Hyperoxic-hypoxic Paradox: Breast Cancer Microenvironment and an Innovative Treatment Strategy
- Authors: Ray S.1, Mukherjee S.2
-
Affiliations:
- ,
- Department of Biochemistry, All India Institute of Medical Science
- Issue: Vol 24, No 10 (2024)
- Pages: 729-732
- Section: Oncology
- URL: https://snv63.ru/1871-5206/article/view/643688
- DOI: https://doi.org/10.2174/0118715206290816240220062545
- ID: 643688
Cite item
Full Text
Abstract
A small therapeutic range of oxygen is required for effective metabolism. As a result, hypoxia (low oxygen concentration) is one of the most potent inducers of gene expression, metabolic alterations, and regenerative processes, such as angiogenesis, stem cell proliferation, migration, and differentiation. The cellular response is controlled by sensing the increased oxygen levels (hyperoxia) or hypoxia via specific chemoreceptor cells. Surprisingly, changes in free oxygen concentration instead of absolute oxygen levels may be regarded as a deficiency of oxygen at the cellular level. Recurrent intermittent hyperoxia may trigger many mediators of cellular pathways typically generated during hypoxia. The dilemma of hyperoxic-hypoxic conditions is known as the hyperoxic-hypoxic paradox. According to the latest data, the hypoxic microenvironment, crucial during cancer formation, has been demonstrated to play a key role in regulating breast cancer growth and metastasis. Hypoxic circumstances cause breast cancer cells to respond in a variety of ways. Transcription factors are identified as hypoxia-inducible factors (HIFs) that have been suggested to be a factor in the pathobiology of breast cancer and a possible therapeutic target, driving the cellular response to hypoxia. Breast cancer has a dismal prognosis due to a high level of resistance to practically all well-known cancer management that has been related to hypoxia-based interactions between tumor cells and the stromal milieu. We attempt to review the enigma by exploring the starring roles of HIFs in breast cancer, the HIF paradox, and the hyperoxic-hypoxic enigma.
About the authors
Suman Ray
,
Email: info@benthamscience.net
Sukhes Mukherjee
Department of Biochemistry, All India Institute of Medical Science
Author for correspondence.
Email: info@benthamscience.net
References
- Thiemens, M.H. Oxygen origins. Nat. Chem., 2012, 4(1), 66. doi: 10.1038/nchem.1226 PMID: 22169875
- Michiels, C. Physiological and pathological responses to hypoxia. Am. J. Pathol., 2004, 164(6), 1875-1882. doi: 10.1016/S0002-9440(10)63747-9 PMID: 15161623
- Hadanny, A.; Efrati, S. The hyperoxic-hypoxic paradox. Biomolecules, 2020, 10(6), 958. doi: 10.3390/biom10060958 PMID: 32630465
- Todd, V.M.; Johnson, R.W. Hypoxia in bone metastasis and osteolysis. Cancer Lett., 2020, 489, 144-154. doi: 10.1016/j.canlet.2020.06.004 PMID: 32561416
- Johnson, R.W.; Sowder, M.E.; Giaccia, A.J. Hypoxia and bone metastatic disease. Curr. Osteoporos. Rep., 2017, 15(4), 231-238. doi: 10.1007/s11914-017-0378-8 PMID: 28597139
- Meneses, A.M.; Wielockx, B. PHD2: From hypoxia regulation to disease progression. Hypoxia, 2016, 4, 53-67. PMID: 27800508
- Corcoran, S.E.; ONeill, L.A.J. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest., 2016, 126(10), 3699-3707. doi: 10.1172/JCI84431 PMID: 27571407
