Bee Venom Toxic Effect on MDA-MB-231 Breast Cancer Cells and Caenorhabditis Elegans
- Authors: Barros Y.1, de Andrade A.2, da Silva L.3, Pedroza L.4, Bezerra I.5, Cavalcanti I.D.4, de Britto Lira Nogueira M.5, Mousinho K.6, Antoniolli A.7, Alves L.5, de Lima Filho J.4, Moura A.8, Rosini Silva Á.9, de Melo Porcari A.10, Gubert P.5
-
Affiliations:
- Health Sciences Post-Graduate Program, Federal University of Sergipe
- Keizo Asami InstituKeizo Asami Institute, iLIKAte, Federal University of Pernambuco
- ostgraduate Program in Biological Science, Federal University of Pernambuco
- Keizo Asami Institute, iLIKA,, Federal University of Pernambuco
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco
- , CESMAC University Center
- Department of Physiology, Federal University of Sergipe
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program,, São Francisco University,
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program,, São Francisco University
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University
- Issue: Vol 24, No 10 (2024)
- Pages: 798-811
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643726
- DOI: https://doi.org/10.2174/0118715206291634240312062957
- ID: 643726
Cite item
Full Text
Abstract
Introduction:Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product.
Method:Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction.
Results:Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined.
Conclusion:Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.
Keywords
About the authors
Yáskara Barros
Health Sciences Post-Graduate Program, Federal University of Sergipe
Email: info@benthamscience.net
Amanda de Andrade
Keizo Asami InstituKeizo Asami Institute, iLIKAte, Federal University of Pernambuco
Email: info@benthamscience.net
Larissa da Silva
ostgraduate Program in Biological Science, Federal University of Pernambuco
Email: info@benthamscience.net
Lucas Pedroza
Keizo Asami Institute, iLIKA,, Federal University of Pernambuco
Email: info@benthamscience.net
Iverson Bezerra
Keizo Asami Institute, iLIKA, Federal University of Pernambuco
Email: info@benthamscience.net
Iago Dillion Cavalcanti
Keizo Asami Institute, iLIKA,, Federal University of Pernambuco
Email: info@benthamscience.net
Mariane de Britto Lira Nogueira
Keizo Asami Institute, iLIKA, Federal University of Pernambuco
Email: info@benthamscience.net
Kristiana Mousinho
, CESMAC University Center
Email: info@benthamscience.net
Angelo Antoniolli
Department of Physiology, Federal University of Sergipe
Email: info@benthamscience.net
Luiz Alves
Keizo Asami Institute, iLIKA, Federal University of Pernambuco
Email: info@benthamscience.net
José de Lima Filho
Keizo Asami Institute, iLIKA,, Federal University of Pernambuco
Email: info@benthamscience.net
Alexandre Moura
MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program,, São Francisco University,
Email: info@benthamscience.net
Álex Rosini Silva
MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program,, São Francisco University
Email: info@benthamscience.net
Andréia de Melo Porcari
MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University
Email: info@benthamscience.net
Priscila Gubert
Keizo Asami Institute, iLIKA, Federal University of Pernambuco
Author for correspondence.
Email: info@benthamscience.net
References
- Zolfagharian, H.; Mohajeri, M.; Babaie, M. Honey bee venom (apis mellifera) contains anticoagulation factors and increases the blood-clotting time. J. Pharmacopuncture, 2015, 18(4), 7-11. doi: 10.3831/KPI.2015.18.031 PMID: 26998384
- Aufschnaiter, A.; Kohler, V.; Khalifa, S.; Abd El-Wahed, A.; Du, M.; El-Seedi, H.; Büttner, S. Apitoxin and its components against cancer, neurodegeneration and rheumatoid arthritis: limitations and possibilities. Toxins, 2020, 12(2), 66. doi: 10.3390/toxins12020066 PMID: 31973181
- Hossen, M.S.; Gan, S.H.; Khalil, M.I. Melittin, a potential natural toxin of crude bee venom: Probable future arsenal in the treatment of diabetes mellitus. J. Chem., 2017, 2017, 1-7. doi: 10.1155/2017/4035626
- Leandro, L.F.; Mendes, C.A.; Casemiro, L.A. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. An Acad. Bras. Cienc., 2015, 87, 147-155.
