Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy


Cite item

Full Text

Abstract

Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.

About the authors

Faride Ranjbari

Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences

Email: info@benthamscience.net

Farzaneh Fathi

Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kargozar, S.; Hoseini, S.J.; Milan, P.B.; Hooshmand, S.; Kim, H.W.; Mozafari, M. Quantum dots: A review from concept to clinic. Biotechnol. J., 2020, 15(12), 2000117. doi: 10.1002/biot.202000117 PMID: 32845071
  2. Wan, J.; Zhang, X.; Zhang, K.; Su, Z. Biological nanoscale fluorescent probes: From structure and performance to bi-oimaging. Rev. Anal. Chem., 2020, 39(1), 209-221. doi: 10.1515/revac-2020-0119
  3. Tandale, P.; Choudhary, N.; Singh, J.; Sharma, A.; Shukla, A.; Sriram, P.; Soni, U.; Singla, N.; Barnwal, R.P.; Singh, G.; Kaur, I.P.; Suttee, A. Fluorescent quantum dots: An insight on synthesis and potential biological application as drug carrier in cancer. Biochem. Biophys. Rep., 2021, 26, 100962. doi: 10.1016/j.bbrep.2021.100962 PMID: 33763604
  4. Piao, Z.; Yang, D.; Cui, Z.; He, H.; Mei, S.; Lu, H.; Fu, Z.; Wang, L.; Zhang, W.; Guo, R. Recent advances in metal chalcogenide quantum dots: From material design to biomedical applications. Adv. Funct. Mater., 2022, 32(44), 2207662. doi: 10.1002/adfm.202207662
  5. Correa-Espinoza, S. Synthesis of Ag2S quantum dots and their biomedical applications; Institute of Architecture Design and Art, 2018, 10, pp. 7-25.
  6. Manna, S.; Huang, H.; Da Silva, S.F.C.; Schimpf, C.; Rota, M.B.; Lehner, B.; Reindl, M.; Trotta, R.; Rastelli, A. Surface passivation and oxide encapsulation to improve optical properties of a single GaAs quantum dot close to the surface. Appl. Surf. Sci., 2020, 532, 147360. doi: 10.1016/j.apsusc.2020.147360
  7. Yaghini, E; Seifalian, AM; MacRobert, AJ Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine, 2009, 4(3), 353-363. doi: 10.2217/nnm.09.9
  8. Mintz, K.J.; Zhou, Y.; Leblanc, R.M. Recent development of carbon quantum dots regarding their optical properties, photo-luminescence mechanism, and core structure. Nanoscale, 2019, 11(11), 4634-4652. doi: 10.1039/C8NR10059D PMID: 30834912
  9. Wang, D.; Zhu, Y.; Wan, X.; Zhang, X.; Zhang, J. Colloidal semiconductor nanocrystals for biological photodynamic therapy applications: Recent progress and perspectives. Prog. Nat. Sci., 2020, 30(4), 443-455. doi: 10.1016/j.pnsc.2020.08.016
  10. Samia, A.C.S.; Dayal, S.; Burda, C. Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy. Photochem. Photobiol., 2006, 82(3), 617-625. doi: 10.1562/2005-05-11-IR-525 PMID: 16475871
  11. Ranjbari, F.; Hemmati, S.; Rashidi, M.R. Synthesis of 7,12-bis(4-(di(1H-pyrrol-2-yl)methyl)phenyl)benzokfluoranthene from a new dialde-hyde as a novel fluorometric bis-Dipyrromethane derivative. Turk. J. Chem., 2021, 45(1), 42-49. doi: 10.3906/kim-2004-72 PMID: 33679151
  12. Filali, S.; Pirot, F.; Miossec, P. Biological applications and toxicity minimization of semiconductor quantum dots. Trends Biotechnol., 2020, 38(2), 163-177. doi: 10.1016/j.tibtech.2019.07.013 PMID: 31473014
  13. Shu, Y.; Lin, X.; Qin, H.; Hu, Z.; Jin, Y.; Peng, X. Quantum dots for display applications. Angew. Chem. Int. Ed., 2020, 59(50), 22312-22323. doi: 10.1002/anie.202004857 PMID: 32421230
  14. Ghosh, D.; Ivanov, S.A.; Tretiak, S. Structural dynamics and electronic properties of semiconductor quantum dots: Computational insights. Chem. Mater., 2021, 33(19), 7848-7857. doi: 10.1021/acs.chemmater.1c02514
