Email: info@benthamscience.net
Jiahua Cui
School of Chemistry and Chemical Engineering, Shanghai Jiaotong University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Medina, M.A.; Oza, G.; Sharma, A.; Arriaga, L.G.; Hernández Hernández, J.M.; Rotello, V.M.; Ramirez, J.T. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health, 2020, 17(6), 2078. doi: 10.3390/ijerph17062078 PMID: 32245065
- Ahmad, R.; Khan, M.A.; Srivastava, A.N.; Gupta, A.; Srivastava, A.; Jafri, T.R.; Siddiqui, Z.; Chaubey, S.; Khan, T.; Srivastava, A.K. Anticancer potential of dietary natural products: a comprehensive review. Anticancer. Agents Med. Chem., 2020, 20(2), 122-236. doi: 10.2174/1871520619666191015103712 PMID: 31749433
- Qian, J.; Cui, J.; Li, S.; Chen, J.; Jia, J. Anticancer natural products with collateral sensitivity: a review. Mini Rev. Med. Chem., 2021, 21(12), 1465-1486. doi: 10.2174/1389557521666210112141455 PMID: 33438535
- Zhou, Y.; Liu, Y.; Jiang, Y.; Liu, Z.; Yang, B.; Xiao, H. Studies on anti-tumor chemical constituents in exocarps of Juglans mandshurica. Chin. Tradit. Herb. Drugs, 2016, 47, 2979-2983.
- Cui, J.; Qian, J.; Chow, L.M.C.; Jia, J. Natural products targeting cancer stem cells: a revisit. Curr. Med. Chem., 2021, 28(33), 6773-6804. doi: 10.2174/0929867328666210405111913 PMID: 33820513
- Aithal, K.B.; Kumar, S.; Rao, B.N.; Udupa, N.; Rao, S.B.S. Tumor growth inhibitory effect of juglone and its radiation sensitizing potential: In vivo and in vitro studies. Integr. Cancer Ther., 2012, 11(1), 68-80. doi: 10.1177/1534735411403477 PMID: 21498474
- Aithal, K.B.; Kumar, S.M.R.; Rao, N.B.; Udupa, N.; Rao, S.B.S. Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biol. Int., 2009, 33(10), 1039-1049. doi: 10.1016/j.cellbi.2009.06.018 PMID: 19555768
- Karki, N.; Aggarwal, S.; Laine, R.A.; Greenway, F.; Losso, J.N. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. Chem. Biol. Interact., 2020, 327, 109142. doi: 10.1016/j.cbi.2020.109142
- Paulsen, M.T.; Ljungman, M. The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts. Toxicol. Appl. Pharmacol., 2005, 209(1), 1-9. doi: 10.1016/j.taap.2005.03.005 PMID: 16271620
- Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Tsatsakis, A.M.; Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: Substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther., 2010, 126(1), 9-20. doi: 10.1016/j.pharmthera.2010.01.009 PMID: 20153368
- Orlikova, B.; Menezes, J.C.; Ji, S.; Kamat, S.P.; Cavaleiro, J.A.; Diederich, M. Methylenedioxy flavonoids: assessment of cytotoxic and anti-cancer potential in human leukemia cells. Eur. J. Med. Chem., 2014, 84, 173-180. doi: 10.1016/j.ejmech.2014.07.003
- Zhou, W.; Peng, Y.; Li, S.S. Semi-synthesis and anti-tumor activity of 5,8-O-dimethyl acylshikonin derivatives. Eur. J. Med. Chem., 2010, 45(12), 6005-6011. doi: 10.1016/j.ejmech.2010.09.068 PMID: 20970893
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed; Butterworth-Heinemann: Burlington, USA, 2009.
- Yang, Z.; Cui, Y.X.; Wong, H.N.C.; Wang, R.J.; Mak, T.C.W.; Chang, H.M.; Lee, C.M. Anodic oxidation as a synthetic expedient to naphthoquinone and anthraquinone ketals. Tetrahedron, 1992, 48(16), 3293-3302. doi: 10.1016/0040-4020(92)85005-Y
- Arbuzov, Y.A.; Bilevich, K.A.; Bolesova, I.N.; Volkov, Y.P.; Kolosov, M.N.; Shemyakin, M.M. Tetracyclines. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1964, 13(3), 450-457. doi: 10.1007/BF00844160
- Cui, J.; Meng, Q.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S. Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J. Med. Chem., 2015, 58(8), 3534-3547. doi: 10.1021/acs.jmedchem.5b00265 PMID: 25799264
- Cui, J.; Cui, Q.; Zhang, Q.; Li, S. An efficient multigram synthesis of juglone methyl ether. J. Chem. Res., 2015, 39(9), 553-554. doi: 10.3184/174751915X14405203456709
- Cui, J.; Jia, J. Discovery of juglone and its derivatives as potent SARS-CoV-2 main proteinase inhibitors. Eur. J. Med. Chem., 2021, 225, 113789. doi: 10.1016/j.ejmech.2021.113789
- Cui, J.; Zhang, X.; Huang, G.; Zhang, Q.; Dong, J.; Sun, G.; Meng, Q.; Li, S. DMAKO-20 as a new multi-target anticancer prodrug activated by the tumor specific CYP1B1 enzyme. Mol. Pharm., 2019, 16(1), 409-421. doi: 10.1021/acs.molpharmaceut.8b01062 PMID: 30481041
- Brimble, M.A.; Brenstrum, T.J. C-Glycosylation of tri-O-benzyl-2-deoxy-D-glucose: synthesis of naphthyl-substituted 3,6-dioxabicyclo3.2.2nonanes. J. Chem. Soc., Perkin Trans. 1, 2001, 2001(14), 1612-1623. doi: 10.1039/b102807n
- Mezeiova, E.; Janockova, J.; Andrys, R.; Soukup, O.; Kobrlova, T.; Muckova, L.; Pejchal, J.; Simunkova, M.; Handl, J.; Micankova, P.; Capek, J.; Rousar, T.; Hrabinova, M.; Nepovimova, E.; Marco-Contelles, J.L.; Valko, M.; Korabecny, J. 2-Propargylamino-naphthoquinone derivatives as multipotent agents for the treatment of Alzheimers disease. Eur. J. Med. Chem., 2021, 211, 113112.
- Laatsch, H. Dimere naphthochinone, IV. Synthese von biramentaceon, mamegakinon und rotundichinon. Liebigs Ann. Chem., 1980, 1980(8), 1321-1347. doi: 10.1002/jlac.198019800815
- Sánchez-Calvo, J.M.; Barbero, G.R.; Guerrero-Vásquez, G.; Durán, A.G.; Macías, M.; Rodríguez-Iglesias, M.A.; Molinillo, J.M.G.; Macías, F.A. Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure-activity relationship study. Med. Chem. Res., 2016, 25(6), 1274-1285. doi: 10.1007/s00044-016-1550-x
- Zhang, J.; Fu, M.; Wu, J.; Fan, F.; Zhang, X.; Li, C.; Yang, H.; Wu, Y.; Yin, Y.; Hua, W. The anti-glioma effect of juglone derivatives through ROS generation. Front. Pharmacol., 2022, 13, 911760. doi: 10.3389/fphar.2022.911760 PMID: 35774612
- Zhang, Q.; Dong, J.; Cui, Q.; Li, S.; Cui, J. Synthesis of 4,8-dimethoxy-1-naphthol via an acetyl migration. Synth. Commun., 2017, 47(6), 536-540. doi: 10.1080/00397911.2016.1199807
Дополнительные файлы