- Jung, G.B.; Huh, J.E.; Lee, H.J.; Kim, D.; Lee, G.J.; Park, H.K.; Lee, J.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomed. Opt. Express, 2018, 9(11), 5703-5718. doi: 10.1364/BOE.9.005703 PMID: 30460157
- Lim, H.; Baek, S.; Jung, H. Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules, 2019, 24(5), 929. doi: 10.3390/molecules24050929 PMID: 30866426
- Zheng, J.; Lee, H.L.; Ham, Y.W.; Song, H.S.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B. Oncotarget, 2015, 6(42), 44437-44451. doi: 10.18632/oncotarget.6295 PMID: 26561202
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancerepidemiology, risk factors, classification, prognostic markers, and current treatment strategies: An updated review. Cancers, 2021, 13(17), 4287. doi: 10.3390/cancers13174287 PMID: 34503097
- Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res., 2015, 5(10), 2929-2943. PMID: 26693050
- Martins, L.C.; Rezende, R.M.D.; Cordeiro, J.A.B.L.; Paula, H.S.C.; Bastos, D.R.; Costa, A.S.T.V.; Saddi, V.A.; Silva, A.M.T.C. Pattern of metastasis in triple negative breast cancer. Brazilian J. Mastol., 2017, 27(1), 8-14. doi: 10.5327/Z201700010003RBM
- Tavares, D.F.; Cardoso-Júnior, L.M.; Ribeiro, V.C.; Britto, R.L. The state of the art of immunotherapy in the treatment of triple-negative breast cancer: Main drugs, associations, mechanisms of action and future perspectives. Rev. Bras. Cancerol., 2021, 67(2), 061014. doi: 10.32635/2176-9745.RBC.2021v67n2.1014
- Daniluk, K.; Kutwin, M.; Grodzik, M.; Wierzbicki, M.; Strojny, B.; Szczepaniak, J.; Bałaban, J.; Sosnowska, M.; Chwalibog, A.; Sawosz, E.; Jaworski, S. Use of selected carbon nanoparticles as melittin carriers for MCF-7 and MDA-MB-231 human breast cancer cells. Materials, 2019, 13(1), 90. doi: 10.3390/ma13010090 PMID: 31878020
- Choi, D.I.; Kim, J.; Lee, H.; Kim, J.; Sung, Y.; Choi, J.E.; Venkat, S.J.; Park, P.; Jung, H.; Kaang, B.K. Synaptic correlates of associative fear memory in the lateral amygdala. Neuron, 2021, 109(17), 2717-2726.e3. doi: 10.1016/j.neuron.2021.07.003 PMID: 34363751
- Orolić, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194. doi: 10.1007/s10555-011-9339-3 PMID: 22109081
- Elieh Ali Komi, D.; Shafaghat, F.; Zwiener, R.D. Immunology of bee venom. Clin. Rev. Allergy Immunol., 2018, 54(3), 386-396. doi: 10.1007/s12016-017-8597-4 PMID: 28105558
- Ollert, M.; Blank, S. Anaphylaxis to insect venom allergens: Role of molecular diagnostics. Curr. Allergy Asthma Rep., 2015, 15(5), 26. doi: 10.1007/s11882-015-0527-z PMID: 26139335
- Hunt, P.R.; Camacho, J.A.; Sprando, R.L. Caenorhabditis elegans for predictive toxicology. Curr. Opin. Toxicol., 2020, 23-24, 23-28. doi: 10.1016/j.cotox.2020.02.004
- Huang, Z.; Ma, L.; Mishra, A.; Turnbull, J.E.; Tu, H. Editorial: C. elegans as an emerging model of pharmacological innovation. Front. Pharmacol., 2022, 13, 1029752. doi: 10.3389/fphar.2022.1029752 PMID: 36238559
- Markaki, M.; Tavernarakis, N. Caenorhabditis elegans as a model system for human diseases. Curr. Opin. Biotechnol., 2020, 63, 118-125. doi: 10.1016/j.copbio.2019.12.011 PMID: 31951916
