Revealing the Role of the Arg and Lys in Shifting Paradigm from BTK Selective Inhibition to the BTK/HCK Dual Inhibition - Delving into the Inhibitory Activity of KIN-8194 against BTK, and HCK in the Treatment of Mutated BTKCys481 Waldenström Macroglobulinemia: A Computational Approach
- Авторы: Elamin G.1, Aljoundi A.1, Alahmdi M.2, Abo-Dya N.3, Soliman M.1
-
Учреждения:
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal
- Department of Chemistry, Faculty of Science, University of Tabuk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University
- Выпуск: Том 24, № 11 (2024)
- Страницы: 813-825
- Раздел: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643734
- DOI: https://doi.org/10.2174/1871520623666230208102609
- ID: 643734
Цитировать
Полный текст
Аннотация
Background:Despite the early success of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of Waldenström macroglobulinemia (WM), these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of these drugs.
Objective:Recently, the pharmacological activity of KIN-8194 was repurposed to serve as a dual-target inhibitor of BTK and Hematopoietic Cell Kinase (HCK). However, the structural dual inhibitory mechanism remains unexplored, hence the aim of this study.
Methods:Conducting predictive pharmacokinetic profiling of KIN-8194, as well as demonstrating a comparative structural mechanism of inhibition against the above-mentioned enzymes.
Results:Our results revealed favourable binding affinities of -20.17 kcal/mol, and -35.82 kcal/mol for KIN-8194 towards HCK and BTK, respectively. Catalytic residues Arg137/174 and Lys42/170 in BTK and Arg303 and Lys75/173/244/247 in HCK were identified as crucial mediators of the dual binding mechanism of KIN-8194, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Prediction of the pharmacokinetics and physicochemical properties of KIN-8194 further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. Structurally, KIN-8194 impacted the stability, flexibility, solvent-accessible surface area, and rigidity of BTK and HCK, characterized by various alterations observed in the bound and unbound structures, which proved enough to disrupt their biological function.
Conclusion:These structural insights provided a baseline for the understanding of the dual inhibitory activity of KIN- 8194. Establishing the cruciality of the interactions between the KIN-8194 and Arg and Lys residues could guide the structure-based design of novel dual BTK/HCK inhibitors with improved therapeutic activities.
Ключевые слова
Об авторах
Ghazi Elamin
Department of Pharmaceutical Sciences, University of KwaZulu-Natal
Email: info@benthamscience.net
Aimen Aljoundi
Department of Pharmaceutical Sciences, University of KwaZulu-Natal
Email: info@benthamscience.net
Mohamed Alahmdi
Department of Chemistry, Faculty of Science, University of Tabuk
Email: info@benthamscience.net
Nader Abo-Dya
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University
Email: info@benthamscience.net
Mahmoud Soliman
Department of Pharmaceutical Sciences, University of KwaZulu-Natal
