Anticancer Activity of Sargassum fluitans Extracts in Different Cancer Cells

  • Авторлар: González-Garrido J.1, Gómez-García J.2, Hernández-Abreu O.1, Olivares-Corichi I.3, Pereyra-Vergara F.3, García-Sánchez J.4
  • Мекемелер:
    1. Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas. Laboratorio de Bioquímica y Biología molecular, Universidad Juarez Autonoma de Tabasco
    2. Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas. Laboratorio de Bioquímica y Biología molecular,, Universidad Juarez Autonoma de Tabasco
    3. Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Laboratorio de Oncología Molecular y Estrés Oxidativo,, Instituto Politecnico Nacional
    4. Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Laboratorio de Oncología Molecular y Estrés Oxidativo, Instituto Politecnico Nacional
  • Шығарылым: Том 24, № 10 (2024)
  • Беттер: 745-754
  • Бөлім: Oncology
  • URL: https://snv63.ru/1871-5206/article/view/643695
  • DOI: https://doi.org/10.2174/0118715206282983240215050314
  • ID: 643695

Дәйексөз келтіру

Толық мәтін

Аннотация

Background:The arrival of large quantities of Sargassum in the Mexican Caribbean Sea has generated major environmental, health and economic problems. Although Sargassum has been used in the generation of some commercial products, few studies have described its possible applications as a source of compounds with anticancer activity.

Objective:This study aimed to evaluate the antiproliferative effects of different Sargassum extracts on various cancer cell lines. Furthermore, LC/QTOF-MS was used to identify the compounds related to the antiproliferative effect.

Methods:First, determination of the seaweed was performed, and dichloromethane, chloroform and methanol extracts were obtained. The extracts were evaluated for their antiproliferative effects by MTT in breast (MDAMB- 231 and MCF-7), prostate (DU-145), lung (A549) and cervical (SiHa) cancer cell lines. Finally, LC/QTOFMS identified the compounds related to the antiproliferative effect.

Results:The authentication showed Sargassum fluitans as the predominant species. The extracts of dichloromethane and chloroform showed an antiproliferative effect. Interestingly, the fractionation of the chloroform extract showed two fractions (FC1 and FC2) with antiproliferative activity in MDA-MB-231, SiHa and A549 cancer cell lines. On the other hand, three fractions of dichloromethane extract (FD1, FD4 and FD5) also showed antiproliferative effects in the MDA-MB-231, MCF-7, SiHa and DU-145 cancer cell lines. Furthermore, LC/QTOF-MS revealed the presence of eight major compounds in FC2. Three compounds with evidence of anticancer activity were identified (D-linalool-3-glucoside, (3R,4S,6E,10Z)-3,4,7,11-tetramethyl-6,10-tridecadienal and alpha-tocotrienol).

Conclusion:These findings showed that Sargassum fluitans extracts are a possible source of therapeutic agents against cancer and could act as scaffolds for new drug discovery.

Авторлар туралы

José González-Garrido

Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas. Laboratorio de Bioquímica y Biología molecular, Universidad Juarez Autonoma de Tabasco

Email: info@benthamscience.net

Javier Gómez-García

Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas. Laboratorio de Bioquímica y Biología molecular,, Universidad Juarez Autonoma de Tabasco

Email: info@benthamscience.net

Oswaldo Hernández-Abreu

Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas. Laboratorio de Bioquímica y Biología molecular, Universidad Juarez Autonoma de Tabasco

Email: info@benthamscience.net

Ivonne Olivares-Corichi

Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Laboratorio de Oncología Molecular y Estrés Oxidativo,, Instituto Politecnico Nacional

Email: info@benthamscience.net

Fernando Pereyra-Vergara

Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Laboratorio de Oncología Molecular y Estrés Oxidativo,, Instituto Politecnico Nacional

Email: info@benthamscience.net

José García-Sánchez

Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Laboratorio de Oncología Molecular y Estrés Oxidativo, Instituto Politecnico Nacional