- Zečić, A.; Braeckman, B.P. DAF-16/FoxO in caenorhabditis elegans and its role in metabolic remodeling. Cells, 2020, 9(1), 109. doi: 10.3390/cells9010109 PMID: 31906434
- Uno, M.; Tani, Y.; Nono, M.; Okabe, E.; Kishimoto, S.; Takahashi, C.; Abe, R.; Kurihara, T.; Nishida, E. Neuronal DAF-16-to-intestinal DAF-16 communication underlies organismal lifespan extension in C. elegans. iScience, 2021, 24(7), 102706. doi: 10.1016/j.isci.2021.102706 PMID: 34235410
- Back, P.; Braeckman, B.P.; Matthijssens, F. ROS in aging Caenorhabditis elegans: Damage or signaling? Oxid. Med. Cell. Longev., 2012, 2012, 1-14. doi: 10.1155/2012/608478 PMID: 22966416
- Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol., 2017, 37(1), 50-59. doi: 10.1002/jat.3357 PMID: 27443595
- Cavalcanti, I.D.L.; Ximenes, R.M.; Loiola Pessoa, O.D.; Santos Magalhães, N.S.; Lira-Nogueira, M.C.B. Fucoidan-coated PIBCA nanoparticles containing oncocalyxone A: Activity against metastatic breast cancer cells. J. Drug Deliv. Sci. Technol., 2021, 65, 102698. doi: 10.1016/j.jddst.2021.102698
- Lira, M.C.B.; Santos-Magalhães, N.S.; Nicolas, V.; Marsaud, V.; Silva, M.P.C.; Ponchel, G.; Vauthier, C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur. J. Pharm. Biopharm., 2011, 79(1), 162-170. doi: 10.1016/j.ejpb.2011.02.013 PMID: 21349331
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics, 1974, 77(1), 71-94. doi: 10.1093/genetics/77.1.71 PMID: 4366476
- Bischof, L.J.; Huffman, D.L.; Aroian, R.V. Assays for toxicity studies in <i>C. elegans</i> with Bt crystal proteins. In: C. elegans; Humana Press: New Jersey, 2006; pp. 139-154. doi: 10.1385/1-59745-151-7:139
- Wang, M.C.; ORourke, E.J.; Ruvkun, G. Fat metabolism links germline stem cells and longevity in C. elegans. Science, 2008, 322(1979), 957-960. doi: 10.1126/science.1162011
- Tsalik, E.L.; Hobert, O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J. Neurobiol., 2003, 56(2), 178-197. doi: 10.1002/neu.10245 PMID: 12838583
- Chalfie, M.; Sulston, J.E.; White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci., 1985, 5(4), 956-964. doi: 10.1523/JNEUROSCI.05-04-00956.1985 PMID: 3981252
- Gubert, P.; Puntel, B.; Lehmen, T.; Bornhorst, J.; Avila, D.S.; Aschner, M.; Soares, F.A.A. Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans. Life Sci., 2016, 151, 218-223. doi: 10.1016/j.lfs.2016.03.016 PMID: 26972607
- Rangsinth, P.; Prasansuklab, A.; Duangjan, C.; Gu, X.; Meemon, K.; Wink, M.; Tencomnao, T. Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC Complement. Altern. Med., 2019, 19(1), 164. doi: 10.1186/s12906-019-2578-5 PMID: 31286949
- Yin, J.; Hong, X.; Ma, L.; Liu, R.; Bu, Y. Non-targeted metabolomic profiling of atrazine in Caenorhabditis elegans using UHPLC-QE Orbitrap/MS. Ecotoxicol. Environ. Saf., 2020, 206, 111170. doi: 10.1016/j.ecoenv.2020.111170 PMID: 32861007