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Ababneh, O.; Abushukair, H.; Qarqash, A.; Syaj, S.; al Hadidi, S. The use of bruton tyrosine kinase inhibitors in waldenströms macroglobulinemia. Clin. Hematol. Int., 2022, 4(1-2), 21-29. doi: 10.1007/s44228-022-00007-5 PMID: 35950210
- Castillo, J.J.; Olszewski, A.J.; Kanan, S.; Meid, K.; Hunter, Z.R.; Treon, S.P. Overall survival and competing risks of death in patients with Waldenström macroglobulinaemia: An analysis of the surveillance, epidemiology and end results database. Br. J. Haematol., 2015, 169(1), 81-89. doi: 10.1111/bjh.13264 PMID: 25521528
- Jeong, S.; Kong, S.G.; Kim, D.J.; Lee, S.; Lee, H.S. Incidence, prevalence, mortality, and causes of death in Waldenström macroglobulinemia: a nationwide, population-based cohort study. BMC Cancer, 2020, 20(1), 623. doi: 10.1186/s12885-020-07120-9 PMID: 32620091
- Yin, X.; Chen, L.; Fan, F.; Yan, H.; Zhang, Y.; Huang, Z.; Sun, C.; Hu, Y. Trends in incidence and mortality of waldenström macroglobulinemia: A population-based study. Front. Oncol., 2020, 10, 1712. doi: 10.3389/fonc.2020.01712 PMID: 33014849
- Pophali, P.A.; Bartley, A.; Kapoor, P.; Gonsalves, W.I.; Ashrani, A.A.; Marshall, A.L.; Siddiqui, M.A.; Kyle, R.A.; Go, R.S. Prevalence and survival of smouldering Waldenström macroglobulinaemia in the United States. Br. J. Haematol., 2019, 184(6), 1014-1017. doi: 10.1111/bjh.15201 PMID: 29532912
- Kyle, R.A; Benson, J.T; Larson, D.R Progression in smoldering Waldenström macroglobulinemia: Long-term results. Blood, 2012, 119(19), 4462-4466. doi: 10.1182/blood-2011-10-384768
- Herrinton, L.J.; Weiss, N.S. Incidence of Waldenstroms macroglobulinemia. Blood, 1993, 82(10), 3148-3150. doi: 10.1182/blood.V82.10.3148.3148 PMID: 8219203
- Groves, F.D.; Travis, L.B.; Devesa, S.S.; Ries, L.A.; Fraumeni, J.F. Waldenströms macroglobulinemia: incidence patterns in the United States, 1988-1994. Cancer, 1998, 82(6), 1078-1081. doi: 10.1002/(SICI)1097-0142(19980315)82:63.0.CO;2-3 PMID: 9506352
- Sekhar, J.; Sanfilippo, K.; Zhang, Q.; Trinkaus, K.; Vij, R.; Morgensztern, D. Waldenström macroglobulinemia: A surveillance, epidemiology, and end results database review from 1988 to 2005. Leuk. Lymphoma, 2012, 53(8), 1625-1626. doi: 10.3109/10428194.2012.656103 PMID: 22239669
- Kastritis, E.; Morel, P.; Duhamel, A.; Gavriatopoulou, M.; Kyrtsonis, M.C.; Durot, E.; Symeonidis, A.; Laribi, K.; Hatjiharissi, E.; Ysebaert, L.; Vassou, A.; Giannakoulas, N.; Merlini, G.; Repousis, P.; Varettoni, M.; Michalis, E.; Hivert, B.; Michail, M.; Katodritou, E.; Terpos, E.; Leblond, V.; Dimopoulos, M.A. A revised international prognostic score system for Waldenströms macroglobulinemia. Leukemia, 2019, 33(11), 2654-2661. doi: 10.1038/s41375-019-0431-y PMID: 31118465
- Dimopoulos, M.A.; Tedeschi, A.; Trotman, J.; García-Sanz, R.; Macdonald, D.; Leblond, V.; Mahe, B.; Herbaux, C.; Tam, C.; Orsucci, L.; Palomba, M.L.; Matous, J.V.; Shustik, C.; Kastritis, E.; Treon, S.P.; Li, J.; Salman, Z.; Graef, T.; Buske, C. Phase 3 Trial of Ibrutinib plus Rituximab in Waldenströms macroglobulinemia. N. Engl. J. Med., 2018, 378(25), 2399-2410. doi: 10.1056/NEJMoa1802917 PMID: 29856685