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Jonathan, M.K.; Kelly, C.; Frances, E.D.; Weijia, F.; Brian, L.G. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019. JAMA Oncol., 2022, 8(3), 420-444. doi: 10.1001/jamaoncol.2021.6987
  2. D’Alterio, C.; Scala, S.; Sozzi, G.; Roz, L.; Bertolini, G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin. Cancer Biol., 2020, 60, 351-361. doi: 10.1016/j.semcancer.2019.08.019 PMID: 31454672
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Dutt, R.; Garg, V.; Khatri, N.; Madan, A.K. Phytochemicals in anticancer drug development. Anticancer. Agents Med. Chem., 2019, 19(2), 172-183. doi: 10.2174/1871520618666181106115802 PMID: 30398123
  5. Roleira, F.M.F.; Varela, C.L.; Costa, S.C.; Tavares-da-Silva, E.J. Phenolic derivatives from medicinal herbs and plant extracts: anticancer effects and synthetic approaches to modulate biological activity. Stu. Nat. Prod. Chem., 2018, 57, 115-156. doi: 10.1016/B978-0-444-64057-4.00004-1
  6. Haque, N.; Parveen, S.; Tang, T.; Wei, J.; Huang, Z. Marine natural products in clinical use. Mar. Drugs, 2022, 20(8), 528. doi: 10.3390/md20080528 PMID: 36005531
  7. Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491. doi: 10.3390/md17090491 PMID: 31443597
  8. Rushdi, M.I.; Abdel-Rahman, I.A.M.; Saber, H.; Attia, E.Z.; Abdelraheem, W.M.; Madkour, H.A.; Hassan, H.M.; Elmaidomy, A.H.; Abdelmohsen, U.R. Pharmacological and natural products diversity of the brown algae genus Sargassum. RSC Advances, 2020, 10(42), 24951-24972. doi: 10.1039/D0RA03576A PMID: 35517468
  9. Nigam, M.; Suleria, H.A.R.; Farzaei, M.H.; Mishra, A.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean. Daru, 2019, 27(1), 491-515. doi: 10.1007/s40199-019-00273-4 PMID: 31165439
  10. Senthil, A.; Mamatha, B.S.; Vishwanath, P.; Bhat, K.K.; Ravishankar, G.A. Studies on development and storage stability of instant spice adjunct mix from seaweed (Eucheuma). J. Food Sci. Technol., 2011, 48(6), 712-717. doi: 10.1007/s13197-010-0165-3 PMID: 23572809
  11. Bruni, R.; Barreca, D.; Protti, M.; Brighenti, V.; Righetti, L.; Anceschi, L.; Mercolini, L.; Benvenuti, S.; Gattuso, G.; Pellati, F. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest. Molecules, 2019, 24(11), 2163. doi: 10.3390/molecules24112163 PMID: 31181737
  12. Mine, I. Biological interactions during the life history of seaweed a microscopic review. Kuroshio Sci., 2008, 35-40.
  13. Chávez, V.; Uribe-Martínez, A.; Cuevas, E.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Francisco, V.; Estévez, M.; Celis, L.B.; Monroy-Velázquez, L.V.; Leal-Bautista, R.; Álvarez-Filip, L.; García-Sánchez, M.; Masia, L.; Silva, R. Massive influx of pelagic Sargassum spp. On the coasts of the Mexican Caribbean 2014–2020: Challenges and opportunities. Water, 2020, 12(10), 2908. doi: 10.3390/w12102908
  14. Schell, J.; Goodwin, D.; Siuda, A. Recent Sargassum inundation events in the caribbean: Shipboard observations reveal dominance of a previously rare form. Oceanography, 2015, 28(3), 8-10. doi: 10.5670/oceanog.2015.70
  15. Hickey, A.J.; Ganderton, D. Solid-liquid extraction. In Pharmaceutical Process Engineering; CRC Press: Taylor and Francis Group: London, UK, 2009, pp. 87-91.
  16. Corsetto, P.A.; Montorfano, G.; Zava, S.; Colombo, I.; Ingadottir, B.; Jonsdottir, R.; Sveinsdottir, K.; Rizzo, A.M. Characterization of antioxidant potential of seaweed extracts for enrichment of convenience food. Antioxidants, 2020, 9(3), 249. doi: 10.3390/antiox9030249 PMID: 32204441