- Klupczynska, A.; Plewa, S.; Dereziński, P.; Garrett, T.J.; Rubio, V.Y.; Kokot, Z.J.; Matysiak, J. Identification and quantification of honeybee venom constituents by multiplatform metabolomics. Sci. Rep., 2020, 10(1), 21645. doi: 10.1038/s41598-020-78740-1 PMID: 33303913
- Azevedo, F.V.P.V.; Lopes, D.S.; Cirilo Gimenes, S.N.; Achê, D.C.; Vecchi, L.; Alves, P.T.; Guimarães, D.O.; Rodrigues, R.S.; Goulart, L.R.; Rodrigues, V.M.; Yoneyama, K.A.G. Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA2 homologue from Bothrops pauloensis venom. Int. J. Biol. Macromol., 2016, 82, 671-677. doi: 10.1016/j.ijbiomac.2015.10.080 PMID: 26519876
- Bozorgi, A.; Khazaei, S.; Khademi, A.; Khazaei, M. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. Iran. J. Basic Med. Sci., 2020, 23(8), 970-983. doi: 10.22038/ijbms.2020.43745.10270 PMID: 32952942
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Ip, S-W.; Liao, S-S.; Lin, S-Y.; Lin, J.P.; Yang, J.S.; Lin, M.L.; Chen, G.W.; Lu, H.F.; Lin, M.W.; Han, S.M.; Chung, J.G. The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo, 2008, 22(2), 237-245. PMID: 18468409
- Duffy, C.; Sorolla, A.; Wang, E.; Golden, E.; Woodward, E.; Davern, K.; Ho, D.; Johnstone, E.; Pfleger, K.; Redfern, A.; Iyer, K.S.; Baer, B.; Blancafort, P. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis. Oncol., 2020, 4(1), 24. doi: 10.1038/s41698-020-00129-0 PMID: 32923684
- Jeong, Y.J.; Choi, Y.; Shin, J.M.; Cho, H.J.; Kang, J.H.; Park, K.K.; Choe, J.Y.; Bae, Y.S.; Han, S.M.; Kim, C.H.; Chang, H.W.; Chang, Y.C. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem. Toxicol., 2014, 68, 218-225. doi: 10.1016/j.fct.2014.03.022 PMID: 24675423
- Shiassi Arani, F.; Karimzadeh, L.; Ghafoori, S.M.; Nabiuni, M. Antimutagenic and synergistic cytotoxic effect of cisplatin and honey bee venom on 4t1 invasive mammary carcinoma cell line. Adv. Pharmacol. Sci., 2019, 2019, 1-8. doi: 10.1155/2019/7581318 PMID: 30838042
- Orolić, N.; ver, L.; Verstovek, S.; Terzić, S.; Baić, I. Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon, 2003, 41(7), 861-870. doi: 10.1016/S0041-0101(03)00045-X PMID: 12782086
- Orolić, N.; Terzić, S.; ver, L.; Baić, I. Honey‐bee products in prevention and/or therapy of murine transplantable tumours. J. Sci. Food Agric., 2005, 85(3), 363-370. doi: 10.1002/jsfa.2041
- Ahn, Y.; Shin, J.S.; Lee, J.; Lee, Y.J.; Kim, M.; Shin, Y.; Park, K.B.; Kim, E.J.; Kim, M.J.; Lee, J.; Lee, H.D.; Lee, Y.; Kim, S.; Chung, H.J.; Ha, I.H. Safety of essential bee venom pharmacopuncture as assessed in a randomized controlled double-blind trial. J. Ethnopharmacol., 2016, 194, 774-780. doi: 10.1016/j.jep.2016.11.012 PMID: 27840257
- Cherniack, E.P.; Govorushko, S. To bee or not to bee: The potential efficacy and safety of bee venom acupuncture in humans. Toxicon, 2018, 154, 74-78. doi: 10.1016/j.toxicon.2018.09.013 PMID: 30268393
- DeGrado, W.F.; Musso, G.F.; Lieber, M.; Kaiser, E.T.; Kézdy, F.J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J., 1982, 37(1), 329-338. doi: 10.1016/S0006-3495(82)84681-X PMID: 7055625