- Moreno, D.F.; de Larrea, C.F.; Castillo, J.J. New treatment strategies for Waldenström macroglobulinemia. Clin. Adv. Hematol. Oncol., 2022, 20(8), 506-515. http://www.ncbi.nlm.nih.gov/pubmed/36125957 PMID: 36125957
- De, S.K. Fundamentals of cancer detection, treatment, and prevention; WILEY-VCH: New Jersey, 2022, pp. 67-131. doi: 10.1002/9783527838561
- Trotman, J.; Opat, S.; Gottlieb, D.; Simpson, D.; Marlton, P.; Cull, G.; Munoz, J.; Tedeschi, A.; Roberts, A.W.; Seymour, J.F.; Atwal, S.K.; Yu, Y.; Novotny, W.; Holmgren, E.; Tan, Z.; Hilger, J.D.; Huang, J.; Tam, C.S. Zanubrutinib for the treatment of patients with Waldenström macroglobulinemia: 3 years of follow-up. Blood, 2020, 136(18), 2027-2037. doi: 10.1182/blood.2020006449 PMID: 32698195
- Yang, G.; Buhrlage, S.J.; Tan, L.; Liu, X.; Chen, J.; Xu, L.; Tsakmaklis, N.; Chen, J.G.; Patterson, C.J.; Brown, J.R.; Castillo, J.J.; Zhang, W.; Zhang, X.; Liu, S.; Cohen, P.; Hunter, Z.R.; Gray, N.; Treon, S.P. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood, 2016, 127(25), 3237-3252. doi: 10.1182/blood-2016-01-695098 PMID: 27143257
- Treon, S.P.; Xu, L.; Guerrera, M.L.; Jimenez, C.; Hunter, Z.R.; Liu, X.; Demos, M.; Gustine, J.; Chan, G.; Munshi, M.; Tsakmaklis, N.; Chen, J.G.; Kofides, A.; Sklavenitis-Pistofidis, R.; Bustoros, M.; Keezer, A.; Meid, K.; Patterson, C.J.; Sacco, A.; Roccaro, A.; Branagan, A.R.; Yang, G.; Ghobrial, I.M.; Castillo, J.J. Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. J. Clin. Oncol., 2020, 38(11), 1198-1208. doi: 10.1200/JCO.19.02314 PMID: 32083995
- Taguchi, T.; Kiyokawa, N.; Sato, N.; Saito, M.; Fujimoto, J. Characteristic expression of Hck in human B-cell precursors. Exp. Hematol., 2000, 28(1), 55-64. doi: 10.1016/S0301-472X(99)00127-7 PMID: 10658677
- Treon, S.P.; Tripsas, C.K.; Meid, K.; Warren, D.; Varma, G.; Green, R.; Argyropoulos, K.V.; Yang, G.; Cao, Y.; Xu, L.; Patterson, C.J.; Rodig, S.; Zehnder, J.L.; Aster, J.C.; Harris, N.L.; Kanan, S.; Ghobrial, I.; Castillo, J.J.; Laubach, J.P.; Hunter, Z.R.; Salman, Z.; Li, J.; Cheng, M.; Clow, F.; Graef, T.; Palomba, M.L.; Advani, R.H. Ibrutinib in previously treated Waldenströms macroglobulinemia. N. Engl. J. Med., 2015, 372(15), 1430-1440. doi: 10.1056/NEJMoa1501548 PMID: 25853747
- Herman, S.E.M.; Gordon, A.L.; Hertlein, E.; Ramanunni, A.; Zhang, X.; Jaglowski, S.; Flynn, J.; Jones, J.; Blum, K.A.; Buggy, J.J.; Hamdy, A.; Johnson, A.J.; Byrd, J.C. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood, 2011, 117(23), 6287-6296. doi: 10.1182/blood-2011-01-328484 PMID: 21422473
- Smith, C.I.E. From identification of the BTK kinase to effective management of leukemia. Oncogene, 2017, 36(15), 2045-2053. doi: 10.1038/onc.2016.343 PMID: 27669440
- Lucas, F.; Woyach, J.A. Inhibiting brutons tyrosine kinase in CLL and other B-cell malignancies. Target. Oncol., 2019, 14(2), 125-138. doi: 10.1007/s11523-019-00635-7 PMID: 30927175
- Woyach, J.A.; Furman, R.R.; Liu, T.M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.H.; Steggerda, S.M.; Versele, M.; Dave, S.S.; Zhang, J.; Yilmaz, A.S.; Jaglowski, S.M.; Blum, K.A.; Lozanski, A.; Lozanski, G.; James, D.F.; Barrientos, J.C.; Lichter, P.; Stilgenbauer, S.; Buggy, J.J.; Chang, B.Y.; Johnson, A.J.; Byrd, J.C. Resistance mechanisms for the Brutons tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med., 2014, 370(24), 2286-2294. doi: 10.1056/NEJMoa1400029 PMID: 24869598