  15. Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light‐emitting diodes for display applications. Adv. Mater., 2019, 31(34), 1804294. doi: 10.1002/adma.201804294 PMID: 30650209
  16. Alaghmandfard, A.; Sedighi, O.; Tabatabaei Rezaei, N.; Abedini, A.A.; Khachatourian, A.; Toprak, M.S.; Seifalian, A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater. Sci. Eng. C, 2021, 120, 111756. doi: 10.1016/j.msec.2020.111756 PMID: 33545897
  17. Fathi, F.; Dadkhah, A.; Namazi, H. Characterisation and surface chemical modification of starch nanoparticles with lactid through ring opening polymerization. Intern. J. Nano., 2014, 7(1), 37-48. doi: 10.1504/IJNP.2014.062012
  18. Gao, D.; Zhang, Y.; Liu, A.; Zhu, Y.; Chen, S.; Wei, D.; Sun, J.; Guo, Z.; Fan, H. Photoluminescence-tunable carbon dots from synergy effect of sulfur doping and water engineering. Chem. Eng. J., 2020, 388, 124199. doi: 10.1016/j.cej.2020.124199
  19. Gidwani, B.; Sahu, V.; Shukla, S.S.; Pandey, R.; Joshi, V.; Jain, V.K.; Vyas, A. Quantum dots: Prospectives, toxicity, advances and applications. J. Drug Deliv. Sci. Technol., 2021, 61, 102308. doi: 10.1016/j.jddst.2020.102308
  20. Rao, H.; Liu, W.; Lu, Z.; Wang, Y.; Ge, H.; Zou, P.; Wang, X.; He, H.; Zeng, X.; Wang, Y. Silica-coated carbon dots conjugated to CdTe quantum dots: A ratiometric fluorescent probe for copper(II). Mikrochim. Acta, 2016, 183(2), 581-588. doi: 10.1007/s00604-015-1682-6
  21. Karakoti, A.S.; Shukla, R.; Shanker, R.; Singh, S. Surface functionalization of quantum dots for biological applications. Adv. Colloid Interface Sci., 2015, 215, 28-45. doi: 10.1016/j.cis.2014.11.004 PMID: 25467038
  22. Koneswaran, M.; Narayanaswamy, R. retracted: Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury (II). In: Sensors and Actuators B: Chemical; Elsevier, 2009; 139, pp. (1)91-96.
  23. Zhang, L.; Xing, H.; Liu, W.; Wang, Z.; Hao, Y.; Wang, H.; Dong, W.; Liu, Y.; Shuang, S.; Dong, C.; Gong, X. 11-mercaptoundecanoic acid-functionalized carbon dots as a ratiometric optical probe for doxorubicin detection. ACS Appl. Nano Mater., 2021, 4(12), 13734-13746. doi: 10.1021/acsanm.1c03141
  24. Susumu, K.; Mei, B.C.; Mattoussi, H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat. Protoc., 2009, 4(3), 424-436. doi: 10.1038/nprot.2008.247 PMID: 19265801
  25. Petruska, M.A.; Bartko, A.P.; Klimov, V.I. An amphiphilic approach to nanocrystal quantum dot-titania nanocomposites. J. Am. Chem. Soc., 2004, 126(3), 714-715. doi: 10.1021/ja037539s PMID: 14733535
  26. Wang, X.; Ruedas-Rama, M.J.; Hall, E.A.H. The emerging use of quantum dots in analysis. Anal. Lett., 2007, 40(8), 1497-1520. doi: 10.1080/00032710701381044
  27. Hu, W.; Xu, M.; Zhang, F.; Xiao, C.; Deng, Z. Dynamic analysis on flexible hub-beam with step-variable cross-section. Mech. Syst. Signal Process., 2022, 180, 109423. doi: 10.1016/j.ymssp.2022.109423
  28. Hu, W.; Zhang, C.; Deng, Z. Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun. Nonlinear Sci. Numer. Simul., 2020, 84, 105199. doi: 10.1016/j.cnsns.2020.105199
  29. Masri, P. J Electron Mater; Publishing model Hybrid, 1984, 14, p. 205.
  30. Hu, W.; Ye, J.; Deng, Z. Internal resonance of a flexible beam in a spatial tethered system. J. Sound Vibrat., 2020, 475, 115286. doi: 10.1016/j.jsv.2020.115286
  31. Gavartin, J.; Stoneham, A. Quantum dots as dynamical systems. Philosophical transactions of the royal society of london series A: Mathematical. Phys. Eng. Sci., 1803, 2003(361), 275-290.