- Pan, H.; Soman, N.R.; Schlesinger, P.H.; Lanza, G.M.; Wickline, S.A. Cytolytic peptide nanoparticles (NanoBees) for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(3), 318-327. doi: 10.1002/wnan.126 PMID: 21225660
- Peeler, D.J.; Thai, S.N.; Cheng, Y.; Horner, P.J.; Sellers, D.L.; Pun, S.H. pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery. Biomaterials, 2019, 192, 235-244. doi: 10.1016/j.biomaterials.2018.11.004 PMID: 30458359
- Xing, L.; Dawei, C.; Liping, X.; Rongqing, Z. Oral colon-specific drug delivery for bee venom peptide: Development of a coated calcium alginate gel beads-entrapped liposome. J. Control. Release, 2003, 93(3), 293-300. doi: 10.1016/j.jconrel.2003.08.019 PMID: 14644579
- Das, B.; Madhubala, D.; Mahanta, S.; Patra, A.; Puzari, U.; Khan, M.R.; Mukherjee, A.K. A novel therapeutic formulation for the improved treatment of indian red scorpion (mesobuthus tamulus) venom-induced toxicity-tested in caenorhabditis elegans and rodent models. Toxins, 2023, 15(8), 504. doi: 10.3390/toxins15080504 PMID: 37624261
- Kaletta, T.; Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov., 2006, 5(5), 387-399. doi: 10.1038/nrd2031 PMID: 16672925
- Boyd, W.A.; Smith, M.V.; Co, C.A.; Pirone, J.R.; Rice, J.R.; Shockley, K.R.; Freedman, J.H. Developmental effects of the toxcastTM phase i and phase ii chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ. Health Perspect., 2016, 124(5), 586-593. doi: 10.1289/ehp.1409645 PMID: 26496690
- Chattopadhyay, D.; Thirumurugan, K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech. Ageing Dev., 2018, 171, 47-57. doi: 10.1016/j.mad.2018.03.002 PMID: 29526449
- da Silveira, T.L.; Zamberlan, D.C.; Arantes, L.P.; Machado, M.L.; da Silva, T.C.; Câmara, D.F.; Santamaría, A.; Aschner, M.; Soares, F.A.A. Quinolinic acid and glutamatergic neurodegeneration in Caenorhabditis elegans. Neurotoxicology, 2018, 67, 94-101. doi: 10.1016/j.neuro.2018.04.015 PMID: 29702159
- Zečić, A.; Dhondt, I.; Braeckman, B.P. The nutritional requirements of Caenorhabditis elegans. Genes Nutr., 2019, 14(1), 15. doi: 10.1186/s12263-019-0637-7 PMID: 31080524
- Branicky, R.; Hekimi, S. What keeps C. elegans regular: The genetics of defecation. Trends Genet., 2006, 22(10), 571-579. doi: 10.1016/j.tig.2006.08.006 PMID: 16911844
- Gonzalez-Moragas, L.; Roig, A.; Laromaine, A.C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci., 2015, 219, 10-26. doi: 10.1016/j.cis.2015.02.001 PMID: 25772622
- Treinin, M.; Jin, Y. Cholinergic transmission in C. elegans: Functions, diversity, and maturation of ACh‐activated ion channels. J. Neurochem., 2021, 158(6), 1274-1291. doi: 10.1111/jnc.15164 PMID: 32869293
- Mitchell, H.K.; Lowy, P.H.; Sarmiento, L.; Dickson, L. Melittin: Toxicity to Drosophila and inhibition of acetylcholinesterase. Arch. Biochem. Biophys., 1971, 145(1), 344-348. doi: 10.1016/0003-9861(71)90045-2 PMID: 5001227
- Philippsen, D.F.; Tamagno, W.A.; Vanin, A.P.; Concato, A.C.; Bragagnolo, L.; Prestes, E.; Korf, E.P.; Kaizer, R.R. Copper uses in organic production are safe to the nervous system of Caenorhabditis elegans? Environ. Qual. Manage., 2021, 30(4), 61-70. doi: 10.1002/tqem.21736