- Bond, D.A.; Woyach, J.A. Targeting BTK in CLL: Beyond Ibrutinib. Curr. Hematol. Malig. Rep., 2019, 14(3), 197-205. doi: 10.1007/s11899-019-00512-0 PMID: 31028669
- Kapoor, I.; Li, Y.; Sharma, A.; Zhu, H.; Bodo, J.; Xu, W.; Hsi, E.D.; Hill, B.T.; Almasan, A. Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death Dis., 2019, 10(12), 924. doi: 10.1038/s41419-019-2158-0 PMID: 31801949
- Boran, A.D.W.; Iyengar, R. Systems approaches to polypharmacology and drug discovery. Curr. Opin. Drug Discov. Devel., 2010, 13(3), 297-309.http://www.ncbi.nlm.nih.gov/pubmed/20443163 PMID: 20443163
- Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143, 1277-1300. doi: 10.1016/j.ejmech.2017.10.021 PMID: 29126724
- Méndez-Lucio, O.; Naveja, J.J.; Vite-Caritino, H.; Prieto-Martínez, F.D.; Medina-Franco, J.L. One drug for multiple targets: A computational perspective. J. Mex. Chem. Soc., 2016, 60(3), 168-181.https://www.jmcs.org.mx/index.php/jmcs/article/view/100
- Zhang, X.; Zegar, T.; Weiser, T.; Hamdan, F.H.; Berger, B.T.; Lucas, R.; Balourdas, D.I.I.; Ladigan, S.; Cheung, P.F.; Liffers, S.T.; Trajkovic-Arsic, M.; Scheffler, B.; Joerger, A.C.; Hahn, S.A.; Johnsen, S.A.; Knapp, S.; Siveke, J.T. Characterization of a dual BET/HDAC inhibitor for treatment of pancreatic ductal adenocarcinoma. Int. J. Cancer, 2020, 147(10), 2847-2861. doi: 10.1002/ijc.33137 PMID: 32599645
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043. doi: 10.18632/oncotarget.16723 PMID: 28410237
- Mei, Y.; Yang, B. Rational application of drug promiscuity in medicinal chemistry. Future Med. Chem., 2018, 10(15), 1835-1851. doi: 10.4155/fmc-2018-0018 PMID: 30019924
- Yang, G.; Wang, J.; Liu, X.; Munshi, M.; Chen, J.G.; Kofides, A.; Xu, L.; Tsakmaklis, N.; Demos, M.; Guerrera, M.L.; Chan, G.G.; Jimenez, C.; Hunter, Z.R.; Patterson, C.; Castillo, J.J.; Buhrlage, S.J.; Gray, N.; Treon, S.P. A novel hck and btk dual inhibitor kin-8194 shows superior activity over ibrutinib and overcomes btkc481s mediated ibrutinib resistance in vitro and in vivo in myd88 mutated b-cell lymphomas. Blood, 2019, 134(S1), 394. doi: 10.1182/blood-2019-130636
- Yang, G.; Wang, J.; Tan, L.; Munshi, M.; Liu, X.; Kofides, A.; Chen, J.G.; Tsakmaklis, N.; Demos, M.G.; Guerrera, M.L.; Xu, L.; Hunter, Z.R.; Che, J.; Patterson, C.J.; Meid, K.; Castillo, J.J.; Munshi, N.C.; Anderson, K.C.; Cameron, M.; Buhrlage, S.J.; Gray, N.S.; Treon, S.P. The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood, 2021, 138(20), 1966-1979. doi: 10.1182/blood.2021011405 PMID: 34132782
- Burley, S.K.; Berman, H.M.; Christie, C. RCSB protein data bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Sci., 2018, 27(1), 316. doi: 10.1002/pro.3331 PMID: 29067736