  32. Hu, W.; Han, Z.; Bridges, T.J.; Qiao, Z. Multi-symplectic simulations of W/M-shape-peaks solitons and cuspons for FORQ equation. Appl. Math. Lett., 2023, 145, 108772. doi: 10.1016/j.aml.2023.108772
  33. Hu, W.; Xi, X.; Song, Z.; Zhang, C.; Deng, Z. Coupling dynamic behaviors of axially moving cracked cantilevered beam subjected to transverse harmonic load. Mech. Syst. Signal Process., 2023, 204, 110757. doi: 10.1016/j.ymssp.2023.110757
  34. Huai, Y.; Hu, W.; Song, W.; Zheng, Y.; Deng, Z. Magnetic-field-responsive property of Fe3O4/polyaniline solvent-free nanofluid. Phys. Fluids, 2023, 35(1), 012001. doi: 10.1063/5.0130588
  35. Hu, W.; Wang, Z.; Zhao, Y.; Deng, Z. Symmetry breaking of infinite-dimensional dynamic system. Appl. Math. Lett., 2020, 103, 106207. doi: 10.1016/j.aml.2019.106207
  36. Tang, J.; Marcus, R.A. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. J. Chem. Phys., 2005, 123(5), 054704. doi: 10.1063/1.1993567 PMID: 16108682
  37. Fontes, A.; de Lira, R.B.; Seabra, M.; da Silva, T.G.; de Castro Neto, A.G.; Santos, B.S. Quantum dots in biomedical research; Biomedical Engineering—Technical Applications in Medicine, 2012, pp. 269-290.
  38. Zhang, L.; Yin, L.; Wang, C.; lun, N.; Qi, Y.; Xiang, D. Origin of visible photoluminescence of ZnO quantum dots: Defect-dependent and size-dependent. J. Phys. Chem. C, 2010, 114(21), 9651-9658. doi: 10.1021/jp101324a
  39. Lei, D.; Shen, Y.; Feng, Y.; Feng, W. Recent progress in the fields of tuning the band gap of quantum dots. Sci. China Technol. Sci., 2012, 55(4), 903-912. doi: 10.1007/s11431-011-4717-1
  40. Zaknoon, B.; Bahir, G.; Saguy, C.; Edrei, R.; Hoffman, A.; Rao, R.A.; Muralidhar, R.; Chang, K.M. Study of single silicon quantum dots’ band gap and single-electron charging energies by room temperature scanning tunneling microscopy. Nano Lett., 2008, 8(6), 1689-1694. doi: 10.1021/nl080625b PMID: 18484776
  41. Kagan, C.R.; Murray, C.B.; Nirmal, M.; Bawendi, M.G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett., 1996, 76(9), 1517-1520. doi: 10.1103/PhysRevLett.76.1517 PMID: 10061743
  42. Saha, J.; Datta Roy, A.; Dey, D.; Bhattacharjee, D.; Arshad Hussain, S. Role of quantum dot in designing FRET based sensors. Mater. Today Proc., 2018, 5(1), 2306-2313. doi: 10.1016/j.matpr.2017.09.234
  43. Zhao, H.; Liu, G.; You, S.; Camargo, F.V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; Vomiero, A.; Gong, X. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci., 2021, 14(1), 396-406. doi: 10.1039/D0EE02235G
  44. Brkić, S. Optical properties of quantum dots. Eur. Int. J. Sci. Technol., 2016, 5(9), 98-107.
  45. Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364. doi: 10.1042/BJ20150942 PMID: 26862179
  46. Moan, J.; Peng, Q. An outline of the hundred-year history of PDT. Anticancer Res., 2003, 23(5A), 3591-3600. PMID: 14666654
  47. Ranjbari, F.; Mohammad, M.; Hemmati, S.; Safari, E.; Tjalli, H. Synthesis of novel cationic photosensitizers derived from chlorin for application in photodynamic therapy of cancer. Curr. Radiopharm., 2023, 16(4), 315-325.