- Anderson, G.L.; Cole, R.D.; Williams, P.L. Assessing behavioral toxicity with Caenorhabditis elegans. Environ. Toxicol. Chem., 2004, 23(5), 1235-1240. doi: 10.1897/03-264 PMID: 15180374
- Mansur, F.; Luoga, W.; Buttle, D.J.; Duce, I.R.; Lowe, A.; Behnke, J.M. The anthelmintic efficacy of natural plant cysteine proteinases against two rodent cestodes Hymenolepis diminuta and Hymenolepis microstomain vitro. Vet. Parasitol., 2014, 201(1-2), 48-58. doi: 10.1016/j.vetpar.2013.12.018 PMID: 24462509
- Williams, A.R.; Fryganas, C.; Ramsay, A.; Mueller-Harvey, I.; Thamsborg, S.M. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS One, 2014, 9(5), e97053. doi: 10.1371/journal.pone.0097053 PMID: 24810761
- Rehman, A.; Ullah, R.; Jaiswal, N.; Khan, M.A.H.; Rehman, L.; Beg, M.A.; Malhotra, S.K.; Abidi, S.M.A. Low virulence potential and in vivo transformation ability in the honey bee venom treated Clinostomum Complanatum. Exp. Parasitol., 2017, 183, 33-40. doi: 10.1016/j.exppara.2017.10.007 PMID: 29069571
- Hashmi, S.; Zhang, J.; Oksov, Y.; Ji, Q.; Lustigman, S. The Caenorhabditis elegans CPI-2a cystatin-like inhibitor has an essential regulatory role during oogenesis and fertilization. J. Biol. Chem., 2006, 281(38), 28415-28429. doi: 10.1074/jbc.M600254200 PMID: 16857685
- Jang, S.H.; Park, Y.; Park, S.C.; Il Kim, P.; Lee, D.G.; Hahm, K.S. Antinematodal activity and the mechanism of the antimicrobial peptide, HP (2-20), against Caenorhabditis elegans. Biotechnol. Lett., 2004, 26(4), 287-291. doi: 10.1023/B:BILE.0000015427.26410.d4 PMID: 15055763
- DiLoreto, R.; Murphy, C.T. The cell biology of aging. Mol. Biol. Cell, 2015, 26(25), 4524-4531. doi: 10.1091/mbc.E14-06-1084 PMID: 26668170
- Kenyon, C. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann. N. Y. Acad. Sci., 2010, 1204(1), 156-162. doi: 10.1111/j.1749-6632.2010.05640.x PMID: 20738286
- Dues, D.J.; Andrews, E.K.; Schaar, C.E.; Bergsma, A.L.; Senchuk, M.M.; Van Raamsdonk, J.M. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging, 2016, 8(4), 777-795. doi: 10.18632/aging.100939 PMID: 27053445
- Henderson, S.T.; Johnson, T.E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol., 2001, 11(24), 1975-1980. doi: 10.1016/S0960-9822(01)00594-2 PMID: 11747825
- Farhan, M.; Silva, M.; Xingan, X.; Huang, Y.; Zheng, W. Role of FOXO transcription factors in cancer metabolism and angiogenesis. Cells, 2020, 9(7), 1586. doi: 10.3390/cells9071586 PMID: 32629884
- Wan, Q.L.; Shi, X.; Liu, J.; Ding, A.J.; Pu, Y.Z.; Li, Z.; Wu, G.S.; Luo, H.R. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans. Aging, 2017, 9(2), 447-474. doi: 10.18632/aging.101170 PMID: 28177875
- Lemieux, G.A.; Ashrafi, K. Investigating connections between metabolism, longevity, and behavior in Caenorhabditis elegans. Trends Endocrinol. Metab., 2016, 27(8), 586-596. doi: 10.1016/j.tem.2016.05.004 PMID: 27289335
- Utkin, Y.N. Animal venom studies: Current benefits and future developments. World J. Biol. Chem., 2015, 6(2), 28-33. doi: 10.4331/wjbc.v6.i2.28 PMID: 26009701
- Nelson, D.A.; OConnor, R. The venom of the honeybee (Apis mellifera): Free amino acids and peptides. Can. J. Biochem., 1968, 46(10), 1221-1226. doi: 10.1139/o68-182 PMID: 5687646
- Surendra, N.S.; Ravikumar, H.; Reddy, M.R.S. Evaluation of catecholamines and amino acids from venom reservoir extract of Indian honey bee (Apis) species. J. Apic. Res., 2014, 53(5), 514-519. doi: 10.3896/IBRA.1.53.5.05
- Popplewell, J.F.; Swann, M.J.; Freeman, N.J.; McDonnell, C.; Ford, R.C. Quantifying the effects of melittin on liposomes. Biochim. Biophys. Acta Biomembr., 2007, 1768(1), 13-20. doi: 10.1016/j.bbamem.2006.05.016 PMID: 17092481
- Molenaars, M.; Schomakers, B.V.; Elfrink, H.L.; Gao, A.W.; Vervaart, M.A.T.; Pras-Raves, M.L.; Luyf, A.C.; Smith, R.L.; Sterken, M.G.; Kammenga, J.E.; van Kampen, A.H.C.; Janssens, G.E.; Vaz, F.M.; van Weeghel, M.; Houtkooper, R.H. Metabolomics and lipidomics in Caenorhabditis elegans using a single-sample preparation. Dis. Model. Mech., 2021, 14(4), dmm047746. doi: 10.1242/dmm.047746 PMID: 33653825
- Jin, J.; Byun, J.K.; Choi, Y.K.; Park, K.G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med., 2023, 55(4), 706-715. doi: 10.1038/s12276-023-00971-9 PMID: 37009798
- Butler, M.; van der Meer, L.T.; van Leeuwen, F.N. Amino acid depletion therapies: Starving cancer cells to death. Trends Endocrinol. Metab., 2021, 32(6), 367-381. doi: 10.1016/j.tem.2021.03.003 PMID: 33795176
- Dallière, N.; Bhatla, N.; Luedtke, Z.; Ma, D.K.; Woolman, J.; Walker, R.J.; Holden-Dye, L.; OConnor, V. Multiple excitatory and inhibitory neural signals converge to fine‐tune Caenorhabditis elegans feeding to food availability. FASEB J., 2016, 30(2), 836-848. doi: 10.1096/fj.15-279257 PMID: 26514165
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med., 2020, 52(1), 15-30. doi: 10.1038/s12276-020-0375-3 PMID: 31980738
- Eren, C.Y.; Gurer, H.G.; Gursoy, O.O.; Sezer, C.V. Antitumor effects of l-citrulline on hela cervical cancer cell lines. Anticancer. Agents Med. Chem., 2022, 22(18), 3157-3162. doi: 10.2174/1871520622666220426101409 PMID: 35473537
- Corsetto, P.A.; Zava, S.; Rizzo, A.M.; Colombo, I. The critical impact of sphingolipid metabolism in breast cancer progression and drug response. Int. J. Mol. Sci., 2023, 24(3), 2107. doi: 10.3390/ijms24032107 PMID: 36768427
- Nagahashi, M.; Tsuchida, J.; Moro, K.; Hasegawa, M.; Tatsuda, K.; Woelfel, I.A.; Takabe, K.; Wakai, T. High levels of sphingolipids in human breast cancer. J. Surg. Res., 2016, 204(2), 435-444. doi: 10.1016/j.jss.2016.05.022 PMID: 27565080
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem., 2020, 148, 80-89. doi: 10.1016/j.plaphy.2020.01.006 PMID: 31951944
- Barfeld, S.J.; Fazli, L.; Persson, M.; Marjavaara, L.; Urbanucci, A.; Kaukoniemi, K.M.; Rennie, P.S.; Ceder, Y.; Chabes, A.; Visakorpi, T.; Mills, I.G. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget, 2015, 6(14), 12587-12602. doi: 10.18632/oncotarget.3494 PMID: 25869206
Supplementary files