- Bender, A.T.; Gardberg, A.; Pereira, A.; Johnson, T.; Wu, Y.; Grenningloh, R.; Head, J.; Morandi, F.; Haselmayer, P.; Liu-Bujalski, L. Ability of brutons tyrosine kinase inhibitors to sequester y551 and prevent phosphorylation determines potency for inhibition of fc receptor but not b-cell receptor signaling. Mol. Pharmacol., 2017, 91(3), 208-219. doi: 10.1124/mol.116.107037 PMID: 28062735
- Katsura, K.; Tomabechi, Y.; Matsuda, T.; Yonemochi, M.; Mikuni, J.; Ohsawa, N.; Terada, T.; Yokoyama, S.; Kukimoto-Niino, M.; Takemoto, C.; Shirouzu, M. Phosphorylated and non-phosphorylated HCK kinase domains produced by cell-free protein expression. Protein Expr. Purif., 2018, 150, 92-99. doi: 10.1016/j.pep.2018.05.005 PMID: 29793032
- Berman, H.M.; Battistuz, T.; Bhat, T.N. TheProtein Data Bank, 2002. Available from: https://pubmed.ncbi.nlm.nih.gov/12037327/
- Susi, K.; Emil, K.; Soleh, K.; Wahono, S. The molecular docking of 1,4-naphthoquinone derivatives as inhibitors of polo-like kinase 1 using molegro virtual docker J. Appl. Pharm. Sci., , 2014, 4(11), 047-053.http://japsonline.com/counter.php?aid=1369 doi: 10.7324/JAPS.2014.4119
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
- Eswar, N.; Webb, B.; Marti-Renom, M.A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics, 2006, 5(1) doi: 10.1002/0471250953.bi0506s15
- Dunbrack, R.L. Jr Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol., 2002, 12(4), 431-440. doi: 10.1016/S0959-440X(02)00344-5 PMID: 12163064
- Cherinka, B.; Andrews, B.H.; Sánchez-Gallego, J.; Brownstein, J.; Argudo-Fernández, M.; Blanton, M.; Bundy, K.; Jones, A.; Masters, K.; Law, D.R.; Rowlands, K.; Weijmans, A-M.; Westfall, K.; Yan, R. Marvin: A tool kit for streamlined access and visualization of the sdss-iv manga data set. Astron. J., 2019, 158(2), 74. doi: 10.3847/1538-3881/ab2634
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17. doi: 10.1186/1758-2946-4-17 PMID: 22889332
- Allouche, A.R. Gabedit-A graphical user interface for computational chemistry softwares. J. Comput. Chem., 2011, 32(1), 174-182. doi: 10.1002/jcc.21600 PMID: 20607691
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
- Case, D.A.; Belfon, K.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S. Amber 2020 reference manual; University of California: San Francisco, 2020, pp. 1-918. Available from: https://ambermd.org/doc12/Amber20.pdf
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3(2), 198-210. doi: 10.1002/wcms.1121
- Ponder, J.W.; Case, D.A. Force fields for protein simulations. Adv. Protein Chem., 2003, 66, 27-85. doi: 10.1016/S0065-3233(03)66002-X PMID: 14631816
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174. doi: 10.1002/jcc.20035 PMID: 15116359
- Grest, G.S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A Gen. Phys., 1986, 33(5), 3628-3631. doi: 10.1103/PhysRevA.33.3628 PMID: 9897103
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690. doi: 10.1063/1.448118
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341. doi: 10.1016/0021-9991(77)90098-5
- Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095. doi: 10.1021/ct400341p PMID: 26583988
- Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model., 2014, 54(5), 1552. doi: 10.1021/ci500161d PMID: 24702057
- BIOVIA In: DS. Discovery Studio 2016 Client; Dassault Systèmes: San Diego, 2016.