  48. Calzavara-Pinton, P.G.; Venturini, M.; Sala, R. Photodynamic therapy: Update 2006 Part 1: Photochemistry and photobiology. J. Eur. Acad. Dermatol. Venereol., 2007, 21(3), 293-302. doi: 10.1111/j.1468-3083.2006.01902.x PMID: 17309449
  49. Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M.L.; Guillemin, F.; Barberi-Heyob, M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol., 2008, 26(11), 612-621. doi: 10.1016/j.tibtech.2008.07.007 PMID: 18804298
  50. Saczko, J.; Chwiłkowska, A.; Kulbacka, J.; Berdowska, I.; Zieliński, B.; Drag-Zalesińska, M.; Wysocka, T.; Lugowski, M.; Banaś, T. Photooxidative action in cancer and normal cells induced by the use of photofrin in photodynamic therapy. Folia Biol., 2008, 54(1), 24-29. PMID: 18226362
  51. Hu, T.; Wang, Z.; Shen, W.; Liang, R.; Yan, D.; Wei, M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics, 2021, 11(7), 3278-3300. doi: 10.7150/thno.54227 PMID: 33537087
  52. Tabish, T.A.; Scotton, C.J.; J Ferguson, D.C.; Lin, L.; der Veen, A.; Lowry, S.; Ali, M.; Jabeen, F.; Ali, M.; Winyard, P.G.; Zhang, S. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine, 2018, 13(15), 1923-1937. doi: 10.2217/nnm-2018-0018 PMID: 30124363
  53. Qiu, H.; Tan, M.; Ohulchanskyy, T.; Lovell, J.; Chen, G. Recent progress in upconversion photodynamic therapy. Nanomaterials, 2018, 8(5), 344. doi: 10.3390/nano8050344 PMID: 29783654
  54. Ren, X.D.; Hao, X.Y.; Li, H.C.; Ke, M.R.; Zheng, B.Y.; Huang, J.D. Progress in the development of nanosensitizers for X-ray induced photodynamic therapy. Drug Discov. Today, 2018, 23(10), 1791-1800. doi: 10.1016/j.drudis.2018.05.029 PMID: 29803933
  55. Fan, H.; Yu, X.; Wang, K.; Yin, Y.; Tang, Y.; Tang, Y.; Liang, X. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur. J. Med. Chem., 2019, 182, 111620. doi: 10.1016/j.ejmech.2019.111620 PMID: 31470307
  56. Yang, K.; Li, F.; Che, W.; Hu, X.; Liu, C.; Tian, F. Increment of the FRET efficiency between carbon dots and photosensitizers for enhanced photodynamic therapy. RSC Advances, 2016, 6(103), 101447-101451. doi: 10.1039/C6RA20412K
  57. Madani, S.Y.; Shabani, F.; Dwek, M.V.; Seifalian, A.M. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. Int. J. Nanomed., 2013, 8, 941-950. PMID: 23487255
  58. Brown, J.M. Exploiting the hypoxic cancer cell: Mechanisms and therapeutic strategies. Mol. Med. Today, 2000, 6(4), 157-162. doi: 10.1016/S1357-4310(00)01677-4 PMID: 10740254
  59. Asano, M.; Tanaka, S.; Sakaguchi, M.; Matsumura, H.; Yamaguchi, T.; Fujita, Y.; Tabuse, K. Normothermic microwave irradiation induces death of HL-60 cells through heat-independent apoptosis. Sci. Rep., 2017, 7(1), 11406. doi: 10.1038/s41598-017-11784-y PMID: 28900243
  60. Suleman, M.; Riaz, S.; Jalil, R. A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. J. Therm. Anal. Calorim., 2021, 146(3), 1193-1219. doi: 10.1007/s10973-020-10080-8
  61. Zhi, D.; Yang, T.; O’Hagan, J.; Zhang, S.; Donnelly, R.F. Photothermal therapy. J. Control. Release, 2020, 325, 52-71. doi: 10.1016/j.jconrel.2020.06.032 PMID: 32619742
  62. Zou, L.; Wang, H.; He, B.; Zeng, L.; Tan, T.; Cao, H.; He, X.; Zhang, Z.; Guo, S.; Li, Y. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics, 2016, 6(6), 762-772. doi: 10.7150/thno.14988 PMID: 27162548