- Ray, S.K.; Mukherjee, S. Consequences of extracellular matrix remodeling in headway and metastasis of cancer along with novel immunotherapies: A great promise for future endeavor. Anticancer Agents Med. Chem., 2022, 22(7), 1257-1271. doi: 10.2174/1871520621666210712090017 PMID: 34254930
- Mukherjee, S.; Ray, S.K. Imitating hypoxia and tumor microenvironment with immune evasion by employing three dimensional in vitro cellular models: impressive tool in drug discovery. Recent Patents Anticancer Drug Discov., 2022, 17(1), 80-91. doi: 10.2174/1574892816666210728115605 PMID: 34323197
- Mukherjee, S.; Ray, S.K. Targeting tumor hypoxia and hypoxia-inducible factors (HIFs) for the treatment of cancer- A story of transcription factors with novel approach in molecular medicine. Curr. Mol. Med., 2022, 22(4), 285-286. doi: 10.2174/156652402204220325161921 PMID: 35603885
- Davis, N.M.; Sokolosky, M.; Stadelman, K.; Abrams, S.L.; Libra, M.; Candido, S.; Nicoletti, F.; Polesel, J.; Maestro, R.; DAssoro, A.; Drobot, L.; Rakus, D.; Gizak, A.; Laidler, P.; Dulińska-Litewka, J.; Basecke, J.; Mijatovic, S.; Maksimovic-Ivanic, D.; Montalto, G.; Cervello, M.; Fitzgerald, T.L.; Demidenko, Z.N.; Martelli, A.M.; Cocco, L.; Steelman, L.S.; McCubrey, J.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention. Oncotarget, 2014, 5(13), 4603-4650. doi: 10.18632/oncotarget.2209 PMID: 25051360
- Hamanaka, R.B.; Chandel, N.S. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol., 2009, 21(6), 894-899. doi: 10.1016/j.ceb.2009.08.005 PMID: 19781926
- Tam, S.Y.; Wu, V.W.C.; Law, H.K.W. Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Front. Oncol., 2020, 10, 486. doi: 10.3389/fonc.2020.00486 PMID: 32322559
- Echevarría, M.; Muñoz-Cabello, A.M.; Sánchez-Silva, R.; Toledo-Aral, J.J.; López-Barneo, J. Development of cytosolic hypoxia and hypoxia-inducible factor stabilization are facilitated by aquaporin-1 expression. J. Biol. Chem., 2007, 282(41), 30207-30215. doi: 10.1074/jbc.M702639200 PMID: 17673462
- Choudhury, R. Hypoxia and hyperbaric oxygen therapy: A review. Int. J. Gen. Med., 2018, 11, 431-442. doi: 10.2147/IJGM.S172460 PMID: 30538529
- Koh, M.Y.; Darnay, B.G.; Powis, G. Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation. Mol. Cell. Biol., 2008, 28(23), 7081-7095. doi: 10.1128/MCB.00773-08 PMID: 18838541
- Hewitson, K.S.; McNeill, L.A.; Riordan, M.V.; Tian, Y.M.; Bullock, A.N.; Welford, R.W.; Elkins, J.M.; Oldham, N.J.; Bhattacharya, S.; Gleadle, J.M.; Ratcliffe, P.J.; Pugh, C.W.; Schofield, C.J. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem., 2002, 277(29), 26351-26355. doi: 10.1074/jbc.C200273200 PMID: 12042299
- Belisario, D.C.; Kopecka, J.; Pasino, M.; Akman, M.; De Smaele, E.; Donadelli, M.; Riganti, C. Hypoxia dictates metabolic rewiring of tumors: Implications for chemoresistance. Cells, 2020, 9(12), 2598. doi: 10.3390/cells9122598 PMID: 33291643
- Herrera-Campos, A.B.; Zamudio-Martinez, E.; Delgado-Bellido, D.; Fernández-Cortés, M.; Montuenga, L.M.; Oliver, F.J.; Garcia-Diaz, A. Implications of hyperoxia over the tumor microenvironment: An overview highlighting the importance of the immune system. Cancers, 2022, 14(11), 2740. doi: 10.3390/cancers14112740 PMID: 35681719