  17. Saraswati, G.; Giriwono, P.E.; Iskandriati, D.; Tan, C.P.; Andarwulan, N. Sargassum seaweed as a source of anti-inflammatory substances and the potential insight of the tropical species: A review. Mar. Drugs, 2019, 17(10), 590. doi: 10.3390/md17100590
  18. Linch, A.L.; Hendrickson, E.R.; Katz, M.; Martin, J.R.; Nelson, G.O.; Pattison, J.N.; Vander Kolk, A.L.; Weidner, R.B. Thin-layer chromatography. Health Lab. Sci., 1973, 10(2), 141-152. PMID: 4701513
  19. Segeritz, C.P.; Vallier, L. Cell culture: Growing cells as model systems in vitro. Bas. Sci. Met. Cli. Res., 2017, 151-172. doi: 10.1016/B978-0-12-803077-6.00009-6
  20. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
  21. Sana, T.R.; Roark, J.C.; Li, X.; Waddell, K.; Fischer, S.M. Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech., 2008, 19(4), 258-266. PMID: 19137116
  22. ChemBioDraw Ultra. Available from:http://www.cambridgesoft.com/software/overview.aspx
  23. Denningtion, R.; Roy, T.; Millam, J. Molecular docking of selective binding affinity of sulfonamide derivatives as potential antimalarial agents targeting the glycolytic enzymes: GAPDH, aldolase and TPI. In: GaussView, Version 5; Semichem Inc.: Shawnee Mission, 2009.
  24. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B. Gaussian 09, Revision A.02; Gaussian, Inc: Wallingford CT, 2016.
  25. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
  26. DeLano, W.L. The PyMOL molecular graphics system. DeLano Scientific; San Carlos, CA,: USA, 2002. http://www.pymol.org
  27. Amaral-Zettler, L.A.; Dragone, N.B.; Schell, J.; Slikas, B.; Murphy, L.G.; Morrall, C.E.; Zettler, E.R. Comparative mitochondrial and chloroplast genomics of a genetically distinct form of Sargassum contributing to recent "Golden Tides" in the Western Atlantic. Ecol. Evol., 2017, 7(2), 516-525. doi: 10.1002/ece3.2630 PMID: 28116048
  28. Parr, A.E. Quantitative observations on the pelagic sargassum vegetation of the western north atlantic. with preliminary discussion of morphology and relationships. 1939. Available from:https://elischolar.library.yale.edu/bulletin_yale_bingham_oceanographic_collection/40
  29. Tsuzuki, S.; Amitsuka, T.; Okahashi, T.; Kozai, Y.; Yamasaki, M.; Inoue, K.; Fushiki, T. Identification of the odor-active volatile compound (Z,Z)-4,7-tridecadienal as a potential ligand for the transmembrane receptor CD36. Biomed. Res., 2016, 37(6), 335-342. doi: 10.2220/biomedres.37.335 PMID: 28003580
  30. Jiang, Y.; Guo, Y.; Hao, J.; Guenter, R.; Lathia, J.; Beck, A.W.; Hattaway, R.; Hurst, D.; Wang, Q.J.; Liu, Y.; Cao, Q.; Krontiras, H.; Chen, H.; Silverstein, R.; Ren, B. Development of an arteriolar niche and self-renewal of breast cancer stem cells by lysophosphatidic acid/protein kinase D signaling. Commun. Biol., 2021, 4(1), 780. doi: 10.1038/s42003-021-02308-6 PMID: 34168243
  31. Drury, J.; Rychahou, P.G.; He, D.; Jafari, N.; Wang, C.; Lee, E.Y.; Weiss, H.L.; Evers, B.M.; Zaytseva, Y.Y. Inhibition of fatty acid synthase upregulates expression of cd36 to sustain proliferation of colorectal cancer cells. Front. Oncol., 2020, 10, 1185. doi: 10.3389/fonc.2020.01185 PMID: 32850342
  32. Deng, M.; Cai, X.; Long, L.; Xie, L.; Ma, H.; Zhou, Y.; Liu, S.; Zeng, C. CD36 promotes the epithelial–mesenchymal transition and metastasis in cervical cancer by interacting with TGF-β. J. Transl. Med., 2019, 17(1), 352. doi: 10.1186/s12967-019-2098-6 PMID: 31655604
  33. Yang, P.; Su, C.; Luo, X.; Zeng, H.; Zhao, L.; Wei, L.; Zhang, X.; Varghese, Z.; Moorhead, J.F.; Chen, Y.; Ruan, X.Z. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett., 2018, 438, 76-85. doi: 10.1016/j.canlet.2018.09.006 PMID: 30213558