  63. Jung, H.S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J.L.; Kim, J.S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev., 2018, 47(7), 2280-2297. doi: 10.1039/C7CS00522A PMID: 29528360
  64. Behrouzkia, Z.; Joveini, Z.; Keshavarzi, B.; Eyvazzadeh, N.; Aghdam, R.Z. Hyperthermia: How can it be used? Oman Med. J., 2016, 31(2), 89-97. doi: 10.5001/omj.2016.19 PMID: 27168918
  65. Xu, Y.; Chen, H.; Fang, Y.; Wu, J. Hydrogel combined with phototherapy in wound healing. Adv. Healthc. Mater., 2022, 11(16), 2200494. doi: 10.1002/adhm.202200494 PMID: 35751637
  66. Fathi, F.; Jalili, R.; Amjadi, M.; Rashidi, M.R. SPR signals enhancement by gold nanorods for cell surface marker detection. Bioimpacts, 2018, 9(2), 71-78. doi: 10.15171/bi.2019.10 PMID: 31334038
  67. Gellci, K.; Mehrmohammadi, M. Photothermal therapy.Encyclopedia of Cancer; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2014, pp. 1-5.
  68. Asadi, S.; Bianchi, L.; De Landro, M.; Korganbayev, S.; Schena, E.; Saccomandi, P. Laser‐induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. J. Biophotonics, 2021, 14(2), e202000161. doi: 10.1002/jbio.202000161 PMID: 32761778
  69. Wang, H.; Chang, J.; Shi, M.; Pan, W.; Li, N.; Tang, B. A dual targeted organic photothermal agent for enhanced photothermal therapy. Angew. Chem. Int. Ed., 2019, 58(4), 1057-1061. doi: 10.1002/anie.201811273 PMID: 30397990
  70. Montaseri, H.; Kruger, C.A.; Abrahamse, H. Review: Organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells. Oncotarget, 2020, 11(22), 2120-2136. doi: 10.18632/oncotarget.27596 PMID: 32547709
  71. Tsai, M.F.; Chang, S.H.G.; Cheng, F.Y.; Shanmugam, V.; Cheng, Y.S.; Su, C.H.; Yeh, C.S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano, 2013, 7(6), 5330-5342. doi: 10.1021/nn401187c PMID: 23651267
  72. Sabino, C.P.; Deana, A.M.; Yoshimura, T.M.; da Silva, D.F.T.; França, C.M.; Hamblin, M.R.; Ribeiro, M.S. The optical properties of mouse skin in the visible and near infrared spectral regions. J. Photochem. Photobiol. B, 2016, 160, 72-78. doi: 10.1016/j.jphotobiol.2016.03.047 PMID: 27101274
  73. Xiao, J.; Cong, H.; Wang, S.; Yu, B.; Shen, Y. Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. Biomater. Sci., 2021, 9(7), 2384-2412. doi: 10.1039/D0BM02013C PMID: 33576752
  74. Plotino, G.; Grande, N.M.; Mercade, M. Photodynamic therapy in endodontics. Int. Endod. J., 2019, 52(6), 760-774. doi: 10.1111/iej.13057 PMID: 30548497
  75. Pang, E.; Zhao, S.; Wang, B.; Niu, G.; Song, X.; Lan, M. Strategies to construct efficient singlet oxygen-generating photosensitizers. Coord. Chem. Rev., 2022, 472, 214780. doi: 10.1016/j.ccr.2022.214780
  76. Edge, R.; Truscott, T. Singlet oxygen and free radical reactions of retinoids and carotenoids—a review. Antioxidants, 2018, 7(1), 5. doi: 10.3390/antiox7010005 PMID: 29301252
  77. Liang, D.; Zhang, Y.; Wu, Z.; Chen, Y.J.; Yang, X.; Sun, M.; Ni, R.; Bian, J.; Huang, D. A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sens. Actuators B Chem., 2018, 266, 645-654. doi: 10.1016/j.snb.2018.03.024
