Anti-Cancer Activity of Synthesized 5-Benzyl juglone on Selected Human Cancer Cell Lines


Цитировать

Полный текст

Аннотация

Background:Cancer is a malignant disease that causes millions of deaths each year worldwide. As one of the cancer therapeutic strategies, chemotherapy is a means to destroy rapidly dividing cells. The main problem with cancer chemotherapy is the lack of selectivity of conventional chemotherapeutic drugs, leading to toxicity towards normal cells. Therefore, the discovery of anti-cancer agents with selectivity for fast-growing cancer cells is desirable.

Objective:In this study, we report the synthesis and identification of synthesized 5-benzyl juglone as a potential anticancer agent with selectivity toward certain cancer cell lines.

Methods:An efficient synthetic method for 5-benzyl juglone was established. The proliferation of cancer cell lines and a normal cell line treated by the target compound was studied using an MTT assay. In addition, the cell cycle arrest and apoptosis were determined by flow cytometry.

Results:Based on the Diels-Alder (D-A) reaction between 3,6-dimethoxy benzyne intermediate and furan, further acid-catalyzed intramolecular rearrangement, and CAN-mediated oxidation, a convenient synthesis of 5-benzyl juglone was achieved with high overall yield. The results from in vitro biological evaluation indicated that the juglone derivative exhibited potent antiproliferative activity against HCT-15 human colorectal cancer cells with an IC50 value of 12.27 µM. It exerted high inhibitory activity toward MCF-7 human breast cancer cells and, to a much lesser extent, to corresponding MCF-10A human breast epithelial normal cells with an IC50 ratio (IC50 in MCF-7 divided by IC50 in MCF-10A) of 0.62.

Conclusion:The mechanistic investigations indicated that 5-benzyl juglone could induce cell cycle arrest at the G0/G1 phase and promote apoptosis of HCT-15 cells. The apoptotic effects possibly contributed to its higher selectivity toward cancer cells than normal cell lines.

Об авторах

Chenhao Wang

School of Environmental Science and Engineering, Shanghai Jiaotong University

Email: info@benthamscience.net

Yuqi Hu

School of Environmental Science and Engineering, Shanghai Jiaotong University

Email: info@benthamscience.net

Yang Sun

School of Environmental Science and Engineering, Shanghai Jiaotong University

Email: info@benthamscience.net

Shouyan Xiang

School of Environmental Science and Engineering, Shanghai Jiaotong University

Email: info@benthamscience.net

Jiajun Qian

School of Chemistry and Chemical Engineering, Shanghai Jiaotong University

Email: info@benthamscience.net

Zhizhuo Liu

School of Environmental Science and Engineering, Shanghai Jiaotong University

Email: info@benthamscience.net

Yufeng Ji

School of Chemistry and Chemical Engineering, Shanghai Jiaotong University

Email: info@benthamscience.net

Chenglin Cai

School of China-UK Low Carbon College, Shanghai Jiaotong University

Email: info@benthamscience.net

Gege Sun

State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University

Email: info@benthamscience.net

Jiahua Cui

School of Chemistry and Chemical Engineering, Shanghai Jiaotong University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  3. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  4. Medina, M.A.; Oza, G.; Sharma, A.; Arriaga, L.G.; Hernández Hernández, J.M.; Rotello, V.M.; Ramirez, J.T. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health, 2020, 17(6), 2078. doi: 10.3390/ijerph17062078 PMID: 32245065
  5. Ahmad, R.; Khan, M.A.; Srivastava, A.N.; Gupta, A.; Srivastava, A.; Jafri, T.R.; Siddiqui, Z.; Chaubey, S.; Khan, T.; Srivastava, A.K. Anticancer potential of dietary natural products: a comprehensive review. Anticancer. Agents Med. Chem., 2020, 20(2), 122-236. doi: 10.2174/1871520619666191015103712 PMID: 31749433
  6. Qian, J.; Cui, J.; Li, S.; Chen, J.; Jia, J. Anticancer natural products with collateral sensitivity: a review. Mini Rev. Med. Chem., 2021, 21(12), 1465-1486. doi: 10.2174/1389557521666210112141455 PMID: 33438535
  7. Zhou, Y.; Liu, Y.; Jiang, Y.; Liu, Z.; Yang, B.; Xiao, H. Studies on anti-tumor chemical constituents in exocarps of Juglans mandshurica. Chin. Tradit. Herb. Drugs, 2016, 47, 2979-2983.
  8. Cui, J.; Qian, J.; Chow, L.M.C.; Jia, J. Natural products targeting cancer stem cells: a revisit. Curr. Med. Chem., 2021, 28(33), 6773-6804. doi: 10.2174/0929867328666210405111913 PMID: 33820513
  9. Aithal, K.B.; Kumar, S.; Rao, B.N.; Udupa, N.; Rao, S.B.S. Tumor growth inhibitory effect of juglone and its radiation sensitizing potential: In vivo and in vitro studies. Integr. Cancer Ther., 2012, 11(1), 68-80. doi: 10.1177/1534735411403477 PMID: 21498474
  10. Aithal, K.B.; Kumar, S.M.R.; Rao, N.B.; Udupa, N.; Rao, S.B.S. Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biol. Int., 2009, 33(10), 1039-1049. doi: 10.1016/j.cellbi.2009.06.018 PMID: 19555768
  11. Karki, N.; Aggarwal, S.; Laine, R.A.; Greenway, F.; Losso, J.N. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. Chem. Biol. Interact., 2020, 327, 109142. doi: 10.1016/j.cbi.2020.109142
  12. Paulsen, M.T.; Ljungman, M. The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts. Toxicol. Appl. Pharmacol., 2005, 209(1), 1-9. doi: 10.1016/j.taap.2005.03.005 PMID: 16271620
  13. Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Tsatsakis, A.M.; Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: Substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther., 2010, 126(1), 9-20. doi: 10.1016/j.pharmthera.2010.01.009 PMID: 20153368
  14. Orlikova, B.; Menezes, J.C.; Ji, S.; Kamat, S.P.; Cavaleiro, J.A.; Diederich, M. Methylenedioxy flavonoids: assessment of cytotoxic and anti-cancer potential in human leukemia cells. Eur. J. Med. Chem., 2014, 84, 173-180. doi: 10.1016/j.ejmech.2014.07.003
  15. Zhou, W.; Peng, Y.; Li, S.S. Semi-synthesis and anti-tumor activity of 5,8-O-dimethyl acylshikonin derivatives. Eur. J. Med. Chem., 2010, 45(12), 6005-6011. doi: 10.1016/j.ejmech.2010.09.068 PMID: 20970893
  16. Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed; Butterworth-Heinemann: Burlington, USA, 2009.
  17. Yang, Z.; Cui, Y.X.; Wong, H.N.C.; Wang, R.J.; Mak, T.C.W.; Chang, H.M.; Lee, C.M. Anodic oxidation as a synthetic expedient to naphthoquinone and anthraquinone ketals. Tetrahedron, 1992, 48(16), 3293-3302. doi: 10.1016/0040-4020(92)85005-Y
  18. Arbuzov, Y.A.; Bilevich, K.A.; Bolesova, I.N.; Volkov, Y.P.; Kolosov, M.N.; Shemyakin, M.M. Tetracyclines. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1964, 13(3), 450-457. doi: 10.1007/BF00844160
  19. Cui, J.; Meng, Q.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S. Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J. Med. Chem., 2015, 58(8), 3534-3547. doi: 10.1021/acs.jmedchem.5b00265 PMID: 25799264
  20. Cui, J.; Cui, Q.; Zhang, Q.; Li, S. An efficient multigram synthesis of juglone methyl ether. J. Chem. Res., 2015, 39(9), 553-554. doi: 10.3184/174751915X14405203456709
  21. Cui, J.; Jia, J. Discovery of juglone and its derivatives as potent SARS-CoV-2 main proteinase inhibitors. Eur. J. Med. Chem., 2021, 225, 113789. doi: 10.1016/j.ejmech.2021.113789
  22. Cui, J.; Zhang, X.; Huang, G.; Zhang, Q.; Dong, J.; Sun, G.; Meng, Q.; Li, S. DMAKO-20 as a new multi-target anticancer prodrug activated by the tumor specific CYP1B1 enzyme. Mol. Pharm., 2019, 16(1), 409-421. doi: 10.1021/acs.molpharmaceut.8b01062 PMID: 30481041
  23. Brimble, M.A.; Brenstrum, T.J. C-Glycosylation of tri-O-benzyl-2-deoxy-D-glucose: synthesis of naphthyl-substituted 3,6-dioxabicyclo3.2.2nonanes. J. Chem. Soc., Perkin Trans. 1, 2001, 2001(14), 1612-1623. doi: 10.1039/b102807n
  24. Mezeiova, E.; Janockova, J.; Andrys, R.; Soukup, O.; Kobrlova, T.; Muckova, L.; Pejchal, J.; Simunkova, M.; Handl, J.; Micankova, P.; Capek, J.; Rousar, T.; Hrabinova, M.; Nepovimova, E.; Marco-Contelles, J.L.; Valko, M.; Korabecny, J. 2-Propargylamino-naphthoquinone derivatives as multipotent agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 211, 113112.
  25. Laatsch, H. Dimere naphthochinone, IV. Synthese von biramentaceon, mamegakinon und rotundichinon. Liebigs Ann. Chem., 1980, 1980(8), 1321-1347. doi: 10.1002/jlac.198019800815
  26. Sánchez-Calvo, J.M.; Barbero, G.R.; Guerrero-Vásquez, G.; Durán, A.G.; Macías, M.; Rodríguez-Iglesias, M.A.; Molinillo, J.M.G.; Macías, F.A. Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure-activity relationship study. Med. Chem. Res., 2016, 25(6), 1274-1285. doi: 10.1007/s00044-016-1550-x
  27. Zhang, J.; Fu, M.; Wu, J.; Fan, F.; Zhang, X.; Li, C.; Yang, H.; Wu, Y.; Yin, Y.; Hua, W. The anti-glioma effect of juglone derivatives through ROS generation. Front. Pharmacol., 2022, 13, 911760. doi: 10.3389/fphar.2022.911760 PMID: 35774612
  28. Zhang, Q.; Dong, J.; Cui, Q.; Li, S.; Cui, J. Synthesis of 4,8-dimethoxy-1-naphthol via an acetyl migration. Synth. Commun., 2017, 47(6), 536-540. doi: 10.1080/00397911.2016.1199807

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024