  34. Watt, M.J.; Clark, A.K.; Selth, L.A.; Haynes, V.R.; Lister, N.; Rebello, R.; Porter, L.H.; Niranjan, B.; Whitby, S.T.; Lo, J.; Huang, C.; Schittenhelm, R.B.; Anderson, K.E.; Furic, L.; Wijayaratne, P.R.; Matzaris, M.; Montgomery, M.K.; Papargiris, M.; Norden, S.; Febbraio, M.; Risbridger, G.P.; Frydenberg, M.; Nomura, D.K.; Taylor, R.A. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci. Transl. Med., 2019, 11(478), eaau5758. doi: 10.1126/scitranslmed.aau5758 PMID: 30728288
  35. Hsieh, F.L.; Turner, L.; Bolla, J.R.; Robinson, C.V.; Lavstsen, T.; Higgins, M.K. The structural basis for CD36 binding by the malaria parasite. Nat. Commun., 2016, 7(1), 12837. doi: 10.1038/ncomms12837 PMID: 27667267
  36. Fu, C.; Xiang, M.L.; Chen, S.; Dong, G.; Liu, Z.; Chen, C.B.; Liang, J.; Cao, Y.; Zhang, M.; Liu, Q. Molecular drug simulation and experimental validation of the CD36 receptor competitively binding to long-chain fatty acids by 7-ketocholesteryl-9-carboxynonanoate. ACS Omega, 2023, 8(31), 28277-28289. doi: 10.1021/acsomega.3c02082 PMID: 37576668
  37. Sugumaran, A.; Pandiyan, R.; Kandasamy, P.; Antoniraj, M.G.; Navabshan, I.; Sakthivel, B.; Dharmaraj, S.; Chinnaiyan, S.K.; Ashokkumar, V.; Ngamcharussrivichai, C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. Sci. Total Environ., 2022, 836, 155445. doi: 10.1016/j.scitotenv.2022.155445 PMID: 35490806
  38. Kantarjian, H.; Short, N.J.; DiNardo, C.; Stein, E.M.; Daver, N.; Perl, A.E.; Wang, E.S.; Wei, A.; Tallman, M. Harnessing the benefits of available targeted therapies in acute myeloid leukaemia. Lancet Haematol., 2021, 8(12), e922-e933. doi: 10.1016/S2352-3026(21)00270-2 PMID: 34687602
  39. Wang, J.; Wang, P.; Zeng, Z.; Lin, C.; Lin, Y.; Cao, D.; Ma, W.; Xu, W.; Xiang, Q.; Luo, L.; Wang, W.; Shi, Y.; Gao, Z.; Zhao, Y.; Liu, H.; Liu, S.L. Trabectedin in cancers: Mechanisms and clinical applications. Curr. Pharm. Des., 2022, 28(24), 1949-1965. doi: 10.2174/1381612828666220526125806 PMID: 35619256
  40. Rodríguez-Martínez, R.E.; Roy, P.D.; Torrescano-Valle, N.; Cabanillas-Terán, N.; Carrillo-Domínguez, S.; Collado-Vides, L.; García-Sánchez, M.; van Tussenbroek, B.I. Element concentrations in pelagic Sargassum along the mexican caribbean coast in 2018-2019. PeerJ, 2020, 8, e8667. doi: 10.7717/peerj.8667 PMID: 32149030
  41. Namvar, F.; Baharara, J.; Mahdi, A.A. Antioxidant and anticancer activities of selected persian gulf algae. Indian J. Clin. Biochem., 2014, 29(1), 13-20. doi: 10.1007/s12291-013-0313-4 PMID: 24478544
  42. Namvar, F.; Mohamad, R.; Baharara, J.; Zafar-Balanejad, S.; Fargahi, F.; Rahman, H.S. Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). BioMed. Res. Int., 2013, 2013, 1-9. doi: 10.1155/2013/604787 PMID: 24078922
  43. Xu, S.Y.; Huang, X.; Cheong, K.L. Recent advances in marine algae polysaccharides: isolation, structure, and activities. Mar. Drugs, 2017, 15(12), 388. doi: 10.3390/md15120388 PMID: 29236064
  44. Lin, P.; Chen, S.; Zhong, S. Nutritional and chemical composition of sargassum zhangii and the physical and chemical characterization, binding bile acid, and cholesterol-lowering activity in hepg2 cells of its fucoidans. Foods, 2022, 11(12), 1771. doi: 10.3390/foods11121771 PMID: 35741969
  45. Chale-Dzul, J.; Pérez-Cabeza de Vaca, R.; Quintal-Novelo, C.; Olivera-Castillo, L.; Moo-Puc, R. Hepatoprotective effect of a fucoidan extract from Sargassum fluitans Borgesen against CCl4-induced toxicity in rats. Int. J. Biol. Macromol., 2020, 145, 500-509. doi: 10.1016/j.ijbiomac.2019.12.183 PMID: 31874267
  46. Tripathi, R.; Singh, P.; Singh, A.; Chagtoo, M.; Khan, S.; Tiwari, S.; Agarwal, G.; Meeran, S.M.; Godbole, M.M. Zoledronate and molecular iodine cause synergistic cell death in triple negative breast cancer through endoplasmic reticulum stress. Nutr. Cancer, 2016, 68(4), 679-688. doi: 10.1080/01635581.2016.1158293 PMID: 27116040
  47. Chen, L.M.; Yang, P.P.; Al Haq, A.T.; Hwang, P.A.; Lai, Y.C.; Weng, Y.S.; Chen, M.A.; Hsu, H.L. Oligo-Fucoidan supplementation enhances the effect of Olaparib on preventing metastasis and recurrence of triple-negative breast cancer in mice. J. Biomed. Sci., 2022, 29(1), 70. doi: 10.1186/s12929-022-00855-6 PMID: 36109724
  48. Atashrazm, F.; Lowenthal, R.; Woods, G.; Holloway, A.; Dickinson, J. Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Mar. Drugs, 2015, 13(4), 2327-2346. doi: 10.3390/md13042327 PMID: 25874926
  49. van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol. Biol., 2007, 64(3), 251-263. doi: 10.1007/s11103-007-9149-8 PMID: 17440821
  50. Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine, 2002, 9(8), 721-726. doi: 10.1078/094471102321621322 PMID: 12587692
  51. Chang, M.Y.; Shieh, D.E.; Chen, C.C.; Yeh, C.S.; Dong, H.P. Linalool induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CDKIs. Int. J. Mol. Sci., 2015, 16(12), 28169-28179. doi: 10.3390/ijms161226089 PMID: 26703569
  52. Zhao, Y.; Chen, R.; Wang, Y.; Qing, C.; Wang, W.; Yang, Y. In vitro and in vivo efficacy studies of lavender angustifolia essential oil and its active constituents on the proliferation of human prostate cancer. Integr. Cancer Ther., 2017, 16(2), 215-226. doi: 10.1177/1534735416645408 PMID: 27151584
  53. Feng, W.W.; Zuppe, H.T.; Kurokawa, M. The role of cd36 in cancer progression and its value as a therapeutic target. Cells, 2023, 12(12), 1605. doi: 10.3390/cells12121605 PMID: 37371076
  54. Wang, J.; Li, Y. CD36 tango in cancer: Signaling pathways and functions. Theranostics, 2019, 9(17), 4893-4908. doi: 10.7150/thno.36037 PMID: 31410189
  55. Seimon, T.A.; Nadolski, M.J.; Liao, X.; Magallon, J.; Nguyen, M.; Feric, N.T.; Koschinsky, M.L.; Harkewicz, R.; Witztum, J.L.; Tsimikas, S.; Golenbock, D.; Moore, K.J.; Tabas, I. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab., 2010, 12(5), 467-482. doi: 10.1016/j.cmet.2010.09.010 PMID: 21035758
  56. De Silva, L.; Chuah, L.H.; Meganathan, P.; Fu, J.Y. Tocotrienol and cancer metastasis. Biofactors, 2016, 42(2), 149-162. doi: 10.1002/biof.1259 PMID: 26948691
  57. Hsieh, T.C.; Elangovan, S.; Wu, J.M. Differential suppression of proliferation in MCF-7 and MDA-MB-231 breast cancer cells exposed to alpha-, gamma- and delta-tocotrienols is accompanied by altered expression of oxidative stress modulatory enzymes. Anticancer Res., 2010, 30(10), 4169-4176. https://ar.iiarjournals.org/content/30/10/4169 PMID: 21036737
  58. Lim, S.W.; Loh, H.S.; Ting, K.N.; Bradshaw, T.D.; Zeenathul, N.A. Cytotoxicity and apoptotic activities of alpha-, gamma- and delta-tocotrienol isomers on human cancer cells. BMC Complement. Altern. Med., 2014, 14(1), 469. doi: 10.1186/1472-6882-14-469 PMID: 25480449
  59. Loganathan, R.; Selvaduray, K.R.; Nesaretnam, K.; Radhakrishnan, A.K. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP ‐ribose) polymerase cleavage and inhibiting nuclear factor kappa‐B activity. Cell Prolif., 2013, 46(2), 203-213. doi: 10.1111/cpr.12014 PMID: 23510475
  60. Ishii, K.; Hido, M.; Sakamura, M.; Virgona, N.; Yano, T. α-Tocotrienol and redox-silent analogs of vitamin E enhances bortezomib sensitivity in solid cancer cells through modulation of NFE2L1. Int. J. Mol. Sci., 2023, 24(11), 9382. doi: 10.3390/ijms24119382 PMID: 37298331

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024