  78. Tanrıverdi Eçik, E.; Bulut, O.; Kazan, H.H.; Şenkuytu, E.; Çoşut, B. Design of novel photosensitizers and controlled singlet oxygen generation for photodynamic therapy. New J. Chem., 2021, 45(35), 16298-16305. doi: 10.1039/D1NJ02656A
  79. Younis, M.R.; He, G.; Qu, J.; Lin, J.; Huang, P.; Xia, X.H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci., 2021, 8(21), 2102587. doi: 10.1002/advs.202102587 PMID: 34561971
  80. Manzanares, D.; Ceña, V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4), 371. doi: 10.3390/pharmaceutics12040371 PMID: 32316537
  81. Chan, M.H.; Chen, C.W.; Lee, I.J.; Chan, Y.C.; Tu, D.; Hsiao, M.; Chen, C.H.; Chen, X.; Liu, R.S. Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots. Inorg. Chem., 2016, 55(20), 10267-10277. doi: 10.1021/acs.inorgchem.6b01522 PMID: 27667449
  82. Kinsella, T.J.; Colussi, V.C.; Oleinick, N.L.; Sibata, C.H. Photodynamic therapy in oncology. Expert Opin. Pharmacother., 2001, 2(6), 917-927. doi: 10.1517/14656566.2.6.917 PMID: 11585008
  83. Kim, M.M.; Darafsheh, A. Light sources and dosimetry techniques for photodynamic therapy. Photochem. Photobiol., 2020, 96(2), 280-294. doi: 10.1111/php.13219 PMID: 32003006
  84. Chu, X.; Li, K.; Guo, H.; Zheng, H.; Shuda, S.; Wang, X.; Zhang, J.; Chen, W.; Zhang, Y. Exploration of graphitic-C3N4 quantum dots for microwave-induced photodynamic therapy. ACS Biomater. Sci. Eng., 2017, 3(8), 1836-1844. doi: 10.1021/acsbiomaterials.7b00110 PMID: 33429665
  85. Thakur, M.; Kumawat, M.K.; Srivastava, R. Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 2017, 7(9), 5251-5261. doi: 10.1039/C6RA25976F
  86. Ahirwar, S.; Mallick, S.; Bahadur, D. Photodynamic therapy using graphene quantum dot derivatives. J. Solid State Chem., 2020, 282, 121107. doi: 10.1016/j.jssc.2019.121107
  87. Sheng, J.; Zhang, L.; Deng, L.; Han, Y.; Wang, L.; He, H.; Liu, YN. Fabrication of dopamine enveloped WO3−x quantum dots as single-NIR laser activated photonic nanodrug for synergistic photothermal/photodynamic therapy against cancer. Chem. Eng. J., 2020, 383, 123071. doi: 10.1016/j.cej.2019.123071
  88. Cardoso Dos Santos, M.; Algar, W.R.; Medintz, I.L.; Hilde-brandt, N. Quantum dots for Förster resonance energy transfer (FRET). Trends Analyt. Chem., 2020, 125, 115819. doi: 10.1016/j.trac.2020.115819
  89. Mateen, F.; Ali, M.; Lee, S.Y.; Jeong, S.H.; Ko, M.J.; Hong, S.K. Tandem structured luminescent solar concentrator based on inorganic carbon quantum dots and organic dyes. Sol. Energy, 2019, 190, 488-494. doi: 10.1016/j.solener.2019.08.045
  90. Xu, H.; Huang, X.; Zhang, W.; Chen, G.; Zhu, W.; Zhong, X. Quantum dots acting as energy acceptors with organic dyes as donors in solution. Chem. Phys. Chem, 2010, 11(14), 3167-3171. doi: 10.1002/cphc.201000287 PMID: 20872922
  91. Ranjbary, F.; Fathi, F.; Pakchin, P.S.; Maleki, S. Astaxanthin binding affinity to DNA: Studied by fluorescence, surface plasmon resonance and molecular docking methods. J. Fluoresc., 2023, 1-10. doi: 10.1007/s10895-023-03310-3 PMID: 37358756
  92. Díaz, S.A.; Lasarte Aragonés, G.; Buckhout-White, S.; Qiu, X.; Oh, E.; Susumu, K.; Melinger, J.S.; Huston, A.L.; Hilde-brandt, N.; Medintz, I.L. Bridging lanthanide to quantum dot energy transfer with a short-lifetime organic dye. J. Phys. Chem. Lett., 2017, 8(10), 2182-2188. doi: 10.1021/acs.jpclett.7b00584 PMID: 28467088
  93. Kuznetsova, V.; Tkach, A.; Cherevkov, S.; Sokolova, A.; Gromova, Y.; Osipova, V.; Baranov, M.; Ugolkov, V.; Fedorov, A.; Baranov, A. Spectral-time multiplexing in FRET complexes of AgInS2/ZnS quantum dot and organic dyes. Nanomaterials, 2020, 10(8), 1569. doi: 10.3390/nano10081569 PMID: 32785050
  94. Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107. doi: 10.1016/j.biopha.2018.07.049 PMID: 30119176
  95. Monro, S.; Colón, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev., 2019, 119(2), 797-828. doi: 10.1021/acs.chemrev.8b00211 PMID: 30295467
  96. Zhang, C.; Chen, W.; Zhang, T.; Jiang, X.; Hu, Y. Hybrid nanoparticle composites applied to photodynamic therapy: Strategies and applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4726-4737. doi: 10.1039/D0TB00093K PMID: 32104868
  97. Yi, G.; Hong, S.H.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent advances in nanoparticle carriers for photodynamic therapy. Quant. Imaging Med. Surg., 2018, 8(4), 433-443. doi: 10.21037/qims.2018.05.04 PMID: 29928608
  98. Du, C.; Liang, Y.; Ma, Q.; Sun, Q.; Qi, J.; Cao, J.; Han, S.; Liang, M.; Song, B.; Sun, Y. Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. J. Nanobiotechnology, 2019, 17(1), 113. doi: 10.1186/s12951-019-0547-2 PMID: 31699100
  99. Cao, H.; Yang, Y.; Qi, Y.; Li, Y.; Sun, B.; Li, Y.; Cui, W.; Li, J.; Li, J. Intraparticle FRET for enhanced efficiency of two‐photon activated photodynamic therapy. Adv. Healthc. Mater., 2018, 7(12), 1701357. doi: 10.1002/adhm.201701357 PMID: 29688635
  100. Li, K.; Hong, E.; Wang, B.; Wang, Z.; Zhang, L.; Hu, R.; Wang, B. Advances in the application of upconversion nano-particles for detecting and treating cancers. Photodiagn. Photodyn. Ther., 2019, 25, 177-192. doi: 10.1016/j.pdpdt.2018.12.007 PMID: 30579991
  101. Rotomskis, R.; Valanciunaite, J.; Skripka, A.; Steponkiene, S.; Spogis, G.; Bagdonas, S.; Streckyte, G. Complexes of functionalized quantum dots and chlorin e6 in photodynamic therapy. Lith. J. Phys., 2013, 53(1), 57-68. doi: 10.3952/physics.v53i1.2607
  102. Feng, Y.; Liu, L.; Hu, S.; Liu, Y.; Ren, Y.; Zhang, X. Förster resonance energy transfer properties of a new type of near-infrared excitation PDT photosensitizer: CuInS2/ZnS quantum dots-5-aminolevulinic acid conjugates. RSC Advances, 2016, 6(60), 55568-55576. doi: 10.1039/C6RA06937A
  103. Wang, J.; Li, Y.; Mao, R.; Wang, Y.; Yan, X.; Liu, J. Persistent luminescent nanoparticles as energy mediators for enhanced photodynamic therapy with fractionated irradiation. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(29), 5793-5805. doi: 10.1039/C7TB00950J PMID: 32264213
  104. Martynenko, I.V.; Kuznetsova, V.A.; Orlova, А.O.; Kanaev, P.A.; Maslov, V.G.; Loudon, A.; Zaharov, V.; Parfenov, P.; Gun’ko, Y.K.; Baranov, A.V.; Fedorov, A.V. Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy. Nanotechnology, 2015, 26(5), 055102. doi: 10.1088/0957-4484/26/5/055102 PMID: 25586592
  105. Singh, S.; Jha, P.; Singh, V.; Sinha, K.; Hussain, S.; Singh, M.K.; Das, P. A quantum dot–MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr. Biol., 2016, 8(10), 1040-1048. doi: 10.1039/C6IB00092D PMID: 27723851
  106. Amin, F.; Fathi, F.; Reiner, Ž.; Banach, M.; Sahebkar, A. The role of statins in lung cancer. Arch. Med. Sci., 2021, 18(1), 141-152. doi: 10.5114/aoms/123225 PMID: 35154535
  107. Wang, S.; Cole, I.S.; Li, Q. The toxicity of graphene quantum dots. RSC Advances, 2016, 6(92), 89867-89878. doi: 10.1039/C6RA16516H PMID: 28496970
  108. Yan, J.; Hou, S.; Yu, Y.; Qiao, Y.; Xiao, T.; Mei, Y.; Zhang, Z.; Wang, B.; Huang, C.C.; Lin, C.H.; Suo, G. The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids Surf. B Biointerfaces, 2018, 171, 241-249. doi: 10.1016/j.colsurfb.2018.07.034 PMID: 30036791
  109. Fathi, F.; Chaghamirzaei, P.; Allahveisi, S.; Ahmadi-Kandjani, S.; Rashidi, M.R. Investigation of optical and physical property in opal films prepared by colloidal and freeze-dried microspheres. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611, 125842. doi: 10.1016/j.colsurfa.2020.125842
  110. Allocca, M.; Mattera, L.; Bauduin, A.; Miedziak, B.; Moros, M.; De Trizio, L.; Tino, A.; Reiss, P.; Ambrosone, A.; Tortiglione, C. An integrated multilevel analysis profiling biosafety and toxicity induced by indium-and cadmium-based quantum dots in vivo. Environ. Sci. Technol., 2019, 53(7), 3938-3947. doi: 10.1021/acs.est.9b00373 PMID: 30821457
  111. Wang, Z.; Tang, M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. Environ. Res., 2021, 194, 110593. doi: 10.1016/j.envres.2020.110593 PMID: 33352186
  112. Chen, T.; Li, L.; Xu, G.; Wang, X.; Wang, J.; Chen, Y.; Jiang, W.; Yang, Z.; Lin, G. Cytotoxicity of InP/ZnS quantum dots with different surface functional groups toward two lung-derived cell lines. Front. Pharmacol., 2018, 9, 763. doi: 10.3389/fphar.2018.00763 PMID: 30057549
  113. Liu, J.; Shi, X.; Zhang, R.; Zhang, M.; He, J.; Chen, J.; Wang, Z.; Wang, Q. CoFe2O4-quantum dots for synergistic photothermal/photodynamic therapy of non-small-cell lung cancer via triggering apoptosis by regulating PI3K/AKT pathway. Nanoscale Res. Lett., 2021, 16(1), 120. doi: 10.1186/s11671-021-03580-5 PMID: 33387075
  114. Tian, Z.; Yao, X.; Ma, K.; Niu, X.; Grothe, J.; Xu, Q.; Liu, L.; Kaskel, S.; Zhu, Y. Metal–organic framework/graphene quan-tum dot nanoparticles used for synergistic chemo-and photothermal therapy. ACS Omega, 2017, 2(3), 1249-1258. doi: 10.1021/acsomega.6b00385 PMID: 30023630
  115. Li, S.; Zhou, S.; Li, Y.; Li, X.; Zhu, J.; Fan, L.; Yang, S. Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(27), 22332-22341. doi: 10.1021/acsami.7b07267 PMID: 28643511
  116. Zhang, M.; Wang, W.; Zhou, N.; Yuan, P.; Su, Y.; Shao, M.; Chi, C.; Pan, F. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon, 2017, 118, 752-764. doi: 10.1016/j.carbon.2017.03.085
  117. Das, R.K.; Panda, S.; Bhol, C.S.; Bhutia, S.K.; Mohapatra, S. N-doped carbon quantum dot (NCQD)-Deposited carbon capsules for synergistic fluorescence imaging and photothermal therapy of oral cancer. Langmuir, 2019, 35(47), 15320-15329. doi: 10.1021/acs.langmuir.9b03001 PMID: 31682135

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers