Mesenchymal Stem Cell-Derived Exosomes Mitigate Acute Murine Liver Injury via Ets-1 and Heme Oxygenase-1 Up-regulation


Cite item

Full Text

Abstract

Background:Mesenchymal stem cells (MSCs)-derived exosomes have been previously demonstrated to promote tissue regeneration in various animal disease models. This study investigated the protective effect of exosome treatment in carbon tetrachloride (CCl4)-induced acute liver injury and delineated possible underlying mechanism

Methods:Exosomes collected from conditioned media of previously characterized human umbilical cord-derived MSCs were intravenously administered into male CD-1 mice with CCl4-induced acute liver injury. Biochemical, histological and molecular parameters were used to evaluate the severity of liver injury. A rat hepatocyte cell line, Clone-9, was used to validate the molecular changes by exosome treatment.

Results:Exosome treatment significantly suppressed plasma levels of AST, ALT, and pro-inflammatory cytokines, including IL-6 and TNF-α, in the mice with CCl4-induced acute liver injury. Histological morphometry revealed a significant reduction in the necropoptic area in the injured livers following exosome therapy. Consistently, western blot analysis indicated marked elevations in hepatic expression of PCNA, c-Met, Ets-1, and HO-1 proteins after exosome treatment. Besides, the phosphorylation level of signaling mediator JNK was significantly increased, and that of p38 was restored by exosome therapy. Immunohistochemistry double staining confirmed nuclear Ets-1 expression and cytoplasmic localization of c-Met and HO-1 proteins. In vitro studies demonstrated that exosome treatment increased the proliferation of Clone-9 hepatocytes and protected them from CCl4-induced cytotoxicity. Kinase inhibition experiment indicated that the exosome-driven hepatoprotection might be mediated through the JNK pathway.

Conclusion:Exosome therapy activates the JNK signaling activation pathway as well as up-regulates Ets-1 and HO-1 expression, thereby protecting hepatocytes against hepatotoxin-induced cell death.