- Massova, I.; Kollman, P.A. Combined molecular mechanical and continuum solvent approach (MM- PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des., 2000, 18(1), 113-135. doi: 10.1023/A:1008763014207
- Genheden, S.; Kuhn, O.; Mikulskis, P.; Hoffmann, D.; Ryde, U. The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J. Chem. Inf. Model., 2012, 52(8), 2079-2088. doi: 10.1021/ci3001919 PMID: 22817270
- Onufriev, A.; Bashford, D.; Case, D.A. Modification of the generalized born model suitable for macromolecules. J. Phys. Chem. B, 2000, 104(15), 3712-3720. doi: 10.1021/jp994072s
- Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model., 2013, 53(10), 2626-2633. doi: 10.1021/ci4002475 PMID: 23988151
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897. doi: 10.1021/ar000033j PMID: 11123888
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 2011, 51(1), 69-82. doi: 10.1021/ci100275a PMID: 21117705
- Homeyer, N.; Gohlke, H. Free energy calculations by the molecular mechanics poisson-boltzmann surface area method. Mol. Inform., 2012, 31(2), 114-122. doi: 10.1002/minf.201100135 PMID: 27476956
- Sitkoff, D.; Sharp, K.A.; Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem., 1994, 98(7), 1978-1988. doi: 10.1021/j100058a043
- Wan, H.; Hu, J.; Tian, X.; Chang, S. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Phys. Chem. Chem. Phys., 2013, 15(4), 1241-1251. doi: 10.1039/C2CP41388D PMID: 23229122
- Chang, S.; Hu, J.; Lin, P.; Jiao, X.; Tian, X. Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. Mol. Biosyst., 2010, 6(12), 2430-2438. doi: 10.1039/c005266c PMID: 20838682
- Fakhar, Z.; Govender, T.; Maguire, G.E.M.; Lamichhane, G.; Walker, R.C.; Kruger, H.G.; Honarparvar, B. Differential flap dynamics in L, D-transpeptidase2 from Mycobacterium tuberculosis revealed by molecular dynamics. Mol. Biosyst., 2017, 13(6), 1223-1234. doi: 10.1039/C7MB00110J PMID: 28480928
- David CC; Jacobs, DJ Principal component analysis: A method for determining the essential dynamics of proteins. Methods Mol. Biol., 2014, 1084, 193-226. doi: 10.1007/978-1-62703-658-0_11 PMID: 24061923
- Levy, R.M.; Srinivasan, A.R.; Olson, W.K.; McCammon, J.A. Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers, 1984, 23(6), 1099-1112. doi: 10.1002/bip.360230610 PMID: 6733249
- Chen, J.; Wang, J.; Zhu, W. Binding modes of three inhibitors 8CA, F8A and I4A to A-FABP studied based on molecular dynamics simulation. PLoS One, 2014, 9(6), e99862. doi: 10.1371/journal.pone.0099862 PMID: 24918907
- Ichiye, T.; Karplus, M. Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins, 1991, 11(3), 205-217. doi: 10.1002/prot.340110305 PMID: 1749773
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., , 1996, 14(1) 33-38, 27-28.. doi: 10.1016/0263-7855(96)00018-5 PMID: 8744570
- Webborn, P.J.H. The role of pharmacokinetic studies in drug discovery: where are we now, how did we get here and where are we going? Future Med. Chem., 2014, 6(11), 1233-1235. doi: 10.4155/fmc.14.76 PMID: 25162995
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121. doi: 10.1002/cmdc.201600182 PMID: 27218427
- Ahmed, S.S.S.J.; Ramakrishnan, V. Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction. PLoS One, 2012, 7(7), e40654. doi: 10.1371/journal.pone.0040654 PMID: 22815781
- Kruijtzer, C.M.F.; Beijnen, J.H.; Schellens, J.H.M. Improvement of oral drug treatment by temporary inhibition of drug transporters and/or cytochrome P450 in the gastrointestinal tract and liver: an overview. Oncologist, 2002, 7(6), 516-530. doi: 10.1634/theoncologist.7-6-516 PMID: 12490739
- Mukherjee, J.; Gupta, M.N. Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnol. Rep., 2015, 6, 119-123. doi: 10.1016/j.btre.2015.04.001 PMID: 28626705
- Xie, Y.; An, J.; Yang, G.; Wu, G.; Zhang, Y.; Cui, L.; Feng, Y. Enhanced enzyme kinetic stability by increasing rigidity within the active site. J. Biol. Chem., 2014, 289(11), 7994-8006. doi: 10.1074/jbc.M113.536045 PMID: 24448805
- Celej, M.S.; Montich, G.G.; Fidelio, G.D. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci., 2003, 12(7), 1496-1506. doi: 10.1110/ps.0240003 PMID: 12824495
- Liu, K.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. J. Chem. Inf. Model., 2017, 57(10), 2514-2522. doi: 10.1021/acs.jcim.7b00412 PMID: 28902511
- Agoni, C.; Salifu, E.Y.; Munsamy, G.; Olotu, F.A.; Soliman, M. CF3‐Pyridinyl substitution on antimalarial therapeutics: Probing differential ligand binding and dynamical inhibitory effects of a novel triazolopyrimidine‐based inhibitor on Plasmodium falciparum dihydroorotate dehydrogenase. Chem. Biodivers., 2019, 16(12), e1900365. doi: 10.1002/cbdv.201900365 PMID: 31589372
- Luque, I.; Freire, E. Structural stability of binding sites: Consequences for binding affinity and allosteric effects. Proteins, 2000, 4, 63-71. doi: 10.1002/1097-0134(2000)41:4+3.0.CO;2-6
- Salifu, E.Y.; Issahaku, A.R.; Agoni, C.; Ibrahim, M.A.A.; Manimbulu, N.; Soliman, M.E.S. Prioritizing the catalytic gatekeepers through pan- inhibitory mechanism of entrectinib against alk, ros1 and trka tyrosine kinases. Cell Biochem. Biophys., 2022, 80(1), 11-21. doi: 10.1007/s12013-021-01052-2 PMID: 35040089
- Brüschweiler, R. Efficient RMSD measures for the comparison of two molecular ensembles. Proteins, 2003, 50(1), 26-34. doi: 10.1002/prot.10250 PMID: 12471596
- Pitera, J.W. Expected distributions of root-mean-square positional deviations in proteins. J. Phys. Chem. B, 2014, 118(24), 6526-6530. doi: 10.1021/jp412776d PMID: 24655018
- Kumar, C.V.; Swetha, R.G.; Anbarasu, A.; Ramaiah, S. Computational analysis reveals the association of threonine 118 methionine mutation in pmp22 resulting in CMT-1A. Adv. Bioinformatics., 2014, 2014, 502618. doi: 10.1155/2014/502618 PMID: 25400662
- Teilum, K.; Olsen, J.G.; Kragelund, B.B. Functional aspects of protein flexibility. Cell. Mol. Life Sci., 2009, 66(14), 2231-2247. doi: 10.1007/s00018-009-0014-6 PMID: 19308324
- Gromiha, M.; Ahmad, S. Role of solvent accessibility in structure based drug design. Curr. Computeraided Drug Des., 2005, 1(3), 223-235. doi: 10.2174/1573409054367664
- Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol., 2008, 42(4), 623-628. doi: 10.1134/S0026893308040195
Дополнительные файлы