- Ristescu, A.I.; Tiron, C.E.; Tiron, A.; Grigoras, I. Exploring hyperoxia effects in cancerfrom perioperative clinical data to potential molecular mechanisms. Biomedicines, 2021, 9(9), 1213. doi: 10.3390/biomedicines9091213 PMID: 34572400
- Tiron, A.; Ristescu, I.; Postu, P.A.; Tiron, C.E.; Zugun-Eloae, F.; Grigoras, I. Long-term deleterious effects of short-term hyperoxia on cancer progressionis brain-derived neurotrophic factor an important mediator? An experimental study. Cancers, 2020, 12(3), 688. doi: 10.3390/cancers12030688 PMID: 32183322
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol., 2023, 97(10), 2499-2574. doi: 10.1007/s00204-023-03562-9 PMID: 37597078
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219. doi: 10.2147/vhrm.2006.2.3.213 PMID: 17326328
- Golhani, V.; Ray, S.K.; Mukherjee, S. Role of MicroRNAs and long non-coding RNAs in regulating angiogenesis in human breast cancer: A molecular medicine perspective. Curr. Mol. Med., 2022, 22(10), 882-893. doi: 10.2174/1566524022666211217114527 PMID: 34923940
- Zhang, Y.; Zhang, H.; Wang, M.; Schmid, T.; Xin, Z.; Kozhuharova, L.; Yu, W.K.; Huang, Y.; Cai, F.; Biskup, E. Hypoxia in breast cancerscientific translation to therapeutic and diagnostic clinical applications. Front. Oncol., 2021, 11, 652266. doi: 10.3389/fonc.2021.652266 PMID: 33777815
- Kim, J.; Bae, J.S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm., 2016, 2016, 1-11. doi: 10.1155/2016/6058147 PMID: 26966341
- Baek, J.H.; Jang, J.E.; Kang, C.M.; Chung, H.Y.; Kim, N.D.; Kim, K.W. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene, 2000, 19(40), 4621-4631. doi: 10.1038/sj.onc.1203814 PMID: 11030151
- Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int. J. Mol. Sci., 2021, 22(11), 5703. doi: 10.3390/ijms22115703 PMID: 34071836
- Gilkes, D.M.; Semenza, G.L. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol., 2013, 9(11), 1623-1636. doi: 10.2217/fon.13.92 PMID: 24156323
- Cai, F.F.; Xu, C.; Pan, X.; Cai, L.; Lin, X.Y.; Chen, S.; Biskup, E. Prognostic value of plasma levels of HIF-1a and PGC-1a in breast cancer. Oncotarget, 2016, 7(47), 77793-77806. doi: 10.18632/oncotarget.12796 PMID: 27780920
- Hung, S.P.; Yang, M.H.; Tseng, K.F.; Lee, O.K. Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant., 2013, 22(10), 1869-1882. doi: 10.3727/096368912X657954 PMID: 23067574
- Kummar, S.; Raffeld, M.; Juwara, L.; Horneffer, Y.; Strassberger, A.; Allen, D.; Steinberg, S.M.; Rapisarda, A.; Spencer, S.D.; Figg, W.D.; Chen, X.; Turkbey, I.B.; Choyke, P.; Murgo, A.J.; Doroshow, J.H.; Melillo, G. Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1α in advanced solid tumors. Clin. Cancer Res., 2011, 17(15), 5123-5131. doi: 10.1158/1078-0432.CCR-11-0682 PMID: 21673063
- Wong, C.C.L.; Gilkes, D.M.; Zhang, H.; Chen, J.; Wei, H.; Chaturvedi, P.; Fraley, S.I.; Wong, C.M.; Khoo, U.S.; Ng, I.O.L.; Wirtz, D.; Semenza, G.L. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc. Natl. Acad. Sci. USA, 2011, 108(39), 16369-16374. doi: 10.1073/pnas.1113483108 PMID: 21911388
- Hunter, F.W.; Wouters, B.G.; Wilson, W.R. Hypoxia-activated prodrugs: Paths forward in the era of personalised medicine. Br. J. Cancer, 2016, 114(10), 1071-1077. doi: 10.1038/bjc.2016.79 PMID: 27070712
Supplementary files