About the authors

Ying-Hsien Kao

Department of Medical Research, E-Da Hospital, I-Shou University

Author for correspondence.
Email: info@benthamscience.net

Chih-Yang Chang

Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University

Email: info@benthamscience.net

Yu-Chun Lin

Department of Surgery, E-Da Hospital, I-Shou University

Email: info@benthamscience.net

Po-Han Chen

Department of Medical Research, E-Da Hospital, I-Shou University

Email: info@benthamscience.net

Po-Huang Lee

Department of Surgery, E-Da Hospital, I-Shou University

Email: info@benthamscience.net

Huoy-Rou Chang

Departments of Biomedical Engineering, I-Shou University

Email: info@benthamscience.net

Wen-Yu Chang

Department of Dermatology, E-- Da Cancer Hospital, I-Shou University

Email: info@benthamscience.net

Yo-Chen Chang

Department of Ophthalmology, Kaohsiung Medical University

Email: info@benthamscience.net

Shen-Fa Wun

Departments of Biomedical Engineering, I-Shou University

Email: info@benthamscience.net

Cheuk-Kwan Sun

Department of Medical Research, E-Da Hospital, I-Shou University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Alves LA, Bonavita A, Quaresma K, et al. New strategies for acute liver failure: Focus on xenotransplantation therapy. Cell Med 2010; 1(1): 47-54. doi: 10.3727/215517910X516646 PMID: 26998396
  2. Conconi M, Burra P, Di Liddo R, et al. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 2006; 18(6): 1089-96. doi: 10.3892/ijmm.18.6.1089 PMID: 17089012
  3. Gauthaman K, Venugopal JR, Yee FC, Biswas A, Ramakrishna S, Bongso A. Osteogenic differentiation of human Wharton’s jelly stem cells on nanofibrous substrates in vitro. Tissue Eng Part A 2011; 17(1-2): 71-81. doi: 10.1089/ten.tea.2010.0224 PMID: 20673136
  4. Fong CY, Subramanian A, Gauthaman K, et al. Human umbilical cord wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev 2011.
  5. Weiss ML, Anderson C, Medicetty S, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 2008; 26(11): 2865-74. doi: 10.1634/stemcells.2007-1028 PMID: 18703664
  6. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22. doi: 10.1182/blood-2004-04-1559 PMID: 15494428
  7. Tsai PC, Fu TW, Chen YMA, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl 2009; 15(5): 484-95. doi: 10.1002/lt.21715 PMID: 19399744
  8. Lin SZ, Chang YJ, Liu JW, et al. Transplantation of human Wharton’s Jelly-derived stem cells alleviates chemically induced liver fibrosis in rats. Cell Transplant 2010; 19(11): 1451-63. doi: 10.3727/096368910X514198 PMID: 20587139
  9. Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo : From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11(8): 548-64. doi: 10.4252/wjsc.v11.i8.548 PMID: 31523373
  10. Kao YH, Lin YC, Lee PH, et al. Infusion of human mesenchymal stem cells improves regenerative niche in thioacetamide-injured mouse liver. Tissue Eng Regen Med 2020; 17(5): 671-82. doi: 10.1007/s13770-020-00274-4 PMID: 32880852
  11. Huang B, Cheng X, Wang H, et al. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J Transl Med 2016; 14(1): 45. doi: 10.1186/s12967-016-0792-1 PMID: 26861623
  12. Wang Y, Wang J, Ma H, Tang Z, Ding H, Shi X. Mesenchymal stem cells increase heme oxygenase 1-activated autophagy in treatment of acute liver failure. Biochem Biophys Res Commun 2019; 508(3): 682-9. doi: 10.1016/j.bbrc.2018.11.146 PMID: 30528392
  13. Huang YJ, Chen P, Lee CY, et al. Protection against acetaminophen-induced acute liver failure by omentum adipose tissue derived stem cells through the mediation of Nrf2 and cytochrome P450 expression. J Biomed Sci 2016; 23(1): 5. doi: 10.1186/s12929-016-0231-x PMID: 26787241
  14. Wang J, Cen P, Chen J, et al. Role of mesenchymal stem cells, their derived factors, and extracellular vesicles in liver failure. Stem Cell Res Ther 2017; 8(1): 137. doi: 10.1186/s13287-017-0576-4 PMID: 28583199
  15. Lotfinia M, Kadivar M, Piryaei A, et al. Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells Dev 2016; 25(24): 1898-908. doi: 10.1089/scd.2016.0244 PMID: 27676103
  16. Zagoura DS, Roubelakis MG, Bitsika V, et al. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 2012; 61(6): 894-906. doi: 10.1136/gutjnl-2011-300908 PMID: 21997562
  17. Zhao T, Sun F, Liu J, et al. Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine. Curr Stem Cell Res Ther 2019; 14(6): 482-94. doi: 10.2174/1574888X14666190228103230 PMID: 30819086
  18. Cai S, Cheng X, Pan X, Li J. Emerging role of exosomes in liver physiology and pathology. Hepatol Res 2017; 47(2): 194-203. doi: 10.1111/hepr.12794 PMID: 27539153
  19. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25. doi: 10.1016/j.ceb.2014.05.004 PMID: 24959705
  20. Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017; 49(6): e346. doi: 10.1038/emm.2017.63 PMID: 28620221
  21. Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12(8): 814-40. doi: 10.4252/wjsc.v12.i8.814 PMID: 32952861
  22. Jiang W, Tan Y, Cai M, et al. Human umbilical cord msc-derived exosomes suppress the development of ccl4-induced liver injury through antioxidant effect. Stem Cells Int 2018; 2018: 1-11. doi: 10.1155/2018/6079642 PMID: 29686713
  23. Rostom DM, Attia N, Khalifa HM, Abou Nazel MW, El Sabaawy EA. The therapeutic potential of extracellular vesicles versus mesenchymal stem cells in liver damage. Tissue Eng Regen Med 2020; 17(4): 537-52. doi: 10.1007/s13770-020-00267-3 PMID: 32506351
  24. Nong K, Wang W, Niu X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell–derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 2016; 18(12): 1548-59. doi: 10.1016/j.jcyt.2016.08.002 PMID: 27592404
  25. Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22(6): 845-54. doi: 10.1089/scd.2012.0395 PMID: 23002959
  26. Chiabotto G, Ceccotti E, Tapparo M, Camussi G, Bruno S. Human liver stem cell-derived extracellular vesicles target hepatic stellate cells and attenuate their pro-fibrotic phenotype. Front Cell Dev Biol 2021; 9: 777462. doi: 10.3389/fcell.2021.777462 PMID: 34796180
  27. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 2014; 5(3): 76. doi: 10.1186/scrt465 PMID: 24915963
  28. Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Devel Ther 2019; 13: 2887-97. doi: 10.2147/DDDT.S220190 PMID: 31695322
  29. Yan Y, Jiang W, Tan Y, et al. Hucmsc exosome-derived gpx1 is required for the recovery of hepatic oxidant injury. Mol Ther 2017; 25(2): 465-79. doi: 10.1016/j.ymthe.2016.11.019 PMID: 28089078
  30. Tamura R, Uemoto S, Tabata Y. Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Inflamm Regen 2016; 36(1): 26. doi: 10.1186/s41232-016-0030-5 PMID: 29259699
  31. Shao M, Xu Q, Wu Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther 2020; 11(1): 37. doi: 10.1186/s13287-020-1550-0 PMID: 31973730
  32. Thery C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Chapter 3: Unit 3.22. doi: 10.1002/0471143030.cb0322s30
  33. Hameed H, Farooq M, Vuillier C, et al. Ripk1 in liver parenchymal cells limits murine hepatitis during acute ccl4-induced liver injury. Int J Mol Sci 2022; 23(13): 7367. doi: 10.3390/ijms23137367 PMID: 35806372
  34. Hsiao CC, Chen PH, Cheng CI, et al. Toll-like receptor-4 is a target for suppression of proliferation and chemoresistance in HepG2 hepatoblastoma cells. Cancer Lett 2015; 368(1): 144-52. doi: 10.1016/j.canlet.2015.08.004 PMID: 26276725
  35. Kao YH, Chen CL, Jawan B, et al. Upregulation of hepatoma-derived growth factor is involved in murine hepatic fibrogenesis. J Hepatol 2010; 52(1): 96-105. doi: 10.1016/j.jhep.2009.10.002 PMID: 19913322
  36. Kao YH, Lin YC, Tsai MS, et al. Involvement of the nuclear high mobility group B1 peptides released from injured hepatocytes in murine hepatic fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2014; 1842(9): 1720-32. doi: 10.1016/j.bbadis.2014.06.017 PMID: 24970745
  37. Kang LI, Mars W, Michalopoulos G. Signals and cells involved in regulating liver regeneration. Cells 2012; 1(4): 1261-92. doi: 10.3390/cells1041261 PMID: 24710554
  38. Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. Angiogenesis and oxidative stress: Common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci 2011; 63(1): 1-9. doi: 10.1016/j.jdermsci.2011.04.007 PMID: 21600738
  39. Gambarotta G, Boccaccio C, Giordano S, Andŏ M, Stella MC, Comoglio PM. Ets up-regulates MET transcription. Oncogene 1996; 13(9): 1911-7. PMID: 8934537
  40. Tomita N, Morishita R, Taniyama Y, et al. Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation 2003; 107(10): 1411-7. doi: 10.1161/01.CIR.0000055331.41937.AA PMID: 12642363
  41. Li B, Lager J, Wang D, Li D. Ets-1 participates in and facilitates developmental expression of hypoxia-induced mitogenic factor in mouse lung. Front Biosci 2007; 12(1): 2269-78. doi: 10.2741/2229 PMID: 17127463
  42. Chan YC, Khanna S, Roy S, Sen CK. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 2011; 286(3): 2047-56. doi: 10.1074/jbc.M110.158790 PMID: 21081489
  43. Tanaka M, Masaki Y, Tanaka K, et al. Reduction of fatty acid oxidation and responses to hypoxia correlate with the progression of de-differentiation in HCC. Mol Med Rep 2013; 7(2): 365-70. doi: 10.3892/mmr.2012.1201 PMID: 23178736
  44. Oikawa T. ETS transcription factors: Possible targets for cancer therapy. Cancer Sci 2004; 95(8): 626-33. doi: 10.1111/j.1349-7006.2004.tb03320.x PMID: 15298723
  45. Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling. Stem Cells 2016; 34(3): 601-13. doi: 10.1002/stem.2298 PMID: 26782178
  46. Lin D, Chen H, Xiong J, et al. Mesenchymal stem cells exosomal let-7a-5p improve autophagic flux and alleviate liver injury in acute-on-chronic liver failure by promoting nuclear expression of TFEB. Cell Death Dis 2022; 13(10): 865. doi: 10.1038/s41419-022-05303-9 PMID: 36224178
  47. Ueno T, Komatsu M. Autophagy in the liver: Functions in health and disease. Nat Rev Gastroenterol Hepatol 2017; 14(3): 170-84. doi: 10.1038/nrgastro.2016.185 PMID: 28053338
  48. Zhang X, Wu D, Aldarouish M, Yin X, Li C, Wang C. ETS-1: A potential target of glycolysis for metabolic therapy by regulating glucose metabolism in pancreatic cancer. Int J Oncol 2017; 50(1): 232-40. doi: 10.3892/ijo.2016.3770 PMID: 27878249
  49. Weng CJ, Chen MJ, Yeh CT, Yen GC. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. N Biotechnol 2011; 28(6): 767-77. doi: 10.1016/j.nbt.2011.05.003 PMID: 21624509
  50. Yoon YJ, Kim DK, Yoon CM, et al. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One 2014; 9(12): e115170. doi: 10.1371/journal.pone.0115170 PMID: 25502753
  51. Li Y, Xiu F, Mou Z, et al. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway. Nanomedicine 2018; 13(10): 1157-68. doi: 10.2217/nnm-2018-0035 PMID: 29542367
  52. Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: A systems view. Sci Rep 2018; 8(1): 1419. doi: 10.1038/s41598-018-19581-x PMID: 29362496
  53. Song XJ, Zhang L, Li Q, Li Y, Ding FH, Li X. hUCB-MSC derived exosomal miR-124 promotes rat liver regeneration after partial hepatectomy via downregulating Foxg1. Life Sci 2021; 265: 118821. doi: 10.1016/j.lfs.2020.118821 PMID: 33275988
  54. Zhang J, Gao J, Lin D, et al. Potential networks regulated by mscs in acute-on-chronic liver failure: Exosomal mirnas and intracellular target genes. Front Genet 2021; 12: 650536. doi: 10.3389/fgene.2021.650536 PMID: 33968135

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers